竹山县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竹山县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1.
已知,其中i 为虚数单位,则a+b=( )
A .﹣1
B .1
C .2
D .3 2. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)
的值为( )
A .1
B .3
C .5
D .不确定
3. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数
()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数
()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫
++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
( )
A .2013
B .2014
C .2015
D .20161111]
4.
函数
的最小正周期不大于2,则正整数k 的最小值应该是( )
A .10
B .11
C .12
D .13
5. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )
A .20
B .25
C .22.5
D .22.75
6. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( ) A

B

C

D

7. 已知U=R ,函数y=ln (1﹣x )的定义域为M ,集合N={x|x 2﹣x <0}.则下列结论正确的是( ) A .M ∩N=N B .M ∩(∁U N )=∅
C .M ∪N=U
D .M ⊆(∁U N )
8. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22
=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长
||PQ 等于( )
A .2
B .3
C .4
D .与点位置有关的值
【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
9. 已知双曲线的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支
有且只有一个交点,则此双曲线离心率的取值范围是( )
A .(1,2]
B .(1,2)
C .[2,+∞)
D .(2,+∞)
10.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )
A .
B .
C .
D .
11.定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣
>0的解集为( ) A .(2,+∞)
B .(0,2)
C .(0,4)
D .(4,+∞)
12.某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )
A .13π
B .16π
C .25π
D .27π
二、填空题
13.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=2,则b 等于 .
14.已知点F 是抛物线y 2
=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF
的重心到准线距离为 .
15.函数f (x )=
(x >3)的最小值为 .
16.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 17.已知f (x )=x (e x +a e -x )为偶函数,则a =________.
18.已知圆O :x 2+y 2=1和双曲线C :

=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O
外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则

= .
三、解答题
19.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;
(1) 求实验室这一天的最大温差;
(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?
20.如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.
(Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.
21.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且
(Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,
求出的长,若不存在,请说明理由.
22.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x a f x b
+-+=+.
(1)当1a b ==时,求满足()3x
f x =的x 的取值;
(2)若函数()f x 是定义在R 上的奇函数
①存在t R ∈,不等式()()
2222f t t f t k -<-有解,求k 的取值范围; ②若函数()g x 满足()()()
12333
x
x f x g x -⎡⎤⋅+=-⎣⎦,
若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.
23.设命题p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0;命题q :实数x 满足x 2﹣5x+6≤0
(1)若a=1,且q ∧p 为真,求实数x 的取值范围; (2)若p 是q 必要不充分条件,求实数a 的取值范围.
24.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:
转速x(转/秒)16 14 12 8
每小时生产有缺陷的零件数y(件)11 9 8 5
(1)画出散点图;(2)如果y与x有线性相关的关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?
参考公式:线性回归方程系数公式开始=,=﹣x.
竹山县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】B
【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1
另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.
故选B .
【点评】本题考查复数相等的意义、复数的基本运算,是基础题.
2. 【答案】B
【解析】解:∵f (1988)=asin (1988π+α)+bcos (1998π+β)+4=asin α+bcos β+4=3,
∴asin α+bcos β=﹣1,
故f (2008)=asin (2008π+α)+bcos (2008π+β)+4=asin α+bcos β+4=﹣1+4=3,
故选:B .
【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.
3. 【答案】D 【解析】
1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫
⎛⎫⎛⎫⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=
+++
+++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦
()1
2201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.
【方法点睛】本题通过 “三次函数()()3
2
0f x ax bx cx d a =+++≠都有对称中心()
(
)00,x f x ”这一探索
性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()3115
33212
f x x x x =-+-的对称中心后再利用对称性和的.
第Ⅱ卷(非选择题共90分)
4.【答案】D
【解析】解:∵函数y=cos(x+)的最小正周期不大于2,
∴T=≤2,即|k|≥4π,
则正整数k的最小值为13.
故选D
【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.
5.【答案】C
【解析】解:根据频率分布直方图,得;
∵0.02×5+0.04×5=0.3<0.5,
0.3+0.08×5=0.7>0.5;
∴中位数应在20~25内,
设中位数为x,则
0.3+(x﹣20)×0.08=0.5,
解得x=22.5;
∴这批产品的中位数是22.5.
故选:C.
【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.
6.【答案】D
【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,
由于这种分数是可约分数的分子与分母比全为偶数,
故这种分数是可约分数的共有个,
则分数是可约分数的概率为P==,
故答案为:D
【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】A
【解析】解:由1﹣x>0,解得:x<1,
故函数y=ln(1﹣x)的定义域为M=(﹣∞,1),
由x2﹣x<0,解得:0<x<1,
故集合N={x|x2﹣x<0}=(0,1),
∴M ∩N=N , 故选:A .
【点评】本题考察了集合的包含关系,考察不等式问题,是一道基础题.
8. 【答案】A
【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此
22222222
00000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+
又点M 在抛物线上,∴02
02y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .
9. 【答案】C
【解析】解:已知双曲线
的右焦点为F ,
若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点, 则该直线的斜率的绝对值小于等于渐近线的斜率, ∴≥
,离心率e 2=

∴e ≥2,故选C
【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.
10.【答案】C
【解析】解:设等比数列{a n }的公比为q , ∵S 3=a 2+10a 1,a 5=9,
∴,解得



故选C .
【点评】熟练掌握等比数列的通项公式是解题的关键.
11.【答案】B
【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.
∵f(2)=4,则2f(2)=8,
f(x)﹣>0化简得,
当x<2时,
⇒成立.
故得x<2,
∵定义在(0,+∞)上.
∴不等式f(x)﹣>0的解集为(0,2).
故选B.
【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.
12.【答案】C
【解析】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.
则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积
S=4πr2=25π.
故选C.
【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题.
二、填空题
13.【答案】5.
【解析】解:∵,B=45°,面积S=2,
∴S=acsinB==2a=2.
∴a=1
由余弦定理得b2
=a2+c2﹣2accosB=12+(4)2﹣2×1××=25
∴b=5.
故答案为:5.
【点评】本题考查三角形的面积公式:三角形的面积等于任意两边与它们夹角正弦的一半、考查利用三角形的余弦定理求边长.
14.【答案】.
【解析】解:∵F是抛物线y2=4x的焦点,
∴F(1,0),准线方程x=﹣1,
设M(x1,y1),N(x2,y2),
∴|MF|+|NF|=x1+1+x2+1=6,
解得x1+x2=4,
∴△MNF的重心的横坐标为,
∴△MNF的重心到准线距离为.
故答案为:.
【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.
15.【答案】12.
【解析】解:因为x>3,所以f(x)>0
由题意知:=﹣
令t=∈(0,),h(t)==t﹣3t2
因为h(t)=t﹣3t2的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;
故h(t)∈(0,]
由h(t)=⇒f(x)=≥12
故答案为:12
-
16.【答案】[]1,1
【解析】
考点:函数的定义域.
17.【答案】
【解析】解析:∵f(x)是偶函数,∴f(-x)=f(x)恒成立,
即(-x)(e-x+a e x)=x(e x+a e-x),
∴a(e x+e-x)=-(e x+e-x),∴a=-1.
答案:-1
18.【答案】1.
【解析】解:若对双曲线C上任意一点A(点A在圆O外),
均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,
可通过特殊点,取A(﹣1,t),
则B(﹣1,﹣t),C(1,﹣t),D(1,t),
由直线和圆相切的条件可得,t=1.
将A(﹣1,1)代入双曲线方程,可得﹣=1.
故答案为:1.
【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.
三、解答题
19.【答案】
【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,函数取得最大值为10+2=12,
当t+=时,函数取得最小值为10﹣2=8,
故实验室这一天的最大温差为12﹣8=4℃。

(2)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin(t+),
由10﹣2sin(t+)>11,求得sin(t+)<﹣,即≤t+<,
解得10<t<18,即在10时到18时,需要降温。

20.【答案】
【解析】(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正方体,
∴B1C1⊥平面ABB1A1;
∵A1B⊂平面ABB1A1,
∴B1C1⊥A1B.
又∵A1B⊥AB1,B1C1∩AB1=B1,
∴A1B⊥平面ADC1B1,
∵A1B⊂平面A1BE,
∴平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:连接EF,EF∥,且EF=,
设AB1∩A1B=O,
则B1O∥C1D,且,
∴EF∥B1O,且EF=B1O,
∴四边形B1OEF为平行四边形.
∴B 1F ∥OE .
又∵B 1F ⊄平面A 1BE ,OE ⊂平面A 1BE , ∴B 1F ∥平面A 1BE ,
(Ⅲ)解:
=
=
=
=.
21.【答案】
【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直
【试题解析】(Ⅰ)是等边三角形,为的中点,
平面
平面

是交线,
平面
平面

(Ⅱ)取的中点,
底面
是正方形,

两两垂直.
分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,




设平面的法向量为,,


平面
的法向量即为平面
的法向量

由图形可知所求二面角为锐角,
(Ⅲ)设在线段上存在点,,
使线段与
所在平面成
角,
平面
的法向量为


,解得
,适合 在线段
上存在点
,当线段
时,与所在平面成角.
22.【答案】(1)1x =-(2)①()1,-+∞,②6
【解析】
试题
解析:(1)由题意,1
31
331x x x +-+=+,化简得()2332310x x ⋅+⋅-= 解得()1
3133
x x =-=舍或,
所以1x =-
(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1
133033x x x x a a
b b
-++-+-++=++ 化简并变形得:()()
333260x x a b ab --++-=
要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{
{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1
{ 3
a b =-=-舍去 所以1,3a b ==,所以()131
33
x x f x +-+=+
①()131********x x x f x +-+⎛⎫
==-+ ⎪++⎝⎭
对任意1212,,x x R x x ∈<有:
()()()()
21
12
12121222333313133131x x x x x
x f x f x ⎛⎫-⎛⎫
⎪-=-=
⎪ ⎪++++⎝⎭


因为12x x <,所以21330x x
->,所以()()12f x f x >, 因此()f x 在R 上递减.
因为()()
2222f t t f t k -<-,所以22
22t t t k ->-, 即2
20t t k +-<在
时有解
所以440t ∆=+>,解得:1t >-, 所以的取值范围为()1,-+∞
②因为()()()
12333x x
f x
g x -⎡⎤⋅+=-⎣⎦,所以()()
3323x x g x f x --=-
即()33x
x
g x -=+
所以()()
2
22233332x x x x
g x --=+=+-
不等式()()211g x m g x ≥⋅-恒成立, 即(
)
()
2
33
23311x
x
x x m --+-≥⋅+-,
即:9
3333x x x x
m --≤++
+恒成立
令33,2x x
t t -=+≥,则9m t t
≤+在2t ≥时恒成立
令()9h t t t =+,()29
'1h t t
=-,
()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减
()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增
所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6
考点:利用函数性质解不等式,不等式恒成立问题
【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。

23.【答案】
【解析】解:(1)p :实数x 满足x 2﹣4ax+3a 2
<0,其中a >0 ⇔(x ﹣3a )(x ﹣a )<0,∵a >0为,所以a <x <3a ;
当a=1时,p :1<x <3;
命题q :实数x 满足x 2
﹣5x+6≤0⇔2≤x ≤3;若p ∧q 为真,则p 真且q 真,∴2≤x <3;
故x 的取值范围是[2,3)
(2)p 是q 的必要不充分条件,即由p 得不到q ,而由q 能得到p ;
∴(a ,3a )⊃[2,3]⇔
,1<a <2
∴实数a 的取值范围是(1,2). 【点评】考查解一元二次不等式,p ∧q 的真假和p ,q 真假的关系,以及充分条件、必要条件、必要不充分条
件的概念.属于基础题.
24.【答案】
【解析】
【专题】应用题;概率与统计.
【分析】(1)利用所给的数据画出散点图;
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a ,写
出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
【解答】解:(1)画出散点图,如图所示:
(2)=12.5,=8.25,∴b=≈0.7286,
a=﹣0.8575
∴回归直线方程为:y=0.7286x﹣0.8575;
(3)要使y≤10,则0.728 6x﹣0.8575≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.
【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.。

相关文档
最新文档