冷水乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷水乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)有下列说法:
①任何实数都可以用分数表示;②实数与数轴上的点一一对应;③在1和3之间的无理数有且只有,
,,这4个;④是分数,它是有理数.其中正确的个数是()
A.1
B.2
C.3
D.4
【答案】A
【考点】实数及其分类,无理数的认识
【解析】【解答】解;①实数分为有理数和无理数两类,由于分数属于有理数,故不是任何实数都可以用分数表示,说法①错误;
②根据实数与数轴的关系,可知实数与数轴上的点一一对应,故说法②正确;
③在1和3之间的无理数有无数个,故说法③错误;
④无理数就是无限不循环小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,
∴不是分数,是无理数,故说法④错误;
故答案为:A.
【分析】实数分为有理数和无理数两类,任何有理数都可以用分数表示,无理数不能用分数表示;有理数可以用数轴上的点来表示,无理数也可以用数轴上的点来表示,数轴上的点所表示的数不是有理数就是无理数,故实数与数轴上的点一一对应;无理数就是无限不循环的小数,它不仅包括开方开不尽的数,以及像π、0.1010010001…,等有这样规律的数也是无理数,故在1和3之间的无理数有无数个,也是无理数,根据定义性质即可一一判断得出答案。
2、(2分)下列四个方程组中,是二元一次方程组的有()个.
(1 ),(2)(3)(4).
A. 4
B. 3
C. 2
D. 1
【答案】D
【考点】二元一次方程组的定义
【解析】【解答】解:(1)是二元二次方程组;
(2 )是二元二次方程组;
(3 )是分式,不是二元一次方程组;
(4 )是二元一次方程组;故答案为:D.
【分析】根据二元一次方程组的定义,两个方程中,含有两个未知数,且含未知数项的次数都是1的整式方程。
判断即可。
3、(2分)一个自然数的算术平方根是x,则它后面一个数的算术平方根是()
A.x+1
B.x2+1
C.+1
D.
【答案】D
【考点】算术平方根
【解析】【解答】解:由题意可知,这个自然数是x2,其后面一个数是x2+1,则其算术平方根是。
故答案为:D.
【分析】根据算术平方根的意义可知,这个自然数是x2,从而可得其后的数,据此即可解答。
4、(2分)如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC中,相互平行的线段有()
A. 4组
B. 3组
C. 2组
D. 1组
【答案】B
【考点】平行线的判定
【解析】【解答】解:∠B=∠DCE,则AB∥EC(同位角相等,两直线平行);
∠BCA=∠CAE,则AE∥BC(内错角相等,两直线平行);
则AE∥CD,
∠ACE=∠DEC,则AC∥DE(内错角相等,两直线平行).
则线段AB、AC、AE、ED、EC中,相互平行的线段有:AE∥BC,AB∥EC,AC∥DE共3组.
故答案为:C.
【分析】∠B和∠DCE是同位角,同位角相等,两直线平行;∠ACE和∠DEC是内错角,∠BCA和∠CAE 是内错角,内错角相等,两直线平行;
5、(2分)如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是().
A.-2
B.-3
C.π
D.-π
【答案】D
【考点】实数在数轴上的表示
【解析】【解答】=π,A在原点左侧,故表示的数为负数,即A点表示的数是-π。
故答案为:D。
【分析】直径为1的圆滚动一周的距离为π,在原点左侧,故可得A点表示的数。
6、(2分)如果(a+1)x<a+1的解集是x>1,那么a的取值范围是()
A. a<0
B. a<﹣1
C. a>﹣1
D. a是任意有理数
【答案】B
【考点】不等式及其性质
【解析】【解答】解:如果(a+1)x<a+1的解集是x>1,得a+1<0,a<-1.
故答案为:B.
【分析】由(a+1)x<a+1的解集是x>1,可知,将未知数的系数化为1时,不等号的方向改变,因此a+1<0,求解即可。
7、(2分)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()
A. B. C. D.
【答案】B
【考点】图形的平移
【解析】【解答】解:观察可知,平移后的图形,上下火柴棒方向不变,位置改变;左右火柴棒,往中间移动,方向不变,位置改变.只有B符合.
故答案为:B
【分析】平移是由方向和距离决定的,不改变图形的形状和大小,所以选B.
8、(2分)若a>b,则下列各式变形正确的是()
A. a-2<b-2
B. -2a<-2b
C. |a|>|b|
D. a2>b2
【答案】B
【考点】有理数大小比较,不等式及其性质
【解析】【解答】解:A、依据不等式的性质1可知A不符合题意;
B、由不等式的性质3可知B符合题意;
C、如a-3,b=-4时,不等式不成立,故C不符合题意;
D、不符合不等式的基本性质,故D不符合题意.故答案为:B
【分析】根据不等式的性质,不等式的两边都减去同一个数,不等号的方向不变;不等式的两边都乘以同一个负数,不等号的方向改变;只有两个正数,越大其绝对值就越大,也只有对于两个正数才存在越大其平方越大。
9、(2分)如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠CEF的度数是()
A. 16°
B. 33°
C. 49°
D. 66°
【答案】D
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD,∠C=33°,
∴∠ABC=∠C=33°.
∵BC平分∠ABE,
∴∠ABE=2∠ABC=66°,
∴∠CEF=∠ABE=66°.
故答案为:D
【分析】由两直线平行,内错角相等,可求出∠ABC的度数,再用角平分线的性质可求出∠ABE的度数,即可求出∠CEF的度数.
10、(2分)某公司有员工700人,元旦要举行活动,如图是分别参加活动的人数的百分比,规定每人只允许参加一项且每人均参加,则不下围棋的人共有()
A. 259人
B. 441人
C. 350人
D. 490人
【答案】B
【考点】扇形统计图
【解析】【解答】解:700×(1﹣37%)=700×63%=441(人),
故答案为:B.
【分析】不下围棋的人数的百分比是1﹣37%,不下围棋的人共有700×(1﹣37%)人,即可得解.
11、(2分)下列是方程组的解的是()
A.
B.
C.
D.
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:根据代入消元法,把2x-y=-5变形为y=2x+5,把其代入方程x+2y=5,解得x=-1,代入
y=2x+5=3,所以方程组的解为.
故答案为:D.
【分析】利用代入消元法,将方程组中的②方程变形为用含x的式子表示y得出③方程,再将③方程代入原方程组中的①方程消去y即可求出x的值,再将x的值代入③方程进而算出y的值,从而得出原方程组的解。
12、(2分)在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()
A. B. C. D.
【答案】D
【考点】平移的性质,利用平移设计图案
【解析】【解答】解:根据平移的概念,观察图形可知图案D通过平移后可以得到.故答案为:D
【分析】根据平移的定义及平移的性质,可出答案。
二、填空题
13、(1分)点A,B在数轴上,以AB为边作正方形,该正方形的面积是49.若点A对应的数是-2,则点B对应的数是________.
【答案】5
【考点】数轴及有理数在数轴上的表示,算术平方根
【解析】【解答】解:∵正方形的面积为49,
∴正方形的边长AB==7
∵点A对应的数是-2
∴点B对应的数是:-2+7=5
故答案为:5
【分析】根据正方形的面积求出正方形的边长,就可得出AB的长,然后根据点A对应的数,就可求出点B 表示的数。
14、(1分)如果是关于的二元一次方程,那么=________
【答案】
【考点】二元一次方程的定义
【解析】【解答】解:∵是关于的二元一次方程
∴
解之:a=±2且a≠2
∴a=-2
∴原式=-(-2)2-=
故答案为:
【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
15、(1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数=________.
【答案】-2
【考点】解二元一次方程组
【解析】【解答】解:把x=5代入2x-y=12得2×5-y=12,解得y=-2.
∴★为-2.
故答案为-2.
【分析】将x=5代入两方程,就可求出结果。
16、(1分)方程3x+2y=12的非负整数解有________个.
【答案】3
【考点】二元一次方程的解
【解析】【解答】解:由题意可知:
∴
解得:0≤x≤4,
∵x是非负整数,
∴x=0,1,2,3,4
此时y=6,,3,,0
∵y也是非负整数,
∴方程3x+2y=12的非负整数解有3个,
故答案为:3
【分析】将方程3x+2y=12 变形可得y=,再根据题意可得x0,,,解不等式组即可
求解。
17、(1分)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:方程整理得:,
根据方程组解是,得到,
解得:,
故答案为:
【分析】将方程组转化为,再根据题意可得出,然后求出x、y的值。
三、解答题
18、(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
19、(10分)为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:
(1)估计李明家六月份的总用电量是多少度;
(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?
【答案】(1)解:平均每天的用电量= =4度∴估计李明家六月份的总用电量为4×30=120度(2)解:总电费=总度数×每度电的费用=60答:李明家六月份的总用电量为120度;李明家六月份共付电费60元
【考点】统计表
【解析】【分析】(1)根据8号的电表显示和1号的电表显示,两数相减除以7可得平均每天的用电量,然
后乘以6月份的天数即可确定总电量;
(2)根据总电费=总度数×每度电的费用代入对应的数据计算即可解答.
20、(15分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜、南县农业部门对2009年的油菜籽生产成本,市场价格,种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:
每亩生产成本每亩产量油菜籽市场价格种植面积
110元130千克3元/千克500000亩
请根据以上信息解答下列问题:
(1)种植油菜每亩的种子成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)
【答案】(1)解:1﹣10%﹣35%﹣45%=10%,110×10%=11(元)
(2)解:130×3﹣110=280(元)
(3)解:280×500000=140000000=1.4×108(元).答:2009年南县全县农民冬种油菜的总获利1.4×108元.【考点】统计表,扇形统计图
【解析】【分析】(1)根据扇形统计图计算种子所占的百分比,然后乘以表格中的成本即可;
(2)根据每亩的产量乘以市场单价减去成本可得获取数据;
(3)根据(2)中每亩获利数据,然后乘以总面积可得总获利.
21、(5分)试将100分成两个正整数之和,其中一个为11的倍数,另一个为17的倍数.
【答案】解:依题可设:
100=11x+17y,
原题转换成求这个方程的正整数解,
∴x==9-2y+,
∵x是整数,
∴11|1+5y,
∴y=2,x=6,
∴x=6,y=2是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
∴k=0,
∴原方程正整数解为:.
∴100=66+34.
【考点】二元一次方程的解
【解析】【分析】根据题意可得:100=11x+17y,从而将原题转换成求这个方程的正整数解;求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
22、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
23、(5分)把下列各数填在相应的括号内:
①整数{ };
②正分数{ };
③无理数{ }.
【答案】解:∵
∴整数包括:|-2|,,-3,0;
正分数:0.,,10%;
无理数:2,,1.1010010001(每两个1之间依次多一个0)【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。
24、(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1= ∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
25、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.。