中考数学动点问题复习.docx
(完整版)中考数学动点问题专题讲解(可编辑修改word版)
36 - x 2 PH 2+ MH 2动点及动图形的专题复习教案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观 念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况, 需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验 探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式)如图 1,在半径为 6,圆心角为 90°的扇形 OAB 的弧 AB 上,有一个动点 P,PH⊥OA,垂足为 H,△OPH 的重心为 G.(1) 当点 P 在弧 AB 上运动时,线段 GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2) 设 PH = x ,GP = y ,求 y 关于 x 的函数解析式,并写出函数的定义域(即自变量 x 的取值范围).(3) 如果△PGH 是等腰三角形,试求出线段 PH 的长.解:(1)当点 P 在弧 AB 上运动时,OP 保持不变,于是线段 GO 、GP 、GH 中,2有长度保持不变的线段,这条线段是 GH= NH= 32 ⋅ 13 2 BOP=2.(2) 在 Rt△ POH 中 ,OH = = ,∴MH = 1 OH = 136 - x 2.2 2OMHA在 Rt△MPH 中,MP = =图 1= 1 36 + 3x 2 .2OP 2 - PH 2 x 2+ 9 - 1 x 2 4 PNG yx6 A2 1 ∴ y =GP= MP=36 + 3x 2 (0< x <6).3 3(3) △PGH 是等腰三角形有三种可能情况:1①GP=PH 时, 3 36 + 3x 2 = x ,解得 x = . 经检验, x = 是原方程的根,且符合题意.1②GP=GH 时,336 + 3x 2 = 2 ,解得 x = 0 . 经检验, x = 0 是原方程的根,但不符合题意.③PH=GH 时, x = 2 .综上所述,如果△PGH 是等腰三角形,那么线段 PH 的长为 或 2.二、应用比例式建立函数解析式例 2 如图 2,在△ABC 中,AB=AC=1,点 D,E 在直线 BC 上运动.设 BD= x , CE= y .(1) 如果∠BAC=30°,∠DAE=105°,试确定 y 与 x 之间的函数解析式;(2) 如果∠BAC 的度数为,∠DAE 的度数为,当, 满足怎样的关系式时,(1)中 y 与 x 之间的函数解析式还成立?试说明理由.A解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC, ∴ AB = BD ,图 2∴ 1 = x CE AC, ∴ y = 1 . y 1 x(2)由于∠DAB+∠CAE= -,又∠DAB+∠ADB=∠ABC= 90︒ -,且函数关系式成立,2∴ 90︒ -= -, 整理得-2= 90︒ .2当- 如= 90︒ 时,函数解析式 y = 2 1 成立. x三、应用求图形面积的方法建立函数关系式例 4()如图,在△ABC 中,∠BAC=90°,AB=AC= 2不重合),设 BO= x ,△AOC 的面积为 y .,⊙A 的半径为 1.若点 O 在 BC 边上运动(与点B 、C(1) 求 y 关于 x 的函数解析式,(2) 以点 O 为圆心,BO 长为半径作圆 O,求当⊙O 与⊙A 相切时,△AOC 的面积. 解:(1)过点 A 作 AH⊥BC,垂足为 H.BO H C6 6 2 DEB C3 ∵∠BAC=90°,AB=AC= 2 11, ∴BC=4,AH= BC=2. ∴OC=4-x . 2∵ S ∆AOC= OC ⋅ AH , ∴ y = -x + 4 2( 0 < x < 4 ). (2)①当⊙O 与⊙A 外切时,在 Rt△AOH 中,OA= x + 1,OH= 2 - x , ∴ (x + 1)2 = 22 + (2 - x )2 . 解得 x = 7. 6此时,△AOC 的面积 y = 4 - 76②当⊙O 与⊙A 内切时,= 17 .6在 Rt△AOH 中,OA= x - 1,OH= x - 2 , ∴ (x - 1)2 = 22 + (x - 2)2 . 解得 x = 7. 2此时,△AOC 的面积 y = 4 - 7 2 = 1.217 1综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为或 .62动态几何特点 --- 问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系; 分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考动点问题综合归纳
图2
2.如果 PQ 的中点恰为 MN 的中点,那么 MQ=NP,以 MQ、NP 为直角边可以构造全等的 直角三角形,从而根据直角边对应相等可以列方程. . 图文解析 (1)因为抛物线 y=x +bx+c 与 x 轴交于 A(-1, 0)、B(3, 0)两点,所以
2
Q 两点同时停止运动.设运动的时间为 t 秒.
(1)求二次函数的解析式; (2)如图 1,当△BPQ 为直角三角形时,求 t 的值;
(3)如图 2,当 t<2 时,延长 QP 交 y 轴于点 M,在抛物线上是否存在一点 N,使得 PQ 的中点恰为 MN 的中点,若存在,求出点 N 的坐标与 t 的值;若不存在,请说明理由.
1 BB =2. 2
设 Q(x, x ),因为 D(0, 2),根据 QD =4 列方程 x +(x -2) =4. 解得 x= 3 .此时 Q ( 3,3) . (3)如图 5,因为点 P、P′分别在抛物线 E1、E2 上,设 P(b, b ),P′(c,
2
1 2 c ). 2
1 2 c b2 2 PM P N 因为 O、P、P′三点在同一条直线上,所以 ,即 . b c OM ON
2 2
1 1 2 .所以 y= x . 2 2
(2)点 Q 在第一象限内的抛物线 E1 上,直角三角形 QBB′存在两种情况:
图3
图4
①如图 3,过点 B 作 BB′的垂线交抛物线 E1 于 Q,那么 Q(2, 4).
②如图 4,以 BB′为直径的圆 D 与抛物线 E1 交于点 Q,那么 QD=
2 2 2 2 2
2
图1 思路点拨
图2
1. 判断点 P 是线段 OP′的中点是解决问题的突破口, 这样就可以用一个字母表示点 P、
中考数学压轴题——动点专题复习.doc
中考数学压轴题一一动点专题复习1、(09包头)如图,已知△ABC中,AB = AC = 10厘米,BC = 8厘米,点D为AB 的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与ACOP是否全等,请说明理由;人②若点Q的运动速度与点P的运动速度不相等,当点Q A的运动速度为多少时,能够使△BPD与ACOP全等?D/ \(2)若点Q以②中的运动速度从点C出发,点P以原来 /\的运动速度从点B同时出发,都逆时针沿△ABC三边运B— c动,求经过多长时间点P与点Q第一次在△ABC的哪条卩边上相遇?32、(09齐齐哈尔)直线y = --x + 6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点0沿线段OA运动,速度为每秒1 个单位长度,点P沿路线O运动.(1)直接写出A、B两点的坐标;(2)设点0的运动时间为(秒,△OPQ的面积为S,求出S与/之间的函数关系(3)当S=〒时,求出点P的坐标,并直接写出以点0、P、Q为顶点的平行四边形的第四个顶点M的坐标. 、▲、,3 (09深圳)如图,在平面直角坐标系中,直线h y=-2x-8分别与x 轴,y 轴 相交于A, B 两点,点P (0, k)是y 轴的负半轴上的一个动点,以P 为 心,3为半径作OP.(1)连结PA,若PA 二PB,试判断OP 与x 轴的位置关系,并说明理由;是正三角形?4 (09哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(一3, 4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M, AB 边交y 轴于点H. (1)求直线AC 的解析式;(2)连接BM,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单 位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (SH0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当t 为何值时,ZMPB 与ZBCO 互为余角,并求 此时直线OP 与直线AC 所夹锐角的正切值.(2)当k 为何值时,以OP 与直线1的两个交点和 心P 为顶点的三角形(图1)5 (09 河北)在 RtAABC 中,ZC=90°, AC = 3, AB = 5・点 P 从点 C 出 发沿CA以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的 速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个 单位长的速度向点B 匀速运动.伴随着P 、Q 的运动, DE 保持垂直平分PQ,且交PQ 于点D,交折线 QB-BC-CP 于点E.点P 、Q 同时出发,当点Q 到达 点B 时停止运动,点P 也随之停止.设点P 、Q 运动 的时间是t 秒(t >0)・(1) 当t = 2时,AP= ______ ,点Q 到AC 的距离是 _____ ;(2) 在点P 从C 向A 运动的过程中,求AAPQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3) 在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;(4) 当DE 经过点C 时,请直接写出t 的值. • •6 ( 09河南))如图,在RtAABC 中,ZACB = 90°, ZB = 60°, BC = 2 ・点 O 是 AC 的中点,过 点O 的直线/从与AC 重合的位置开始,绕点O 作逆时针 旋转,交AE 边于点D.过点C 作CE//AB 交直线/于点E,设直线/的旋转角为Q ・(1) ①当 __________ 度时,四边形EDBC 是等腰梯形,此时AD 的长为 _______ ;②当仅= _______ 度时,四边形EDBC 是直角梯形,此时AZ)的长为 _______ ;(2) 当G = 90°时,判断四边形EDBC 是否为菱形,并说明理由. 图16 r7 (09 济南)如图,在梯形ABCD中,AD // BC, AD = 3, DC = 5, AB = 4^2, ZB = 45°.动点M 从B 点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N 同时从C点出发沿线段仞以每秒1个单位长度的速度向终点£>运动.设运动的时间为<秒・(1)求BC的长.C (2)当MN // AB时,求f的值.(3)试探究:f为何值时,AMNC为等腰三角形.8 (09江西)如图1,在等腰梯形ABCD中,AD//BC f E是A3的中点,过点E 作EF // BC 交CD于点F ・AB = 4, BC = 6, ZB = 60°.(1)求点E到的距离;(2)点P为线段EF上的一个动点,过P作PM丄防交BC于点M ,过M作MN // AB交折线ADC于点N,连结PN,设EP = x・①当点N在线段AD上时(如图2), △PM7V的形状是否发生改变?若不变,求出△PM/V的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的兀的值;若不存在,请说明理由.9 (09兰州)如图①,正方形ABCD 中,点A 、B 的坐标分别为(0, 10), (8, 4), 点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A-B-C-D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时 停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速 度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△0PQ 的面积最大,并求此时P 点的坐标; ⑷如果点P 、Q 保持原速度不变,当点P 沿A-B-CfD 匀速运动时,0P 与 PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.ZAEF = 90°,且EF 交正方形外角ZDCG 的平行 线CF 于点F,求证:AE=EF ・经过思考,小明展示了一种正确的解题思路:取AB 的中点M,连接ME, 贝!j AM=EC,易证△ AME 竺/XECF ,所以 AE=EF ・在此基础上,同学们作了进一步的研究:(1) 小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边 BC 上(除B, C 外)的任意一点”,其它条件不变,那么结论“AE 二EF”仍然 成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请 说明理由;(2) 小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点, 其他条件不变,结论“AE 二EF”仍然成立.你认为小华的观点正确吗?如果正 确,写出证明过程;如果不正确,请说明理由.图1 图2 图3 10 (09临沂)数学课上, 张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点. 图②。
(含答案)中考数学复习动点专题
中考数学复习动点专题动态几何问题是近几年各地中考试题常见的压轴试题,它能考查学生的多种能力,有较强的选拔功能。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解。
动点题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系(如等量关系、变量关系)、图形位置关系(如图形的特殊状态、图形间的特殊关系)等进行研究考察.抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量X 、Y 的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。
第三,确定自变量的取值范围,画出相应的图象。
1、 如图,边长为1的正方形OABC 的顶点A 在x 轴正半轴上,将正方形OABC 绕点O 顺时针旋转30°,使点A 落在抛物线2ax y =(0<a )图像上。
(1)求抛物线方程。
(2)正方形OABC 继续顺时针旋转多少度时,点A 再次落在抛物线2ax y =的图像上?并求这个点的坐标。
解:(1)设旋转后点A 落在抛物线上点A 1处,OA 1=1,过A 1作A 1M ⊥x 轴于M ,则OM=23,211=M A ,)21,23(1-A ,由2ax y =上得2)23(21a =-,解得32-=a∴232x y -= (2)由抛物线关于y 轴对称,再次旋转后A 落在抛物线上的点A 2处,点A 2与点A 1关于y 轴对称,易见继续旋转120°,点A 2的坐标为)21,23(--2、如图,矩形ABCD 中,AB=8,BC=6,对角线AC 上有一个动点P (不包括A 和C ),设AP=x ,四边形PBCD 的面积为y ,(1)写出y 与x 的函数关系,并确定自变量x 的范围。
(2)有人提出一个判断“关于动点P ,△PBC 面积与△PAD 面积之和为常。
” 请说明此判断是否正确,并说明理由。
初中数学中考动点复习(例题和答案)
A CQ图9—1图9—2AB C QP初中数学动点复习(例题和答案)例1.如图9—1,在△ABC 中,∠B =90°, AB =6cm ,BC =3cm .点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒钟后P 、Q 间的距离等于42cm?(1995年山东省中考试题)分析:本题如果设t 秒钟后,P 、Q 间的距离等于42cm ,那么PB 、QB 都能用t 来表示,根据勾股定理,可以列出关于t 的方程求解.解:设t 秒钟后,P 、Q 间的距离等于42cm . 则PB =(6-t )cm ,QB =2t cm .根据勾股定理,得(6-t )2+(2t )2=(42)2.解这个方程,得t 1=52,t 2=2.因为点Q 从点B 开始沿BC 边移动到点C 以只需要1.5秒,所以只取t =52.答:52秒钟后,P 、Q 间的距离等于42cm .说明:本题抓住变化中图形的特殊位置关系:PQ =42cm ,直接利用勾股定理,建立方程模型解决问题.例2.如图9—2,在△ABC 中,∠C =90°, BC =8 cm ,sin B =53,点P 从点B 开始沿BC 向点C 以2 cm/s 的速度移动,点Q 从点C 开始沿CA 边向点A 以1cm/s 的速度移动,如果P 、Q 分别从B 、C 同时出发,第几秒时PQ ∥AB ?(1997年陕西省咸阳市中考试题)分析:如图9—2,假设运动开始后t 秒时,PQ ∥AB 根据这时图形的特殊位置,利用平行线分线段成比例定理求解.解: 设P 、Q 分别从B 、C 同时出发,运动开始后t 秒时,PQ ∥AB . 则ACAQ BC BP =. ∵sin B =53,∴cos B =54,tg B =43.∴AC =BC ·tg B =8·43=6. ∴BP =2t ,AQ =AC -QC =6-t .∴6682tt -=.图9—3A 图9—4BQ P 解得 t =2.4(s ).∴P 、Q 分别从B 、C 同时出发,运动开始后2.4 s 时,PQ ∥AB .说明:本题抓住变化中图形的特殊位置PQ ∥AB ,利用平行线分线段成比例定理求解. 例3.如图9—3,已知:在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发.设S 表示面积,x 表示移动时间(x >0).(1)几秒后△PBQ 的面积等于8cm 2;(2)写出S △DPQ 与x 的函数关系式; (3)求出S △DPQ 最小值和S △DPQ 最大值,并说明理由.(1998年湖北省襄樊市中考试题)分析:点P 、Q 在运动过程中,x 在变,S △DPQ 也在变,而S △DPQ 与x 之间可以根据条件列出方程或函数关系式求解.解:(1)根据题意,得21·2x ·(6-x )=8. 即 x 2-6x +8=0. 解得 x 1=2,x 2=4.所以2秒或4秒后△PBQ 的面积等于8cm 2. (2)S △DPQ =S 四边形ABCD -S △APD -S △PBQ -S △DCQ=12·6-21·x ·12-21·6·(12-2x )-21·(6-x )·2x = x 2-6x +36.(3)S △DPQ = x 2-6x +36=(x -3)2+27.∴S △DPQ 的最小值是27,S △DPQ 的最大值是36.∵当|x -3|最小时,S △DPQ 有最小值;当| x -3|最大时,S △DPQ 有最大值, 又∵0<x ≤6,∴当x =3时,S △DPQ 有最小值;当x =6时,S △DPQ 有最大值.说明:本题第(1)小题是利用方程模型求解,它是P 、Q 运动过程中,△PBQ 处于特殊位置;而第(2)、(3)小题是利用函数模型求解.另外,在几何图形中求函数关系式,问题具有一定的实际意义,因此对函数关系式中自变量的取值范围必须认真考虑,一般需有约束条件.例4.如图9—4,在△ABC 中,AB =8 cm ,BC =16 cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4 cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,经几秒钟△PBQ 与△ABC 相似?(1998年江苏省宿迁市中考试题)分析:在P 、Q 分别从A 、B 同时出发运动的过程中,可能有两种状态出现:(1)BC BQ AB PB =;(2)AB BQ BC PB =. 因此,这两种情况都要考虑.解:设P 、Q 分别从A 、B 同时出发后,经 x s ,△PBQ 与△ABC 相似. 则AP =2x ,BQ =4x ,PB =8-2x .(1)如果BC BQ AB PB =,那么可得164828xx =-. 解得 x =2.(2)如果AB BQ BC PB =,那么可得841628xx =-. 解得 x =54. 所以经过2 s 钟或54s 钟,△PBQ 与△ABC 都相似.说明:本题是一道需要讨论的质点运动型中考题,即在P 、Q 分别从A 、B 同时出发运动的过程中,有两种情况使△PBQ 与△ABC 相似.例5.如图9—5,在矩形ABCD 中,AB =12cm ,BC =6cm ,点P 沿AB 边从点A 开始向点B 以2cm/ s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (s )表示移动的时间(0≤t ≤6),那么(1)当t 为何值时,△QAP 为等腰直角三角形?(2)求四边形QAPC 的面积;提出一个与计算结果有关的结论; (3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?(2002年河北省中考试题)分析:(1)只要把QA 、AP 用含t 的代数式表示,利用QA =AP 求解;(2)可以分别求出△QAC 和△APC 的面积;(3)同例4一样,要分两种情况求解.解:(1)对于任何时刻t ,AP =2t ,DQ =t ,QA =6-t . 当QA =AP 时,△QAP 为等腰直角三角形. 即6-t =2t .解得t =2(秒).所以当t =2秒时,△QAP 为等腰直角三角形.(2)在△QAC 中,QA =6-t ,QA 边上的高DC =12,∴S △QAC =21QA •DC =21(6-t )•12=36-6t . ∵在△APC 中,AP =2t ,BC =6,A CB QD P 图9—5A 图9—6BCD A 图9—7 B C D F E∴S △APC =21AP •BC =21•2t •6=6t . ∴S 四边形QAPC =S △QAC +S △APC =36-6t +6t =36(cm 2).由计算结果发现:在P 、Q 两点的移动过程中,四边形QAPC 的面积始终保持不变.(也可以提出:P 、Q 两点到对角线AC 的距离之和保持不变)(3)根据题意,可分为两种情况来求解:当BCAP ABQA =时,△QAP ∽△ABC .∴62126tt =-. 解得t =1.2(s ).∴当t =1.2 s 时,△QAP ∽△ABC .当AB AP BCQA =时,△PAQ ∽△ABC .∴122126t t =-.解得t =3(秒).∴当t =3 s 时,△PAQ ∽△ABC .例6.如图9—6,正方形ABCD 中,有一直径为BC 的半圆,BC =2cm .现有两点E 、F ,分别从点B 、点A 同时出发,沿线段BA 以1cm/s 的速度向点A 运动,点F 沿折线A —D —C 以2cm/s 的速度向点C 运动.设点E 离开点的B 时间为t (s ).(1)当t 为何值时,线段EF 和BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值.(2001年南昌市中考试题)分析:(1)当EF ∥BC 时,四边形BCFE 是矩形;(2)线段EF 与半圆相切时,EF = BE+CF ,可以过点F 作KF ∥BC 交AB 于K ,构造直角三角形求解;(3)可以利用正方形ABCD 中的不变关系AB ∥DC ,通过△AEP ∽△CFP 求解.解:(1)如图9—7,设E 、F 出发后运动了t s 时,有EF 和BC 平行. 则BE = t ,CF =4-2t . ∴t =4-2t .解得t =34.∴当t =34 s 时,线段EF 和BC 平行.(2)设E 、F 出发后运动了t 秒时,EF 与半圆相切. 过点F 作KF ∥BC 交AB 于K .如图9—8.则A 图9—8BCD FE K A 图9—9 BC D F E P BE = t ,CF =4-2t ,EK = t -(4-2t )=3t -4,EF = BE+ CF = t +(4-2t )=4-t . 又∵EF 2= EK 2+FK 2, ∴(4-2t )2=(3t -4)2+22. 解得t =222±.∵1<t <2,∴t =222+. ∴当t =34 s 时,线段EF 与半圆相切.(3)答:当1≤t <2时,点P 的位置不会发生变化. 证明:1≤t <2时,设E 、F 出发后运动了t s 时,EF 位置如图9—9所示,则BE = t ,AE =2-t , CF =4-2t .∴FCAE =21242=--tt .又∵AB ∥DC ,∴△AEP ∽△CFP . ∴21==FCAE PCAP .即点P 的位置与t 的取值无关.∴1≤t <2时,点P 的位置不会发生变化,且AP :PC 的值是21. 练习1.解:(1)运动开始后第x s 钟时,△PBQ 的面积等于8cm 2.根据题意,得21·2x ·(6-x )=8.即 x 2-6x +8=0. 解得 x 1=2,x 2=4.所以2 s 或4 s 后△PBQ 的面积等于8cm 2. (2)运动开始后第t s 钟时,S =S 矩形ABCD -S △PBQ=12·6-21·(6-t )·2t = t 2-6x +72. (3)S =t 2-6x +72=( t -3 )2+63.))所以当t =3时,S 最小,S 的最小值是63 cm 2.2.解:当t =1 s 时,OE =1,AP =3. ∴OP =28-3=25. ∵OA =OB ,EF ∥OA , ∴EF =EB =28-1=27. ∴S 梯形OPFE =2)(OE EF OP +=21)2725(⨯+=26.S =228328t t -+-=-2 t 2+28 t=-2(t -7)2+98.所以当t =7 s 时,梯形OPFE 的面积最大,最大面积是98. (2)相似.证明:分别过F 1 、F 2作F 1H 1⊥AP 2,F 2 H 2⊥AP 2,垂足分别为H 1、H 2. ∵∠OAB =45°,∴AH 1=F 1H 1=t 1,AH 2=F 2H 2=t 2. ∴AF 1=2t 1,AF 2=2t 2. ∴2121t t AF AF =. 又∵AP 1=3t 1,AP 2=3t 2,∴21212133t t t t AP AP ==. ∴2121AF AF AP AP =. ∵∠OAB =∠OAB ,∴△AF 1P 1∽△AF 2P 2.3.解:(1)当点Q 在OC 上时,坐标为(x 58,x 56),当点Q 在CB 上时,坐标为(2 x -1,3).(2)①点Q 所经过的路程为16-x ,速度为xx-16. ②当Q 在OC 上时,作QM ⊥OA ,垂足为M .则QM =53(16-x ).) ) ∴S △OPQ =21·53(16-x )·x 103 x (16-x ). 令103x (16-x )=18. 解得x 1=10,x 2=6.∵当x 1=10时,16-x =6,这时点Q 不在OC 上,故舍去.∴当Q 在OC 上时,PQ 不可能同时把梯形OABC 的面积也分成相等的两部分. 点Q 在CB 上时,CQ =16-x -5=11-x . ∴S 梯形OPQC =21·(11-x +x )·3=233. ∵233≠18, ∴点Q 在CB 上时,PQ 不可能同时把梯形OABC 的面积也分成相等的两部分.。
中考数学备考专题复习 动点综合问题(含解析)-人教版初中九年级全册数学试题
动点综合问题一、单选题(共12题;共24分)1、(2016•某某)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A、B、2C、D、2、(2016•某某)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC 相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A、6B、2 +1C、9D 、3、(2016•某某)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A ,B重合),作CD⊥OB 于点D,若点C,D都在双曲线y= 上(k>0,x>0),则k的值为()A、25B、18C、9D、9 4、(2016•某某)如图,已知在Rt△ABC 中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A、不变B、增大C、减小D、先变大再变小5、(2016•某某)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A、4.8B、56、(2016•某某)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A、1B、2C 、3D、47、(2016•某某)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A、5个B、4个C、3个D、2个8、(2016•某某)如图,正方形ABCD 的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A、B、C、D、9、(2016•某某)如图,O是边长为4cm的正方形ABCD的中心,M 是BC的中点,动点P由A开始沿折线A﹣B ﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P 点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A、B 、C、D、10、(2016•某某)如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A 、18cm2B、12cm 2C、9cm 2D、3cm211、(2016•某某)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A、B、C、D、12、(2016•某某)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB 、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB ﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A 、B 、C、D、二、填空题(共5题;共5分)13、(2016•内江)如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是________.14、(2016•某某)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O 运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ= ,那么当点P运动一周时,点Q运动的总路程为________.15、(2016•某某)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M 是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________16、(2016•龙东)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为________.17、(2016•日照)如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是________.三、综合题(共7题;共95分)18、(2016•某某)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.19、(2016•某某)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN 是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC= ?请说明理由.20、(2016•某某)如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y 轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.21、(2016•某某)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形AM的面积最小?并求出最小值.22、(2016•某某)如图1,二次函数y=﹣x2+bx+c的图象过点A(3,0),B(0,4)两点,动点P 从A出发,在线段AB上沿A→B的方向以每秒2个单位长度的速度运动,过点P 作PD⊥y于点D,交抛物线于点C.设运动时间为t(秒).(1)求二次函数y=﹣x2+bx+c的表达式;(2)连接BC,当t= 时,求△BCP的面积;(3)如图2,动点P从A出发时,动点Q同时从O出发,在线段OA上沿O→A的方向以1个单位长度的速度运动.当点P与B重合时,P、Q两点同时停止运动,连接DQ,PQ,将△DPQ沿直线PC折叠得到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出S与t的函数关系及t的取值X 围.23、(2016•呼和浩特)已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点(,﹣),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式,及顶点D的坐标;(2)求|PC﹣PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值.24、(2016•某某)如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B 、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E 在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值X 围.(2)当BP=2 时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE= S△ABC,求BP的长.答案解析部分一、单选题【答案】B 【考点】圆周角定理,点与圆的位置关系【解析】【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC= =5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O 交于点P ,此时PC最小,利用勾股定理求出OC即可解决问题.本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.【答案】C 【考点】切线的性质【解析】【解答】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC 2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1= AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选C.【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC 垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP 1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.【答案】C 【考点】等边三角形的性质,反比例函数图象上点的坐标特征【解析】【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5 ),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴ .设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5 ﹣5 n).∵点C、D均在反比例函数y= 图象上,∴ ,解得:.故选C.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D 、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.【答案】C 【考点】锐角三角函数的定义,锐角三角函数的增减性【解析】【解答】解:∵BE⊥AD 于E,CF⊥AD 于F,∴CF∥BE,∴∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DEB=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B→D运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.【分析】设CD=a,DB=b,∠DCF=∠DEB=α,易知BE+CF=BC•cosα,根据0<α<90°,由此即可作出判断.本题考查三角函数的定义、三角函数的增减性等知识,利用三角函数的定义,得到BE+CF=BC•cosα,记住三角函数的增减性是解题的关键,属于中考常考题型.【答案】A 【考点】三角形的面积,矩形的性质【解析】【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD= S矩形ABCD=24,∴S△AOD= S△ACD=12,∵S△AOD=S△AOP+S△DOP= OA•PE+ OD•PF= ×5×PE+×5×PF= (PE+PF)=12,解得:PE+PF=4.8.故选:A.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP= OA•PE+OD•PF求得答案.此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.【答案】C 【考点】菱形的性质,轴对称-最短路线问题【解析】【解答】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【分析】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.【答案】C 【考点】等腰三角形的性质,勾股定理【解析】【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE= BC=4,∴AE= =3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD 长为正整数,∴点D的个数共有3个,故选:C.【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值X围,进而可得答案.此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值X围.【答案】A 【考点】一次函数的图象,三角形的面积,与一次函数有关的动态几何问题【解析】【解答】解:当P点由A运动到B点时,即0≤x≤2时,y= ×2x=x,当P点由B运动到C点时,即2<x<4时,y= ×2×2=2,符合题意的函数关系的图象是A;故选:A.【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值X围.【答案】A 【考点】函数的图象,正方形的性质【解析】【解答】解:分两种情况:①当0≤t<4时,作OM⊥AB于M,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,AD=AB=BC=4cm,∵O是正方形ABCD 的中心,∴AM=BM=OM= AB=2cm,∴S= AP•OM= ×t×2=t(cm2);②当t≥4时,作OM⊥AB于M,如图2所示:S=△OAM 的面积+梯形OMBP的面积= ×2×2+ (2+t﹣4)×2=t(cm2);综上所述:面积S(cm2)与时间t (s)的关系的图象是过原点的线段,故选A.【分析】本题考查了动点问题的函数图象、正方形的性质;熟练掌握正方形的性质,求出S与t的函数关系式是解决问题的关键.分两种情况:①当0≤t<4时,作OM⊥AB 于M,由正方形的性质得出∠B=90°,AD=AB=BC=4cm ,AM=BM=OM= AB=2cm,由三角形的面积得出S= AP•OM=t(cm2);②当t≥4时,S=△OAM的面积+梯形OMBP的面积=t(cm2);得出面积S(cm2)与时间t(s)的关系的图象是过原点的线段,即可得出结论.【答案】C 【考点】二次函数的最值,解直角三角形【解析】【解答】解:∵tan∠C= ,AB=6cm,∴ = = ,∴BC=8,由题意得:AP=t,BP=6﹣t,BQ=2t,设△PBQ 的面积为S,则S= ×BP×BQ= ×2t×(6﹣t),S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,P:0≤t≤6,Q:0≤t≤4,∴当t=3时,S有最大值为9,即当t=3时,△PBQ 的最大面积为9cm2;故选C.【分析】先根据已知求边长BC,再根据点P和Q的速度表示BP和BQ 的长,设△PBQ的面积为S,利用直角三角形的面积公式列关于S与t的函数关系式,并求最值即可本题考查了有关于直角三角形的动点型问题,考查了解直角三角形的有关知识和二次函数的最值问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值X围.【答案】A 【考点】函数的图象【解析】【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.【答案】D 【考点】分段函数,三角形的面积,矩形的性质,与一次函数有关的动态几何问题,与二次函数有关的动态几何问题【解析】【解答】解:∵AD=5,AN=3,∴DN=2,如图1,过点D作DF⊥AB,∴DF=BC=4,在RT△ADF 中,AD=5,DF=4,根据勾股定理得,AF= =3,∴BF=CD=2,当点Q到点D时用了2s,∴点P也运动2s ,∴AP=3,即QP⊥AB,∴只分三种情况:①当0<t≤2时,如图1,过Q作QG⊥AB,过点D作DF⊥AB,QG∥DF,∴ ,由题意得,NQ=t,MP=t,∵AM=1,AN=3,∴AQ=t+3,∴ ,∴QG= (t+3),∵AP=t+1,∴S=S△APQ = AP×QG= ×(t+1)× (t+3)= (t+2)2﹣,当t=2时,S=6,②当2<t≤4时,如图2,∵AP=AM+t=1+t,∴S=S△APQ= AP×BC= (1+t)×4=2(t+1)=2t+2,当t=4时,S=8,③当4<t≤5时,如图3,由题意得CQ=t﹣4,PB=t+AM﹣AB=t+1﹣5=t﹣4,∴PQ=BC﹣CQ﹣PB=4﹣(t﹣4)﹣(t﹣4)=12﹣2t,∴S=S△APQ= PQ×AB= ×(12﹣2t)×5=﹣5t+50,当t=5时,S=5,∴S与t的函数关系式分别是①S=S△APQ = (t+2)2﹣,当t=2时,S=6,②S=S△APQ=2t+2,当t=4时,S=8,③∴S=S△APQ=﹣5t+50,当t=5时,S=5,综合以上三种情况,D正确故选D.【分析】先求出DN,判断点Q到D点时,DP⊥AB,然后分三种情况分别用三角形的面积公式计算即可.此题是动点问题的函数图象,考查了三角形的面积公式,矩形的性质,解本题的关键是分段画出图象,判断出点Q在线段CD时,PQ⊥AB是易错的地方.二、填空题【答案】10 【考点】轴对称-最短路线问题【解析】【解答】解:如图,点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″= =10.故答案为10.【分析】点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.本题考查轴对称﹣最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,属于中考常考题型.【答案】4 【考点】解直角三角形【解析】【解答】解:在Rt△AOB 中,∵∠ABO=30°,AO=1,∴AB=2,BO= = ,①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°= ∴AQ= =2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A 时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4故答案为:4【分析】本题主要是应用三角函数定义来解直角三角形,此题的解题关键是理解题意,正确画出图形;线段的两个端点看成是两个动点,将线段移动问题转化为点移动问题.【答案】或【考点】三角形中位线定理【解析】【解答】解:如图作EF⊥BC 于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE= BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴ = ,∴= ,∴DO′= .当∠MON=90°时,∵△DOE∽△EFM,∴ = ,∵EM= =13,∴DO= ,故答案为或.【分析】分两种情形讨论即可①∠MN′O′=90°,根据= 计算即可②∠MON=90°,利用△DOE∽△EFM,得= 计算即可.本题考查三角形中位线定理、矩形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.【答案】2 【考点】圆周角定理,轴对称-最短路线问题【解析】【解答】解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B 即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴ = ,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O 作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2 .故答案为:2 .【分析】过A 作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知= ,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.本题考查的是轴对称﹣最短路线问题,圆周角定理及勾股定理,解答此题的关键是根据题意作出辅助线,构造出直角三角形,利用勾股定理求解.【答案】【考点】切线的性质【解析】【解答】解:过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.直线AB的解析式为y=﹣,即3x+4y﹣12=0,∴CP= = .∵PQ 为⊙C的切线,∴在Rt△CQ P 中,CQ=1,∠CQP=90°,∴PQ= = .故答案为:.【分析】过点C作CP⊥直线AB与点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,由点到直线的距离求出CP的长度,再根据勾股定理即可求出PQ的长度.本题考查了切线的性质、点到直线的距离以及勾股定理,解题的关键是确定P、Q点的位置.本题属于中档题,难度不大,解决该题型题目时,借助于切线的性质寻找到PQ取最小值时点P 、Q的位置是关键.三、综合题【答案】(1)证明:连接BC、OC,∵AB是⊙O的直径,∴∠OCD=90°,∴∠OCA+∠OCB=90°,∵∠OCA=∠OAC,∠B=∠OCB,∴∠OAC+∠B=90°,∵CD为切线,∴∠OCD=90°,∴∠OCA+∠ACD=90°,∴∠B=∠ACD,∵PE⊥AB,∴∠APE=∠DPC=∠B,∴∠DPC=∠ACD,∴AP=DC;(2)解:以A,O,C,F为顶点的四边形是菱形;∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=C F,∴四边形OACF为菱形.【考点】垂径定理,切线的性质【解析】【分析】本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.(1)连接BC、OC,利用圆周角定理和切线的性质可得∠B=∠ACD,由PE⊥AB,易得∠APE=∠DPC=∠B,等量代换可得∠DPC=∠ACD,可证得结论;(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F 是的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.【答案】(1)证明:如图一中∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC,,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴ ,∴ ,∵AB=BC,∴AN=AM.(2)解:①仍然成立,AP⊥BN和AM=AN .理由如图二中,∵四边形ABCD 是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC,,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴ ,∴ ∵AB=BC,∴AN=AM.②这样的点P 不存在.理由:假设PC= ,如图三中,以点C为圆心为半径画圆,以AB为直径画圆,CO== >1+ ,∴两个圆外离,∴∠APB<90°,这与AP⊥PB矛盾,∴假设不可能成立,∴满足PC= 的点P不存在【考点】正方形的性质,相似三角形的判定与性质,相似三角形的应用【解析】【分析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出= = ,由△BAP∽△BNA,推出= ,得到= ,由此即可证明.(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC= ,推出矛盾即可.本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题.【答案】(1)解:解:设抛物线解析式为y=a(x+5)(x+1),把C(0,﹣5)代入得a•5•1=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x+5)(x+1),即y=﹣x2﹣6x﹣5(2)解:解:设直线AC的解析式为y=mx+n,把A(﹣5,0),C (0,﹣5)代入得,解得,∴直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,则Q(﹣2,﹣3),∴PQ=3﹣(﹣3)=6,∴S△APC=S△APQ+S△CPQ= •PQ•5= ×6×5=15;(3)解:①证明:∵∠APE=∠CPE,而PH⊥AD,∴△PAD为等腰三角形,∴AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,∵PH∥OC,∴△PHD∽△COD,∴PH:OC=DH:OD,即(﹣x2﹣6x ﹣5):5=DH:(﹣x﹣DH),∴DH=﹣x ﹣,而AH+OH=5,∴﹣x﹣x﹣=5,整理得2x 2+17x+35=0,解得x 1=﹣,x2=﹣5(舍去),∴OH= ,∴AH=5﹣= ,∵HE∥OC,∴ = = ;②能.设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),当PA=PE,因为∠PEA=45°,所以∠PAE=45°,则点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,则PH=HE,即|﹣x2﹣6x﹣5|=|﹣x﹣5|,解﹣x2﹣6x﹣5=﹣x﹣5得x1=﹣5(舍去),x2=0(舍去);解﹣x2﹣6x﹣5=x+5得x 1=﹣5(舍去),x2=﹣2,此时P点坐标为(﹣2,3);当E′A=E′P,如图2,AE′= E′H′= (x+5),P′E′=﹣x﹣5﹣(﹣x2﹣6x﹣5)=x2+5x,则x2+5x= (x+5),解得x1=﹣5(舍去),x2= ,此时P点坐标为(,﹣7﹣6 ),综上所述,满足条件的P 点坐标为(﹣1,0),(﹣2,3),(,﹣7﹣6 )【考点】二次函数的应用,二次函数图象上点的坐标特征【解析】【分析】(1)设交点式为y=a (x+5)(x+1),然后把C点坐标代入求出a即可;(2)先利用待定系数法求出直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,由P点坐标得到Q(﹣2,﹣3),则PQ=6,然后根据三角形面积公式,利用S△APC=S△APQ+S△CPQ进行计算;(3)①由∠APE=∠CPE,PH⊥AD可判断△PAD 为等腰三角形,则AH=DH,设P(x,﹣x2﹣6x ﹣5),则OH=﹣x,OD=﹣x﹣DH,通过证明△PHD∽△COD,利用相似比可表示出DH=﹣x ﹣,则﹣x﹣x﹣=5,则解方程求出x可得到OH和AH的长,然后利用平行线分线段成比例定理计算出= ;②设P(x,﹣x2﹣6x﹣5),则E(x,﹣x ﹣5),分类讨论:当PA=PE,易得点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,利用PH=HE 得到|﹣x2﹣6x﹣5|=|﹣x﹣5|,当E′A=E′P,如图2,AE′= E′H′= (x+5),P′E′=x2+5x,则x2+5x= (x+5),然后分别解方程求出x 可得到对应P点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和等腰三角形的判定;会运用待定系数法求函数解析式;理解坐标与图形性质,能运用相似比计算线段的长;会运用方程的思想和分类讨论的思想解决问题.【答案】(1)解:∵在Rt△ABC 中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5 .由题意知:BM=2t ,= t,∴BN=5 - t,∵BM=BN,∴2t=5 - t 解得:.(2)解:分两种情况:①当△MBN∽△ABC时,则,即,解得:t= .②当△NBM∽△ABC时,则,即,解得:t= .综上所述:当t= 或t= 时,△MBN与△ABC相似.(3)解:过M作MD⊥BC 于点D,则MD∥AC,∴△BMD∽△BAC,∴ ,即,解得:MD=t.设四边形AM 的面积为y ,∴y= = =.∴根据二次函数的性质可知,当t= 时,y的值最小.此时,.【考点】二次函数的性质,相似三角形的性质【解析】【分析】(1)由已知条件得出AB=10,BC=5 .由题意知:BM=2t ,= t,BN=5 - t,由BM=BN得出方程2t=5 - t,解方程即可;(2)分两种情况:①当△MBN∽△ABC 时,由相似三角形的对应边成比例得出比例式,即可得出t的值;②当△NBM∽△ABC时,由相似三角形的对应边成比例得出比例式,即可得出t的值;(3)过M作MD⊥BC于点D,则MD∥AC,证出△BMD∽△BAC,得出比例式求出MD=t.四边形AM的面积y=△ABC的面积﹣△BMN的面积,得出y是t的二次函数,由二次函数的性质即可得出结果.【答案】(1)解:把A(3,0),B(0,4)代入y=﹣x2+bx+c中得:解得,∴二次函数y=﹣x 2+bx+c的表达式为:y=﹣x 2+ x+4(2)解:如图1,当t= 时,AP=2t,∵PC∥x 轴,∴ ,∴ ,∴OD= = × = ,当y= 时,=﹣x2+ x+4,3x2﹣5x﹣8=0,x 1=﹣1,x2= ,∴C(﹣1,),由得,则PD=2,∴S△BCP= ×PC×BD= ×3× =4(3)解:如图3,当点E 在AB上时,由(2)得OD=QM=ME= ,∴EQ= ,由折叠得:EQ⊥PD,则EQ∥y轴∴ ,∴ ,∴t= ,同理得:PD=3﹣,∴当0≤t≤ 时,S=S△PDQ = ×PD×MQ= ×(3﹣)× ,S=﹣t2+ t;当<t≤2.5时,如图4,P′D′=3﹣,点Q与点E关于直线P′C′对称,则Q(t,0)、E(t,),∵AB的解析式为:y=﹣x+4,D′E的解析式为:y= x+ t,则交点N (,),∴S=S △P′D′N= ×P′D′×FN= ×(3﹣)(﹣),∴S= t2﹣t+ .【考点】二次函数的应用【解析】【分析】(1)直接将A、B两点的坐标代入列方程组解出即可;(2)如图1,要想求△BCP的面积,必须求对应的底和高,即PC和BD;先求OD,再求BD,PC是利用点P 和点C的横坐标求出,要注意符号;(3)分两种情况讨论:①△DPE完全在△OAB中时,即当0≤t≤ 时,如图2所示,重合部分的面积为S就是△DPE的面积;②△DPE有一部分在△OAB中时,当<t≤2.5时,如图4所示,△PDN就是重合部分的面积S.本题是二次函数的综合题,考查了利用待定系数法求二次函数和一次函数的解析式,并能利用方程组求出两图象的交点,把方程和函数有机地结合在一起,使函数问题简单化;同时考查了分类讨论的思想,这一思想在二次函数中经常运用,要熟练掌握;本题还与相似结合,利用相似三角形对应边的比来表示线段的长.【答案】(1)解:∵y=ax 2﹣2ax+c 的对称轴为:x=﹣=1,∴抛物线过(1,4)和(,﹣)两点,代入解析式得:,解得:a=﹣1,c=3,∴二次函数的解析式为:y=﹣x2+2x+3,∴顶点D的坐标为(1,4);(2)解:∵C、D两点的坐标为(0,3)、(1,4);由三角形两边之差小于第三边可知:|PC﹣PD|≤|CD|,∴P、C、D三点共线时|PC﹣PD|取得最大值,此时最大值为,|CD|= ,由于CD所在的直线解析式为y=x+3,将P(t,0)代入得t=﹣3,∴此时对应的点P为(﹣3,0)(3)解:y=a|x|2﹣2a|x|+c的解析式可化为:y=设线段PQ所在的直线解析式为y=kx+b,将P(t,0),Q(0,2t)代入得:线段PQ所在的直线解析式:y=﹣2x+2t,∴①当线段PQ过点(0,3),即点Q与点C重合时,线段PQ与函数y=有一个公共点,此时t= ,当线段PQ过点(3,0),即点P与点(3,0)重合时,t=3,此时线段PQ与y= 有两个公共点,所以当≤t<3时,线段PQ与y= 有一个公共点,②将y=﹣2x+2t代入y=﹣x2+2x+3(x≥0)得:﹣x2+2x+3=﹣2x+2t ,﹣x2+4x+3﹣2t=0,令△=16﹣4(﹣1)(3﹣2t)=0,t= >0,所以当t= 时,线段PQ与y= 也有一个公共点,③当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ只与y=﹣x 2﹣2x+3(x<0)有一个公共点,此时t=﹣3,所以当t≤﹣3时,线段PQ与y= 也有一个公共点,综上所述,t的取值是≤t<3或t= 或t≤﹣3.【考点】与二次函数有关的动态几何问题【解析】【分析】(1)先利用对称轴公式x=﹣计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P、C、D三点共线时|PC ﹣PD|取得最大值,求出直线CD与x轴的交点坐标,就是此时点P的坐标;(3)先把函数中的绝对值化去,可知y= ,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ过点(0,3),即点Q与点C 重合时,两图象有一个公共点,当线段PQ过点(3,0),即点P与点(3,0)重合时,两函数有两个公共点,写出t的取值;②线段PQ与当函数y=a|x|2﹣2a|x|+c(x≥0)时有一个公共点时,求t的值;③当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ与当函数y=a|x|2﹣2a|x|+c(x<0)时也有一个公共点,则当t≤﹣3时,都满足条件;综合以上结论,得出t的取值.本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.【答案】(1)解:过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6× =3 ,。
(完整版)(完整word)初三数学动点问题总结,推荐文档
解得:t=< (5分)
33
而MN=..NC= ..(1+t)
(4)①当MP=Mffl-(如图1)贝U有:NP=NC
即PC=2NC・4-t=2(1+t)
2当CM=CP^(如图2)
则有:
5
(1+t)=4-t
11
解得:t=/3当PM=PC寸(如图Fra bibliotek)则有:
在Rt△MNF中,PM2=MN2+PN2
33
而MN=.-NC= ..(1+t)
BC, CB DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(xm0),贝U AP=2xcm
CM=3xcm DN=x2cm
(1)当x为何值时,以PQ MN为两边,以矩形的边(AD或BC的一部分为第三边构成一个三角形;
(2)当x为何值时,以P,Q, M, N为顶点的四边形是平行四边形;
以P,Q,MN为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MCBQ=ND当点P在点N的右侧时,AN=MC BQ=PD所以可以根据这些条件列出方程关系式.
1当皿卩=皿时,那么PC=2NC据此可求出t的值.
2当CM=CPt,可根据CM和CP的表达式以及题设的等量关系来求出t的值.
3当MP=PC寸,在直角三角形MNP中先用t表示出三边的长,然后根据勾股定理即可得出t的值.
综上所述可得出符合条件的t的值.
解答:
解: (1)vAQ=3-t
•CN=4-(3-t)=1+t
四边形PCDQ勾成平行四边形就是PC=DQ列方程4-t=t即解;
初三数学中考动点问题复习含答案
1.求A、B两点的坐标;
2.设AOMN的面积为S,直线I运动时间为t秒(0<t<6),试求S与t的函数表达式;
3.在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?
直线I从y轴出发,沿x轴正方向运动与菱形OABC勺两边相交有三种情况:
—B—C-D的路线作匀速运动.当P点运动到D点时停止运动,ABCD也随之停止运动.
⑴求P点从A点运动到D点所需的时间;
⑵设P点运动时间为t(秒).
当t=5时,求出点P的坐标;
若"OAP的面积为s,试求出s与t之间的函数关系式(并 应的自变量t的取值范围)
A
004、(09包头)如图,已知△ABC中,AB AC10厘米,BC8厘米,点D为AB的中占
(1)直接写出AB两点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之 间的函数关系式;
S
(3)当
48
5时,求出点P的坐标,并直接写出以点
O
顶点的平行四边形的第四个顶点M的坐标.
006(09深圳)如图,在平面直角坐标系中,直线I:y=—2x—8分别与x轴,y轴相交于A,B两
点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作OP.
(1)连结PA若PA=PB试判断OP与x轴的位置关系,并说明理由;
(2) 当k为何值时,以OP与直线I的两个交点和圆心P为顶点的三角形是正三角形?
游
3 15
当圆心P在线段OB延长线上时,同理可得P(0,—2—8),
3.15
•k=—2—8,
007
动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;
(word完整版)初中数学二次函数动点问题
函数性问题专题—动点问题函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题)一、因动点而产生的面积问题例1:如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2)、(3)小题换为下列问题解答(已知条件及第(1)小题与上相同,完全正确解答只能得到5分):(2) 若点D的坐标为(1,0),求矩形DEFG的面积.例2:如图1,已知直线12y x=-与抛物线2164y x=-+交于A B,两点.(1)求A B,两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A B,两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A B,构成无数个三角形,这些三角求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.yxOyxOPA图2图1BBA图10例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边AB=4,BC=43.(1)求矩形ODEF 的面积; (2)将图l 中的矩形ODEF 绕点O 逆时针旋转 900,若旋转过程中OF 与OA 的夹角(图2中的∠FOA )的正切的值为x ,两个矩形重叠部分的面积为y ,求 y 与 x 的函数关系式;(3)将图1中的矩形ODEF 绕点O 逆时针旋转一周,连结EC 、EA ,△ACE 的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由。
完整word版中考数学复习动点问题解题技巧
在运动中剖析 在静态中求解动向几何问题已成为中考试题的一大热点题型.这类试题以运动的点、线段、变化的角、图形的面积为基本条件,给出一个或多个变量,要求确定变量与其他量之间的关系,或变量在必然条件为定值时,进行相关的几何计算和综合解答,解答这类题目,一般要依照点的运动和图形的变化过程,对其不同样样状况进行分类求解,本文以一道中考题为例,谈谈此类问题的思路打破与解题反思,希望能给大家一些启示.题目 如图 1,已知点 A(2 , 0), B(0, 4),∠ AOB 的均分线交 AB 于点 C ,一动点 P 从 O 点出发,以每秒 2 个单位长度的速度,沿 y 轴向点 B 作匀速运动,过点 P 且平行于AB 的直线交 x 轴于点 Q ,作点 P 、Q 关于直线 OC 的对称点 M 、N .设点 P 运动的时间为 t(0<t<2) 秒.(1)求 C 点的坐标,并直接写出点M 、 N 的坐标(用含 t 的代数式表示) .(2)设△ MNC 与△ OAB 重叠部分的面积为 S .①试求 S 关于 t 的函数关系式; ②在直角坐标系中,画出S 关于 t 的函数图象,并回答:S 可否有最大值?若有,写出S 的最大值;若没有,请说明原由.一、研究解题思路 1.利用基础知识轻松求解 由题意不难发现第1 问是对基础知识的观察,有多种方法,考生可自行选择解法,简解 1 可经过作辅助线, 过点 C 作 CF 上 x 轴于点 F ,CE ⊥y 轴于点 E ,由题意,易知四边形 OECF 为正方形,设正方形边长为 x .由比率式求出点 C 的坐标 ( 4 , 4).33简解 2 由点 A 、B 的坐标可得直线 AB 的剖析式 y =- 2x + 4;由 OC 是∠ AOB 的均分线可得直线 OC 的剖析式 y = x ;联立方程组轻松解得点 C 的坐标 ( 4 , 4) .33关于求点 M 、N 的坐标,是对相似及对称性的观察,依照相似可得P(0,2t),Q(t ,0),依照对称性可得 M(2t , 0), N(0, t). 这样,第 1 问轻松获解.2.动静结合找界点,分类议论细演算第 2 问的第一小题中,所求函数关系式为分段函数,需要分类议论,这是本题的难点 之一; 而要点是动静结合找界点, 得出 t = 1 时重叠部分的关系会发生变化, 这是本题的难 点之二.解答时需着手画出草图,随着点M 、 N 的地址的变化,△ MNC 的地址也随之发生变化,△ MNC 与△ OAB 重叠部分的面积 S 也发生变化 .S 可能会存在两种状况: ①△ OAB 将△ MNC 全部覆盖; ②△ OAB 将△ MNC 部分覆盖; 点 M 从点 O 出发运动到点 A 时,即t = 1时重叠部分的关系会发生变化,函数关系式也随之改变.由 t = 1 这个界点确定两个范围,以此界值进行分类议论:当 0<t ≤ 1 时,点 M 在线段 OA 上,△ OAB 将△ MNC 全部覆盖,重叠部分面积为S △CMN = S 四边形 CMON -S △OMN . 结合点 C 的坐标 ( 4 , 4),可得33S △CMN =- t 2+ 2t ;当 1<t<2 时,点 M 在 OA 的延长线上,设MN 与 AB 交于点 D,△ OAB 将△ MNC 部分覆盖,则重叠部分面积为S .△CDN另一个要点是要用 t 的代数式表示 D 点的横坐标,即△ BDN 的高,这是本题的难点之三.由 M(2t , 0), N(0 , t) 可先用 t 的代数式表示直线MN 的剖析式 y=-1x+ t.2再结合直线 AB 的剖析式 y=- 2x+ 4,联立方程组,解出 D 点的横坐标为82t ,则3重叠部分面积为S△CDN=S△BDN -S△BCN1 t2 2t 83 3综上所述,t 2 2t(0 y 1)S 1 t2 2t 8 1 t 23 3由函数剖析式及其自变量的取值范围可画出函数图象,观察图象可知,当t= 1 时, S 有最大值,最大值为1.二、规范解答问题(1)如图 2,过点 C 作 CF⊥ x 轴于点 F, CE⊥y 轴于点 E,由题意,易知四边形 OECF为正方形,设正方形边长为x.∴OP= 2DQ.∵P(0,2t),∴ Q(t ,0).∵对称轴OC 为第一象限的角均分线,∴对称点坐标为:M(2t , 0), N(0 , t).(2)①当 0<t≤ 1 时,如图 3 所示,点M 在线段 OA 上,重叠部分面积为S△CMN .当1<t<2 时,如图 4 所示,点 M 在 OA 的延长线上,设 MN 与 AB 交于点 D,则重叠部分面积为 S△CDN设直线 MN 的剖析式为y= kx +b,将 M(2t , 0)、 N(0, t) 代入,得2tk b 0b t综上所述,t 2 2t(0 y 1)S1 t2 2t 8 1 t 23 3②画出函数图象,如图 5 所示:观察图象可知,当t= 1 时, S 有最大值,最大值为 1.三、解题反思1、要点的一步本题在打破第 2 问时,可否得出t= 1 时重叠部分的关系会发生变化,这是决定性的一步,否则就不知该如何分类议论,解题就难以找到前进的方向.2、解题难点解决本题的主要困难第一是分类议论,依照题意知点P 运动的时间为t(0<t<2) 秒,可以确定点肘、N 运动过程中的三类点,即起点、界点(有的题中存在多个界点)和终点,由界点值划分范围,确定分类标准(平时状况下,为了书写方便简洁,可将界点值归入动向的范围),今后进行分类计算(关于几何图形问题,平时需要依照相似、三角函数、勾股定理以及图形面积建立方程等数学模型计算).其次是重叠面积分类,当1<t<2时,我们面对的困难是如何对重叠部分的面积进行切割;如何用t 的代数式表示点 D 的横坐标;得出 S△CDN= S△BDN- S△BCN也是比较困难的;再者分类后的计算,略不注意也可能出错.3、解题收获解决此类与运动、变化相关的问题,重在运动中剖析,变化中求解.第一,要掌握运动规律,追求运动中的特别地址,在“动”中求“静” ,在“静”中研究“动”的一般规律.其次,经过研究、归纳、猜想,获得图形在运动过程中可否保留或拥有某种性质,要用运动的眼光观察出各种可能的状况分类议论,较为精确地将每种状况一一表现出来.再次,要学会将动向问题静态化,立刻动向情境化为几个静态的情境,从中搜寻两个变量间的关系,用相关字母去表示几何图形中的长度、点的坐标等,很多状况下是与三角形的相似和勾股定理等联系在一起的,在整个解题过程中,要深刻理解分类议论、数形结合、化归、相似等数学思想.。
初中数学动点问题专题复习及问题详解.doc
初中数学动点问题专题复习及问题详解.doc实⽤标准⽂档初中数学动点问题练习题1、(宁夏回族⾃治区)已知:等边三⾓形ABC 的边长为 4 厘⽶,长为 1 厘⽶的线段MN 在△ABC 的边 AB上沿AB ⽅向以 1厘⽶ / 秒的速度向 B 点运动(运动开始时,点M 与点A 重合,点N 到达点 B时运动终⽌),过点 M 、N 分别作 AB 边的垂线,与△ ABC 的其它边交于P、Q两点,线段 MN 运动的时间为 t 秒.1、线段MN在运动的过程中,t 为何值时,四边形MNQP恰为矩形?并求出该矩形的⾯积;(2)线段 MN 在运动的过程中,四边形MNQP的⾯积为S,运动的时间为t.求四边形MNQP的⾯C积 S 随运动时间 t 变化的函数关系式,并写出⾃变量t 的取值范围.QPA MN B2、如图,在梯形ABCD中,AD ∥ BC,AD 3, DC 5, AB 4 2,∠B 45.动点 M从 B 点出发沿线段BC 以每秒2 个单位长度的速度向终点 C 运动;动点 N 同时从 C 点出发沿线段 CD 以每秒 1 个单位长度的速度向终点 D 运动.设运动的时间为t 秒.(1)求BC的长.(2)当MN∥AB时,求t的值.(3)试探究:t为何值时,△MNC为等腰三⾓形.ADNB3、如图,在平⾯直⾓坐标系中,四边形OABC是梯形, OA∥BC,点 A 的坐标为(6,0),点 B 的坐标为 (4 , 3) ,点C 在y 轴的正半轴上.动点在上运动,从O 点出发到 A 点;动点M OAN在 AB上运动,从 A 点出发到 B 点.两个动点同时出发,速度都是每秒 1 个单位长度,当其中⼀个点到达终点时,另⼀个点也随即停⽌,设两个点的运动时间为t (秒).(1) 求线段AB的长;当t为何值时,MN∥OC?y(2) 设△CMN的⾯积为S,求S与t之间的函数解析式, BC并指出⾃变量 t 的取值范围; S是否有最⼩值?若有最⼩值,最⼩值是多少?N(3) 连接,那么是否存在这样的 t ,使与互相垂直?AC MN AC 若存在,求出这时的 t 值;若不存在,请说明理由.4、(河北卷)如图,在 Rt △ ABC 中,∠ C =90°, AC = 12, BC =16,动点 P 从点 A 出发沿AC 边向点 C 以每秒 3 个单位长的速度运动,动点 Q 从点 C 出发沿 CB 边向点 B 以每秒 4 个单位长的速度运动. P ,Q 分别从点 A ,C 同时出发,当其中⼀点到达端点时,另⼀点也随之停⽌运动.在运动过程中,△ PCQ 关于直线 PQ 对称的图形是△ PDQ .设运动时间为 t (秒).( 1)设四边形 PCQD 的⾯积为 y ,求 y 与 t 的函数关系式;( 2) t 为何值时,四边形 PQBA 是梯形?( 3)是否存在时刻 t ,使得 PD ∥ AB ?若存在,求出 t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等⽅法,猜想是否存在时刻t ,使得⊥?若存在,请估计PD AB t 的值在括号中的哪个时间段内( 0≤ t ≤ 1;1< t ≤ 2; 2< t ≤ 3;3< t ≤ 4);若不存在,请简要说明理由.5、(⼭东济宁)如图, A 、 B 分别为 x 轴和 y 轴正半轴上的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习(一)动点型问题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点, 它们在线段、射线或弧线上运动的一类开放性题目决这类问题的关键是动中求静, 灵活运用有关数学知识解决问题.. 解“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路 , 这也是动态几何数学问题中最核心的数学本质。
三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律, 是初中数学的重要内容. 动点问题反映的是一种函数思想于某一个点或某图形的有条件地运动变化, 引起未知量与已知量间的一种变化关系, 这种变化关系就是动点问题中的函数关系 .例 1 如图,动点P 从点 A 出发,沿线段AB运动至点 B 后,立即按原路返回,点P 在运动过程中速度不变,则以点为圆心,线段BP长为半径的圆的面积S 与点 P 的运动时间t 的函数图象大致为(), 由BA.B.C.D.对应训练1.如图,⊙ O 的圆心在定角∠α( 0°<α< 180°)的角平分线上运动,且⊙面积 S 关于⊙ O的半径r ( r > 0)变化的函数图象大致是()O 与∠α 的两边相切,图中阴影部分的A.B.C.D.考点二:动态几何型题目(一)点动问题.例2 如图,梯形 ABCD中, AB∥ DC, DE⊥ AB, CF⊥ AB,且 AE=EF=FB=5, DE=12动点 P 从点 A 出发,沿折线 AD-DC-CB以每秒 1 个单位长的速度运动到点 B 停止.设运动时间为t 秒, y=S△EPF,则 y 与 t的函数图象大致是()A.B.C.D.对应训练2.如图,点P 是以 O为圆心, AB 为直径的半圆上的动点,AB=2.设弦AP的长为x,△ APO的面积为y,则下列图象中,能表示y 与x 的函数关系的图象大致是()A.B.C.D.(二)线动问题例 3 如右图所示,已知等腰梯形ABCD, AD∥ BC,若动直线l 垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S 关于x 的函数图象大致是()A.B.C.D.对应训练3.如图所示,在矩形ABCD中,垂直于对角线BD的直线l ,从点 B 开始沿着线段BD 匀速平移到D.设直线l 被矩形所截线段EF 的长度为y,运动时间为t ,则y 关于t的函数的大致图象是()A.B.C.D.(三)面动问题例 4 如图所示:边长分别为大正方形,设穿过的时间为1 和 2 的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过t ,大正方形内去掉小正方形后的面积为s,那么 s 与 t 的大致图象应为()A.B.C.D.对应训练4.如图所示,半径为 1 的圆和边长为间为 t ,正方形除去圆部分的面积为3 的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,S(阴影部分),则 S 与 t 的大致图象为()设穿过时A.B.C.D.考点三:动点综合题动态问题是近几年来中考数学的热点题型,解题时需要用运动和变化的眼光去观察和研究问题, 挖掘运动、变化的全过程, 并特别关注运动与变化中的不变量、不变关系或特殊关系, 动中取静, 静中求动.(一)因动点产生的等腰三角形问题例 1 如图 1,在 Rt △ABC中,∠A= 90°,AB= 6,AC= 8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点 Q为边 AC上的一动点,且∠ PDQ=90°.(1)求ED、EC的长;(2)若BP= 2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图例 2 如图 1,抛物线y= ax2+ bx+ c 经过 A(-1,0)、 B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;( 3)在直线l 上是否存在点M,使△ MAC为等腰三角形,若存在,直接写出所有符合条件的点在,请说明理由.M的坐标;若不存图1例3 如图 1,点A在x轴上,OA= 4,将线段OA绕点O顺时针旋转 120 °至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;( 3)在此抛物线的对称轴上,是否存在点P,使得以点P、 O、 B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图 1例 4 如图 1,已知一次函数y=- x+7与正比例函数y 4x的图象交于点A,且与 x 轴交于点 B.3(1)求点A和点B的坐标;( 2)过点A作AC⊥y轴于点C,过点B作直线l //y 轴.动点 P 从点 O出发,以每秒1个单位长的速度,沿O— C — A 的路线向点 A 运动;同时直线l 从点 B 出发,以相同速度向左平移,在平移过程中,直线l 交 x 轴于点 R,交线段 BA 或线段 AO于点 Q.当点 P 到达点 A 时,点 P 和直线 l 都停止运动.在运动过程中,设动点P 运动的时间为 t 秒.①当 t 为何值时,以A、 P、 R 为顶点的三角形的面积为8?②是否存在以、、Q 为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.A P图1例5 如图 1,在矩形ABCD中,AB=m(m是大于 0 的常数),BC= 8,E为线段BC上的动点(不与B、C重合).连结DE,作 EF⊥ DE, EF与射线 BA交于点 F,设 CE= x, BF= y.(1)求y关于x的函数关系式;(2)若m= 8,求x为何值时,y的值最大,最大值是多少?12(3)若y,要使△ DEF为等腰三角形,m的值应为多少?m图1例6 如图 1,在等腰梯形ABCD中,AD// BC,E是AB的中点,过点E作EF// BC交CD于点F,AB= 4,BC= 6,∠B= 60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN// AB交折线ADC于N,连结PN,设EP= x.①当点 N在线段 AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N 在线段上时(如图3),是否存在点,使△为等腰三角形?若存在,请求出所有满足条件的x的DC P PMN值;若不存在,请说明理由.图1 图 2 图 3因动点产生的直角三角形问题例 1 如图 1,抛物线y 1 x23x 4 与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC42为一边,点O为对称中心作菱形BDEC,点 P 是 x 轴上的一个动点,设点P的坐标为( m,0),过点 P 作 x 轴的垂线 l 交抛物线于点Q.( 1)求点A、B、C的坐标;( 2)当点 P 在线段 OB 上运动时,直线 l 分别交 BD 、BC 于点 M 、N .试探究 m 为何值时,四边形 CQMD 是平行四边形,此时,请判断四边形 CQBM 的形状,并说明理由; ( 3)当点 P 在线段存在,请说明理由.图 1EB 上运动时,是否存在点Q ,使△ BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不例 2 如图 1,抛物线y3x23x 3 与 x 轴交于 A 、 B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .84( 1)求点 A 、 B 的坐标;( 2 )设 D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ ACB 的面积时,求点 D 的坐标; ( 3 )若直线 l 过 点 E (4,0) , M 为直线 l 上的动点,当以 A 、 B 、 M 为顶点所作的直角三角形有且只有 三个时,求.... 直线 l 的解析式.图 1例 3 在平面直角坐标系中,反比例函数与二次函数y = k ( x 2+ x - 1) 的图象交于点 A (1, k ) 和点 B( - 1, - k ) .( 1 )当 k =- 2 时,求反比例函数的解析式;( 2 )要使反比例函数与二次函数都是y 随 x 增大而增大,求 k 应满足的条件以及 x 的取值范围;( 3 )设二次函数的图象的顶点为 ,当△是以 为斜边的直角三角形时,求 k 的值.QABQAB例 4 设直线 l: y = kx + b 与 l2: y = kx + b ,若 l⊥ l 2,垂足为 H ,则称直线 l 1与 l 2是点 H 的直角线.111221( 1 )已知 直线① y1 x2 ;② y x2 ;③ y 2 x 2 ;④ y 2 x 4 和点 C (0 ,2) ,则直线 _______ 和 _______2是点 C 的直角线(填序号即可) ;( 2 )如图,在平面直角坐标系中,直角梯形 OABC 的顶点 A (3 , 0) 、 B (2 , 7) 、 C (0 , 7) , P 为线段 OC 上一点,设 过 B 、P 两点的直线为 l 1 ,过 A 、 P 两点的直线为 l 2,若 l 1 与 l 2 是点 P 的直角线,求直线 l 1 与 l 2 的解析式.图 1例 5 在平面直角坐标系xOy 中,抛物线 ym 1 x 2 5m x m 2 3m 2 与 x 轴的交点分别为原点 O 和点 A ,点4 4B (2, n ) 在这条抛物线上.( 1)求点 B 的坐标;( 2)点 P 在线段 OA 上,从点 O 出发向点 A 运动,过点 P 作 x 轴的垂线,与直线OB 交于点 E ,延长 PE 到点 D ,使得 = ,以 PD 为斜边,在 PD 右侧作等腰直角三角形 (当点 P 运动时,点 、 D 也随之运动) .EDPEPCDC①当等腰直角三角形PCD 的顶点 C 落在此抛物线上时,求 OP 的长;②若点P 从点 O 出发向点 A 作匀速运动, 速度为每秒 1 个单位, 同时线段 上另一个点Q 从点A 出发向点O 作匀OA速运动,速度为每秒2 个单位(当点 Q 到达点 O 时停止运动,点 P 也停止运动) .过 Q 作 x 轴的垂线,与直线 AB 交于点 F ,延长 QF 到点 M ,使得 FM = QF ,以 QM 为斜边,在 QM 的左侧作等腰直角三角形 QMN (当点 Q 运动时,点 M 、N 也随之运动).若点 P 运动到 t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.图 1例 6 如图 1,已知 、 是线段 上的两点,MN 4 , MA 1 , MB 1 .以A 为中心顺时针旋转点 ,以为中心A B MNMB逆时针旋转点 N ,使 M 、 N 两点重合成一点 C ,构成△ ABC ,设 AB x .( 1)求 x 的取值范围;( 2)若△为直角三角形,求 x 的值;ABC( 3)探究:△ ABC 的最大面积?图 1例 7 如图 1,直线4x 4 和 x 轴、 y 轴的交点分别为 B 、 C ,点 A 的坐标是( -2 , 0).y3( 1)试说明△是等腰三角形;ABC( 2)动点 M 从 A 出发沿 x 轴向点 B 运动,同时动点 N 从点 B 出发沿线段 BC 向点 C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设 运动 t 秒时,△ 的面积为 .MMON S①求 S 与 t 的函数关系式;②设点 M 在线段 OB 上运动时,是否存在 S = 4 的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△ 为直角三角形时,求 t的值.MON图 1例 8 如图 1,直线y4 4 和x轴、y轴的交点分别为B、 C,点 A 的坐标是(-2,0).x3( 1)试说明△ABC是等腰三角形;( 2)动点M从A 出发沿x轴向点 B 运动,同时动点N 从点 B 出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.①求S 与t的函数关系式;②设点 M在线段 OB上运动时,是否存在S=4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON为直角三角形时,求t 的值.图1课后练习(一)一、选择题1.如图, Rt △ ABC中,∠ ACB=90°,∠ ABC=60°,BC=2cm,D 为 BC的中点,若动点E 以 1cm/s 的速度从 A 点出发,沿着 A→B→A的方向运动,设 E 点的运动时间为t 秒(0≤t < 6),连接 DE,当△ BDE是直角三角形时,t 的值为()A. 2B. 2.5或 3.5C . 3.5或4.5D. 2 或 3.5或4.52.图 1 所示矩形ABCD中, BC=x,CD=y,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形AEF的斜边 EF 过C 点, M为 EF 的中点,则下列结论正确的是()A.当 x=3 时, EC< EMB.当 y=9 时, EC>EMC.当 x 增大时, ECCF的值增大D.当 y 增大时, BEDF的值不变3.如图,将边长为 4 的正方形ABCD的一边 BC与直角边分别是 2 和 4 的 Rt △ GEF的一边 GF重合.正方形 ABCD以每秒1 个单位长度的速度沿GE向右匀速运动,当点 A 和点 E 重合时正方形停止运动.设正方形的运动时间为t 秒,正方形ABCD与 Rt △ GEF重叠部分面积为s,则 s 关于 t 的函数图象为()A.B.C.D.4.如图,在平面直角坐标系xOy 中, A( 0,2),B( 0, 6),动点 C 在直线 y=x 上.若以 A、 B、 C 三点为顶点的三角形是等腰三角形,则点 C 的个数是()A. 2B. 3C. 4D. 55.如图,在平面直角坐标系中,O为坐标原点,点 A、 B 的坐标分别为( 8, 0)、( 0, 6).动点 Q从点 O、动点 P 从点A 同时出发,分别沿着OA方向、 AB方向均以 1个单位长度 / 秒的速度匀速运动,运动时间为t (秒)( 0<t ≤5).以 P 为圆心, PA 长为半径的⊙ P 与 AB、 OA的另一个交点分别为C、 D,连接 CD、 QC.( 1)求当 t 为何值时,点Q 与点 D 重合?( 2)设△ QCD的面积为 S,试求 S 与 t 之间的函数关系式,并求S 的最大值;( 3)若⊙ P 与线段 QC只有一个交点,请直接写出t 的取值范围.6.如图,在平面直角坐标系中,O为坐标原点,点 A 的坐标为( 0, 4),点 B 的坐标为( 4, 0),点 C 的坐标为( -4 ,0),点 P 在射线 AB上运动,连结CP与 y 轴交于点 D,连结 BD.过 P,D,B 三点作⊙ Q 与 y 轴的另一个交点为 E,延长DQ交⊙ Q于点 F,连结 EF,BF.(1)求直线 AB 的函数解析式;(2)当点 P 在线段 AB(不包括 A, B 两点)上时.①求证:∠ BDE=∠ ADP;②设 DE=x, DF=y.请求出 y 关于 x 的函数解析式;( 3)请你探究:点P 在运动过程中,是否存在以B, D,F 为顶点的直角三角形,满足两条直角边之比为2: 1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.7. 如图,直角梯形OABC中, AB∥ OC, O为坐标原点,点 A 在 y 轴正半轴上,点 C 在 x 轴正半轴上,点B坐标为(2,23) ,∠BCO=60 °,OH⊥BC于点H。