定远县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定远县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知向量(1,2)a = ,(1,0)b = ,(3,4)c = ,若λ为实数,()//a b c λ+
,则λ=( )
A .14
B .1
2
C .1
D .2
2. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )
A .
B .18
C .
D .
3. 不等式x (x ﹣1)<2的解集是( )
A .{x|﹣2<x <1}
B .{x|﹣1<x <2}
C .{x|x >1或x <﹣2}
D .{x|x >2或x <﹣1}
4. 已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )
A .(x ≠0)
B .(x ≠0)
C .(x ≠0)
D .(x ≠0)
5. 若函数()()22f x x πϕϕ⎛
⎫=+< ⎪⎝
⎭的图象关于直线12x π=对称,且当
1217212
3x x π
π⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )
A
B D 6. 在△AB
C 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45°
D .30°
7. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( )
A .10个
B .15个
C .16个
D .18个
8. 若变量x y ,满足约束条件220
24010x y x y x +-≥⎧⎪
-+≥⎨⎪-≤⎩
,则目标函数32z x y =-的最小值为( )
A .-5
B .-4 C.-2 D .3 9. cos80cos130sin100sin130︒︒-︒︒等于( ) A
B .12
C .1
2
- D
. 10.设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2}
B .{﹣1,4}
C .{﹣1,2}
D .{2,4}
11.一个椭圆的半焦距为2,离心率
e=,则它的短轴长是( )
A .3
B

C .
2
D .6
12.在定义域内既是奇函数又是减函数的是( ) A .
y= B .y=﹣
x+ C .y=﹣x|x| D .
y=
13.数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( ) A .2n ﹣1 B .﹣3n+2
C .(﹣1)n+1(3n ﹣2)
D .(﹣1)n+13n ﹣2
14.在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状
为( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
15.设x ∈R ,则|x ﹣2|<3是0<x <5的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分且不必要条件
二、填空题
16.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数
()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.
17.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .
18.已知函数f (x )
=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写
出你认为正确的所有结论的序号)
①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点. ③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点.
19.圆心在原点且与直线2x y +=相切的圆的方程为_____ .
【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.
三、解答题
20.已知椭圆x 2+4y 2=4,直线l :y=x+m (1)若l 与椭圆有一个公共点,求m 的值;
(2)若l 与椭圆相交于P 、Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.
21.(本小题满分12分)
设0
3πα⎛
⎫∈ ⎪⎝
⎭,αα=
(1)求cos 6πα⎛
⎫+ ⎪⎝⎭的值;
(2)求cos 212πα⎛
⎫+ ⎪⎝
⎭的值.
22.【常州市2018届高三上武进区高中数学期中】已知函数()()2
21ln f x ax a x x =+--,R a ∈.
⑴若曲线()y f x =在点()()
1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1
sin 8
g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.
23.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.
(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;
(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.
24.(本题满分14分)
在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;
(2)若2=+c a ,求b 的取值范围.
【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.
25.已知函数f (x )=ax 2+bx+c ,满足f (1)=﹣,且3a >2c >2b . (1)求证:a >0时,的取值范围;
(2)证明函数f (x )在区间(0,2)内至少有一个零点; (3)设x 1,x 2是函数f (x )的两个零点,求|x 1﹣x 2|的取值范围.
定远县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】B
【解析】
试题分析:因为(1,2)a = ,(1,0)b = ,所以()()1,2a b λλ+=+ ,又因为()//a b c λ+
,所以
()1
4160,2
λλ+-==,故选B.
考点:1、向量的坐标运算;2、向量平行的性质. 2. 【答案】D
【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22
+3×(
)+=,
故选:D .
3. 【答案】B
【解析】解:∵x (x ﹣1)<2, ∴x 2
﹣x ﹣2<0,
即(x ﹣2)(x+1)<0, ∴﹣1<x <2,
即不等式的解集为{x|﹣1<x <2}. 故选:B
4. 【答案】B
【解析】解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),
∴BC=8,AB+AC=20﹣8=12,
∵12>8
∴点A 到两个定点的距离之和等于定值, ∴点A 的轨迹是椭圆, ∵a=6,c=4
∴b 2
=20,
∴椭圆的方程是
故选B .
【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.
5. 【答案】C 【

析】

点:函数的图象与性质.
【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得
()
2122k k π
π
ϕπ⨯
+=
+∈Z ,解得3π
ϕ=
,从而()23f x x π⎛
⎫=+ ⎪⎝
⎭,再次利用数形结合思想和转化化归思想
可得()()()()1122x f x x f x ,,,关于直线11
12x π=-对称,可得12116
x x π
+=-,从而
()
12113
3f x x ππ⎛⎫
+=-+= ⎪⎝⎭.
6. 【答案】A
【解析】解:根据余弦定理可知cosA=
∵a 2=b 2+bc+c 2
, ∴bc=﹣(b 2+c 2﹣a 2

∴cosA=﹣ ∴A=120° 故选A
7. 【答案】B
【解析】解:a ※b=12,a 、b ∈N *

若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;
若a 和b 同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a ,b )有2×6﹣1=11个,
所以满足条件的个数为4+11=15个. 故选B
8. 【答案】B 【解析】
试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31
y 22
x z =
+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点
时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.
考点:线性规划约束条件中关于最值的计算. 9. 【答案】D 【解析】
试题分析:原式()()cos80cos130sin80sin130cos 80130cos210cos 30180cos30=︒︒-︒︒=︒+︒=︒=︒+︒=-︒
=. 考点:余弦的两角和公式. 10.【答案】A
【解析】解:集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B={1,2}.
故选:A.
【点评】本题考查交集的运算法则的应用,是基础题.
11.【答案】C
【解析】解:∵椭圆的半焦距为2,离心率e=,
∴c=2,a=3,
∴b=
∴2b=2.
故选:C.
【点评】本题主要考查了椭圆的简单性质.属基础题.
12.【答案】C
【解析】解:A.在定义域内没有单调性,∴该选项错误;
B.时,y=,x=1时,y=0;
∴该函数在定义域内不是减函数,∴该选项错误;
C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);
∴该函数为奇函数;

∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;
∴该函数在定义域R上为减函数,∴该选项正确;
D.;
∵﹣0+1>﹣0﹣1;
∴该函数在定义域R上不是减函数,∴该选项错误.
故选:C.
【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.
13.【答案】C
【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).
故选:C.
14.【答案】D
【解析】解:∵sinC+sin(B﹣A)=sin2A,
∴sin(A+B)+sin(B﹣A)=sin2A,
∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,
∴2cosAsinB=sin2A=2sinAcosA,
∴2cosA(sinA﹣sinB)=0,
∴cosA=0,或sinA=sinB,
∴A=,或a=b,
∴△ABC为等腰三角形或直角三角形
故选:D.
【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.
15.【答案】B
【解析】解:∵|x﹣2|<3⇔﹣1<x<5
∵{x|﹣1<x<5}⊇{x|0<x<5}
∴|x﹣2|<3是0<x<5的必要不充分条件
故选B
【点评】判断一个条件是另一个条件的什么条件,应该先化简各个命题,然后再利用充要条件的定义进行判断.二、填空题
16.【答案】56 27
【解析】
17.【答案】﹣2≤a≤2
【解析】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,
则开口向上的二次函数值要想大于等于0恒成立,
只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.
故答案为:﹣2≤a≤2
【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.
18.【答案】②④
【解析】解:
①当k=0时,,当x≤0时,f(x)=1,则f(f(x))=f(1)==0,
此时有无穷多个零点,故①错误;
②当k<0时,(Ⅰ)当x≤0时,f(x)=kx+1≥1,
此时f (f (x ))=f (kx+1)=,令f (f (x ))=0,可得:x=0;
(Ⅱ)当0<x ≤1时,,此时
f (f (x ))=f ()=
,令f (f (x ))=0,可得:x=,满足;
(Ⅲ)当x >1时,
,此时f (f (x ))=f (
)=k
+1>0,此时无零点.
综上可得,当k <0时,函数有两零点,故②正确; ③当k >0时,(Ⅰ)当x ≤时,kx+1≤0,此时f (f (x ))=f (kx+1)=k (kx+1)+1,
令f (f (x ))=0,可得:,满足;
(Ⅱ)当时,kx+1>0,此时f (f (x ))=f (kx+1)=
,令f (f (x ))=0,可得:
x=0,满足; (Ⅲ)当0<x ≤1时,,此时f (f (x ))=f (
)=
,令f (f (x ))=0,
可得:x=,满足; (Ⅳ)当x >1时,,此时f (f (x ))=f (
)=k
+1,令f (f (x ))=0得:x=
>1,满足;
综上可得:当k >0时,函数有4个零点.故③错误,④正确. 故答案为:②④.
【点评】本题考查复合函数的零点问题.考查了分类讨论和转化的思想方法,要求比较高,属于难题.
19.【答案】22
2x y +=
【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以
r d ==
=222x y +=. 三、解答题
20.【答案】
【解析】解:(1)把直线y=x+m 代入椭圆方程得:x 2+4(x+m )2=4,即:5x 2+8mx+4m 2﹣4=0, △=(8m )2﹣4×5×(4m 2﹣4)=﹣16m 2+80=0 解得:m=

(2)设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程5x 2+8mx+4m 2﹣4=0的两根,
由韦达定理可得:x1+x 2=﹣,x 1•x 2=


|AB|=
==
=2;
∴m=±.
【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.
21.【答案】(1;(2.
【解析】
试题分析:(1αα=⇒
sin 6πα⎛
⎫+= ⎪⎝⎭03πα⎛⎫∈ ⎪⎝⎭,⇒662πππα⎛⎫+∈ ⎪⎝⎭,
⇒cos 6πα⎛⎫+=
⎪⎝⎭;(2)由(1)可得21cos 22cos 1364ππαα⎛⎫⎛
⎫+=+-= ⎪ ⎪⎝⎭⎝⎭⇒sin 23πα⎛⎫+= ⎪⎝

⇒cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛

⎛⎫⎛⎫⎛
⎫+
=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎝⎭⎝⎭⎣⎦
=
试题解析:(1αα∴
sin 6πα⎛
⎫+= ⎪⎝⎭………………………………3分
∵03πα⎛⎫∈ ⎪⎝⎭,,∴662πππα⎛⎫+∈ ⎪⎝⎭,,∴cos 6πα⎛
⎫+= ⎪⎝⎭
………………………………6分
(2)由(1)可得2
21
cos 22cos 121364ππαα⎛⎫⎛
⎫+=+-=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝
⎭.………………………………8分
∵03πα⎛⎫∈ ⎪⎝⎭,,∴233ππαπ⎛⎫+∈ ⎪⎝⎭,
,∴sin 23πα⎛
⎫+= ⎪⎝
⎭.……………………………………10分 ∴cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛
⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝
⎭⎝⎭⎝⎭⎣⎦
=
………………………………………………………………………………12分 考点:三角恒等变换.
22.【答案】⑴2a =⑵11,,64
⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝
⎦⎣⎭
⑶2
【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()
在点11f (,())处的切线方程,代入点
211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;
(3)由题意得,2min max f x g x +≥()(),
分析可得必有()()2
15
218
f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:
⑵()()()211'ax x f x x
-+=

∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,
410{ 610
a a -≥∴-≥,得14a ≥;
若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,
410{ 610
a a -≤∴-≤,得1
6a ≤,
综上,实数a 的取值范围为11,,64
⎛⎤
⎡⎫-∞⋃+∞ ⎪⎥⎢⎝

⎣⎭

⑶由题意得,()()min max 2f x g x +≥,
()max 1
28g x g π⎛⎫== ⎪⎝⎭ ,
()min 158f x ∴≥,即()()215
21ln 8
f x ax a x x =+--≥,
由()()()()()2
22112111'221ax a x ax x f x ax a x x x
+---+=+--==, 当0a ≤时,()10f < ,则不合题意;
当0a >时,由()'0f x =,得1
2x a
=或1x =-(舍去), 当1
02x a
<<
时,()'0f x <,()f x 单调递减,
当1
2x a
>时,()'0f x >,()f x 单调递增. ()min 115
28
f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥, 整理得,()117
ln 2228a a -⋅
≥, 设()1ln 2h x x x =-,()211
02h x x x
∴=+>',()h x ∴单调递增,
a Z ∈ ,2a ∴为偶数,
又 ()172ln248h =-<,()17
4ln488
h =->,
24a ∴≥,故整数a 的最小值为2。

23.【答案】
【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.
24.【答案】(1)3
B π
=;(2)[1,2).




25.【答案】
【解析】解:(1)∵f(1)=a+b+c=﹣,
∴3a+2b+2c=0.
又3a>2c>2b,
故3a>0,2b<0,
从而a>0,b<0,
又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b
∵a>0,∴3>﹣3﹣>2,
即﹣3<<﹣.
(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.下面对c的正负情况进行讨论:
①当c>0时,∵a>0,
∴f(0)=c>0,f(1)=﹣<0
所以函数f(x)在区间(0,1)内至少有一个零点;
②当c≤0时,∵a>0,
∴f(1)=﹣<0,f(2)=a﹣c>0
所以函数f(x)在区间(1,2)内至少有一个零点;
综合①②得函数f(x)在区间(0,2)内至少有一个零点;
(3).∵x1,x2是函数f(x)的两个零点
∴x1,x2是方程ax2+bx+c=0的两根.
故x1+x2=﹣,x1x2===
从而|x1﹣x2|===.
∵﹣3<<﹣,
∴|x1﹣x2|.
【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.。

相关文档
最新文档