路桥区三中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

路桥区三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 下列命题中错误的是( )
A .圆柱的轴截面是过母线的截面中面积最大的一个
B .圆锥的轴截面是所在过顶点的截面中面积最大的一个
C .圆台的所有平行于底面的截面都是圆面
D .圆锥所有的轴截面是全等的等腰三角形
2. 定义运算:,,a a b
a b b a b ≤⎧*=⎨>⎩
.例如121*=,则函数()sin cos f x x x =*的值域为( )
A .22⎡
-
⎢⎣⎦
B .[]1,1-
C .,12⎤⎥⎣⎦
D .1,2⎡-⎢⎣⎦ 3. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( )
A .243
B .363
C .729
D .1092
【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.
4.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()
A.4x+2y=5 B.4x﹣2y=5 C.x+2y=5 D.x﹣2y=5
5.椭圆=1的离心率为()
A.B.C.D.
6.已知函数f(x)=x3+mx2+(2m+3)x(m∈R)存在两个极值点x1,x2,直线l经过点A(x1,x12),B
(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是()
A .[0,2]
B .[0,3]
C .[0
,) D .[0
,)
7. 集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个 A.4 B. 5 C.6 D.7 8. 若点O 和点F (﹣2,0
)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任
意一点,则的取值范围为( )
A

B

C

D

9. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直
10.半径R 的半圆卷成一个圆锥,则它的体积为( ) A

πR 3
B

πR 3
C

πR 3
D

πR 3
11.下列函数在其定义域内既是奇函数又是增函数的是( ) A .
B .
C .
D .
12.若y x ,满足约束条件⎪⎪⎩

⎪⎨⎧≥≤-+≥+-0
033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )
A .1-
B .
C .3-
D .3
二、填空题
13.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函
数y=ax 2
﹣2bx+1在(﹣∞,2]上为减函数的概率是 .
14.如图所示,圆C 中,弦AB
的长度为4,则AB AC ×的值为_______.
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.
15.对于集合M
,定义函数对于两个集合A,B,定义集合A△B={x|f A(x)f B(x)=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为.
16.直线2x+3y+6=0与坐标轴所围成的三角形的面积为.
17.在矩形ABCD 中,=(1,﹣3),,则实数k=.
18.已知
,0
()
1,0
x
e x
f x
x
ì³
ï

<
ïî
,则不等式2
(2)()
f x f x
->的解集为________.
【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力.三、解答题
19.已知△ABC的顶点A(3,2),∠C的平分线CD所在直线方程为y﹣1=0,AC边上的高BH所在直线方程为4x+2y﹣9=0.
(1)求顶点C的坐标;
(2)求△ABC的面积.
20.(理)设函数f(x)=(x+1)ln(x+1).
(1)求f(x)的单调区间;
(2)若对所有的x≥0,均有f(x)≥ax成立,求实数a的取值范围.
21.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.
(1)求圆C1的直角坐标方程,直线l1的极坐标方程;
(2)设l1与C1的交点为M,N,求△C1MN的面积.
22.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.
23.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴
方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).
(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;
(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.
24.已知函数f(x0=.
(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;
(2)解不等式f(x﹣1)≤﹣.
路桥区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.
∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.
对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为

∴截面三角形SAB的高为,∴截面面积
S==≤=.
故截面的最大面积为.故B错误.
对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.
对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.
故选:B.
【点评】本题考查了旋转体的结构特征,属于中档题.
2.【答案】D
【解析】
考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.
3.【答案】D
【解析】当3x =时,y 是整数;当2
3x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则
由31000n
x =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .
4. 【答案】B
【解析】解:线段AB 的中点为,k AB ==﹣,
∴垂直平分线的斜率 k=
=2,
∴线段AB 的垂直平分线的方程是 y ﹣=2(x ﹣2)⇒4x ﹣2y ﹣5=0,
故选B .
【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.
5. 【答案】D
【解析】解:根据椭圆的方程=1,可得a=4,b=2

则c=
=2

则椭圆的离心率为e==,
故选D .
【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.
6. 【答案】C
【解析】解:函数f (x )=x 3+mx 2+(2m+3)x 的导数为f ′(x )=x 2
+2mx+2m+3,
由题意可得,判别式△>0,即有4m 2
﹣4(2m+3)>0,
解得m >3或m <﹣1, 又x 1+x 2=﹣2m ,x 1x 2=2m+3,
直线l 经过点A (x 1,x 12),B (x 2,x 22
),
即有斜率k==x 1+x 2=﹣2m ,
则有直线AB :y ﹣x 12
=﹣2m (x ﹣x 1), 即为2mx+y ﹣2mx 1﹣x 12
=0,
圆(x+1)2+y 2
=的圆心为(﹣1,0),半径r 为

则g (m )=d ﹣r=
﹣,
由于f ′(x 1)=x 12
+2mx 1+2m+3=0,
则g (m )=﹣,
又m >3或m <﹣1,即有m 2
>1.
则g (m )<

=,
则有0≤g (m )<.
故选C .
【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题.
7. 【答案】C 【解析】
试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。

故选C 。

考点:1.集合间关系;2.新定义问题。

8. 【答案】B
【解析】解:因为F (﹣2,0)是已知双曲线的左焦点,
所以a 2+1=4,即a 2
=3,所以双曲线方程为

设点P (x 0,y 0),
则有,解得

因为,

所以
=x 0(x 0+2)+
=

此二次函数对应的抛物线的对称轴为,
因为

所以当时,取得最小值=,
故的取值范围是,
故选B.
【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.
9.【答案】A
【解析】解:由题意可得直线l1的斜率k1==1,
又∵直线l2的倾斜角为135°,∴其斜率k2=tan135°=﹣1,
显然满足k1•k2=﹣1,∴l1与l2垂直
故选A
10.【答案】A
【解析】解:2πr=πR,所以r=,则h=,所以V=
故选A
11.【答案】B
【解析】【知识点】函数的单调性与最值函数的奇偶性
【试题解析】若函数是奇函数,则故排除A、D;
对C:在(-和(上单调递增,
但在定义域上不单调,故C错;
故答案为:B
12.【答案】D
【解析】
考点:简单线性规划.
二、填空题
13.【答案】.
【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.
∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,
∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种
∵(a,b)的取值共36种情况
∴所求概率为=.
故答案为:.
14.【答案】8
15.【答案】{1,6,10,12}.
【解析】解:要使f A(x)f B(x)=﹣1,
必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}
={6,10}∪{1,12}={1,6,10,12,},
所以A△B={1,6,10,12}.
故答案为{1,6,10,12}.
【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.16.【答案】3.
【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,
∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),
故三角形的面积S=×2×3=3,
故答案为:3.
【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.
17.【答案】4.
【解析】解:如图所示,
在矩形ABCD 中,=(1,﹣3),,
∴=﹣
=(k ﹣1,﹣2+3)=(k ﹣1,1),


=1×(k ﹣1)+(﹣3)×1=0,
解得k=4. 故答案为:4.
【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.
18.【答案】(
【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,
解得01x ?,综上所述,不等式2
(2)()f x f x ->的解集为(-.
三、解答题
19.【答案】
【解析】解:(1)由高BH 所在直线方程为4x+2y ﹣9=0,∴ =﹣2.
∵直线AC ⊥BH ,∴k AC k BH =﹣1.


直线AC 的方程为,
联立
∴点C 的坐标C (1,1).
(2)

∴直线BC 的方程为,
联立
,即

点B 到直线AC :x ﹣2y+1=0的距离为.


∴.
【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.
20.【答案】
【解析】解:(1)由f'(x)=ln(x+1)+1≥0得,∴f(x)的增区间为,减区间为

(2)令g(x)=(x+1)ln(x+1)﹣ax.“不等式f(x)≥ax在x≥0时恒成立”⇔“g(x)≥g(0)在x≥0时恒成立.”g'(x)=ln(x+1)+1﹣a=0⇒x=e a﹣1﹣1.
当x∈(﹣1,e a﹣1﹣1)时,g'(x)<0,g(x)为减函数.
当x∈(e a﹣1﹣1,+∞)时,g'(x)>0,g(x)为增函数.
“g(x)≥0在x≥0时恒成立”⇔“e a﹣1﹣1≤0”,即e a﹣1≤e0,即a﹣1≤0,即a≤1.
故a的取值范围是(﹣∞,1].
21.【答案】
【解析】解:(1)∵,将其代入C1得:,
∴圆C1的直角坐标方程为:.
由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).
∴直线l1的极坐标方程为:(ρ∈R).
(2),可得⇒,
∴.
【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
22.【答案】
【解析】解:(1)设事件A为“两手所取的球不同色”,
则P(A)=1﹣.
(2)依题意,X的可能取值为0,1,2,
左手所取的两球颜色相同的概率为=,
右手所取的两球颜色相同的概率为=.
P(X=0)=(1﹣)(1﹣)==;
P(X=1)==;
P(X=2)==.
∴X的分布列为:
0 1 2
EX=0×+1×+2×=.
【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.
23.【答案】
【解析】
【专题】计算题;直线与圆;坐标系和参数方程.
【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;
(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.
【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,
可化为直角坐标方程x2+y2﹣2x+4y+4=0,
即圆(x﹣1)2+(y+2)2=1;
曲线C2的参数方程为(t为参数),
可化为普通方程为:3x+4y﹣15=0.
(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.
则由点到直线的距离公式可得d==4,
则切线长为=.
故这条切线长的最小值为.
【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.
24.【答案】
【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为
(﹣∞,0),(1,+∞),
丹迪减区间是(0,1)
(2)由已知可得
或,
解得x≤﹣1或≤x≤,
故不等式的解集为(﹣∞,﹣1]∪
[,].
【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.。

相关文档
最新文档