【易错题】中考数学一模试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【易错题】中考数学一模试题含答案
一、选择题
1.下列计算正确的是( )
A .2a +3b =5ab
B .( a -b )2=a 2-b 2
C .( 2x 2 )3=6x 6
D .x 8÷
x 3=x 5 2.在数轴上,与表示6的点距离最近的整数点所表示的数是( )
A .1
B .2
C .3
D .4
3.下列命题正确的是( )
A .有一个角是直角的平行四边形是矩形
B .四条边相等的四边形是矩形
C .有一组邻边相等的平行四边形是矩形
D .对角线相等的四边形是矩形 4.-2的相反数是( )
A .2
B .12
C .-12
D .不存在
5.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A .21.7米
B .22.4米
C .27.4米
D .28.8米 6.函数21y x =
-中的自变量x 的取值范围是( ) A .x ≠12 B .x ≥1 C .x >12 D .x ≥12
7.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )
A .
B .
C .
D .
8.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )
A.B.C.D.
9.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )
A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°
10.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()
A.15.5,15.5B.15.5,15C.15,15.5D.15,15
11.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=35米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()
A.5米B.6米C.8米D.(5)米12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图
所示,则此工件的左视图是 ( )
A .
B .
C .
D .
二、填空题
13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.
14.已知关于x 的方程3x n 22x 1
+=+的解是负数,则n 的取值范围为 . 15.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________
16.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C 落在该反比例函数图象上,则n 的值为___.
17.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.
18.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.
19.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.
20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.
三、解答题
21.已知关于x的方程220
x ax a
++-=.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
22.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0
的解,tan∠BAO=1
2

(1)求点A的坐标;
(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,
S△DOE=16.若反比例函数y=k
x
的图象经过点C,求k的值;
(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天
销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.
(1)求y与x之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
24.直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.
(1)求证:直线FG是⊙O的切线;
(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.
25.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;
(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
分析:A.原式不能合并,错误;
B.原式利用完全平方公式展开得到结果,即可做出判断;
C.原式利用积的乘方运算法则计算得到结果,即可做出判断;
D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.
详解:A.不是同类项,不能合并,故A错误;
B.(a﹣b)2=a2﹣2ab+b2,故B错误;
C.(2x2)3=8x6,故C错误;
D.x8÷x3=x5,故D正确.
故选D.
点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.
2.B
解析:B
【解析】
【分析】
的大小,即可得到结果.
【详解】
Q,
46 6.25
<<
∴<<,
2 2.5
的点距离最近的整数点所表示的数是2,
故选:B.
【点睛】
此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.
3.A
解析:A
【解析】
【分析】
运用矩形的判定定理,即可快速确定答案.
【详解】
解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.
【点睛】
本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线
互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.
4.A
解析:A
【解析】
试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.
故选:A.
点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.
5.A
解析:A
【解析】
【分析】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出
CN,DN,再根据tan24°=AM
EM
,构建方程即可解决问题.
【详解】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.
在Rt△CDN中,∵
14
0.753
CN
DN
==,设CN=4k,DN=3k,
∴CD=10,
∴(3k)2+(4k)2=100,
∴k=2,
∴CN=8,DN=6,
∵四边形BMNC是矩形,
∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,
在Rt△AEM中,tan24°=AM EM

∴0.45=8
66
AB +

∴AB=21.7(米),
故选A.
【点睛】
本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角
形是解答此题的关键.
6.D
解析:D
【解析】
【分析】
由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】
由题意得,2x-1≥0,
解得:x≥1
2

故选D.
【点睛】
本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
7.C
解析:C
【解析】
【分析】
按照题中所述,进行实际操作,答案就会很直观地呈现.
【详解】
解:将图形按三次对折的方式展开,依次为:

故选:C.
【点睛】
本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
8.A
解析:A
【解析】
【分析】
【详解】
从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.
故选A.
9.D
解析:D
【分析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
【详解】
∵直线EF ∥GH ,
∴∠2=∠ABC+∠1=30°+20°=50°,
故选D .
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
10.D
解析:D
【解析】
【分析】
【详解】
根据图中信息可知这些队员年龄的平均数为:
132146158163172181268321
⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁, 该足球队共有队员2+6+8+3+2+1=22人,
则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,
故选D .
11.A
解析:A
【解析】
试题分析:根据CD :AD=1:2,CD=3米,AD=6米,根据AB=10米,∠
D=90°可得:米,则BC=BD -CD=8-3=5米.
考点:直角三角形的勾股定理
12.A
解析:A
【解析】
从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近, 故选A .
二、填空题
13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos ∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC ∴cos ∠OCB=故答案为【点睛】
解析:2
【分析】
根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.
【详解】
∵∠A =45°,
∴∠BOC=90°
∵OB=OC ,
由勾股定理得,OC ,
∴cos ∠OCB =
OC BC ==.
故答案为
2
. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.
14.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且
解析:n <2且3n 2≠-
【解析】 分析:解方程3x n 22x 1
+=+得:x=n ﹣2, ∵关于x 的方程
3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2
≠-. 15.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f (x )=ax2-3x-1如图∵实数根都在-1 解析:94
-
<a<-2 【解析】
【分析】
【详解】 解:∵关于x 的一元二次方程ax 2-3x-1=0的两个不相等的实数根
∴△=(-3)2-4×a×(-1)>0,
解得:a>−9 4
设f(x)=ax2-3x-1,如图,
∵实数根都在-1和0之间,
∴-1<−
3
2a
<0,
∴a<−3
2

且有f(-1)<0,f(0)<0,
即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,
∴−9
4
<a<-2,
故答案为−9
4
<a<-2.
16.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA
解析:【解析】
试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.
∵四边形ABCO是菱形,∴CD=AD,BC∥OA,
∵D (8,4),反比例函数的图象经过点D,
∴k=32,C点的纵坐标是2×4=8,∴,
把y=8代入得:x=4,∴n=4﹣2=2,
∴向左平移2个单位长度,反比例函数能过C点,
故答案为2.
17.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知
x=4时点R 到达Px=9时点R 到Q 点则PN=4QP=5∴矩形MNPQ 的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达
解析:20
【解析】
【分析】
根据图象横坐标的变化,问题可解.
【详解】
由图象可知,x=4时,点R 到达P ,x=9时,点R 到Q 点,则PN=4,QP=5
∴矩形MNPQ 的面积是20.
【点睛】
本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时, 要注意数形结合.
18.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66
【解析】
【分析】
首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.
【详解】
解:∵五边形ABCDE 为正五边形,
∴108EAB ∠=度,
∵AP 是EAB ∠的角平分线,
∴54PAB ∠=度,
∵60ABP ∠=︒,
∴180605466APB ∠=︒-︒-︒=︒.
故答案为:66.
【点睛】
本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.
19.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n 种可 解析:
12
. 【解析】
【分析】 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就
是其发生的概率.
【详解】
Q 共6个数,大于3的数有3个,
P ∴(大于3)3162==; 故答案为12
. 【点睛】 本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n
. 20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形
解析:43
【解析】
【分析】
连接BD ,根据中位线的性质得出EF //BD ,且EF=
12
BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.
【详解】
连接BD ,E F Q 分别是AB 、AD 的中点
∴EF //BD ,且EF=12
BD 4EF =Q
8BD ∴=
又Q 8106BD BC CD ===,,
∴△BDC 是直角三角形,且=90BDC ∠︒
∴tanC=BD DC =86=43
. 故答案为:43
.
三、解答题
21.(1)12,32-;(2)证明见解析. 【解析】
试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211
a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12
,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,
∴不论a 取何实数,该方程都有两个不相等的实数根.
考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
22.(1)(-8,0)(2)k=-
19225 (3)(﹣1,3)或(0,2)或(0,6)或(2,6) 【解析】
【分析】
(1)解方程求出OB 的长,解直角三角形求出OA 即可解决问题;
(2)求出直线DE 、AB 的解析式,构建方程组求出点C 坐标即可;
(3)分四种情形分别求解即可解决问题;
【详解】
解:(1)∵线段OB 的长是方程x 2﹣2x ﹣8=0的解,
∴OB=4,
在Rt △AOB 中,tan ∠BAO=
12OB OA =, ∴OA =8,
∴A (﹣8,0).
(2)∵EC ⊥AB ,
∴∠ACD=∠AOB=∠DOE=90°,
∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,
∵∠ADC=∠ODE ,
∴∠OAB=∠DEO ,
∴△AOB ∽△EOD ,
∴OA OB OE OD
=,
∴OE:OD=OA:OB=2,设OD=m,则OE=2m,
∵1
2
•m•2m=16,
∴m=4或﹣
4(舍弃),
∴D(﹣4,0),E(0,﹣8),
∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),
∴直线AB的解析式为y=1
2
x+4,

28
1
4
2
y x
y x
--



+
⎪⎩


,解得
24
5
8
5
x
y

-
⎪⎪


⎪⎩



∴C(
24
5
-,
8
5
),
∵若反比例函数y=k
x
的图象经过点C,
∴k=﹣192 25

(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,
∴∠OBD=∠ODB=45°,
∴∠PNB=∠ONM=45°,
∴OM=DM=ON=2,
∴BN=2,PB=PN=2,
∴P(﹣1,3).
如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);
如图3中,当四边形MNPQ 是矩形时,设PM 交BD 于R ,易知R (﹣1,3),可得P (0,6)
如图4中,当四边形MNPQ 是矩形时,设PM 交y 轴于R ,易知PR=MR ,可得P (2,6).
综上所述,满足条件的点P 坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);
【点睛】
考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
23.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
【解析】
【分析】
(1)可用待定系数法来确定y与x之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
【详解】
(1)由题意得:
40300
55150
k b
k b
+=


+=

10
700
k
b
=-

⇒⎨
=


故y与x之间的函数关系式为:y=-10x+700,
(2)由题意,得
-10x+700≥240,
解得x≤46,
设利润为w=(x-30)•y=(x-30)(-10x+700),
w=-10x2+1000x-21000=-10(x-50)2+4000,
∵-10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=-10(46-50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
(3)w-150=-10x2+1000x-21000-150=3600,
-10(x-50)2=-250,
x-50=±5,
x1=55,x2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元.
【点睛】
此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.24.(1)证明见解析(2)48
【解析】
【分析】
(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠
OFC=90°,即可得出答案;
(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】
(1)连接FO,
∵ OF=OC,
∴∠OFC=∠OCF.
∵CF平分∠ACE,
∴∠FCG=∠FCE.
∴∠OFC=∠FCG.
∵ CE是⊙O的直径,
∴∠EDG=90°,
又∵FG//ED,
∴∠FGC=180°-∠EDG=90°,
∴∠GFC+∠FCG=90°
∴∠GFC+∠OFC=90°,
即∠GFO=90°,
∴OF⊥GF,
又∵OF是⊙O半径,
∴FG与⊙O相切.
(2)延长FO,与ED交于点H,
由(1)可知∠HFG=∠FGD=∠GDH=90°,
∴四边形FGDH是矩形.
∴FH⊥ED,
∴HE=HD.
又∵四边形FGDH是矩形,FG=HD,
∴HE=FG=4.
∴ED=8.
∵在Rt△OHE中,∠OHE=90°,
∴OH=22
OE HE
-=22
54
-=3.
∴FH=FO+OH=5+3=8.
S四边形FGDH=1
2
(FG+ED)•FH=
1
2
×(4+8)×8=48.
25.(1)见解析;(2)243.
【解析】
【分析】
(1)根据平行四边形的和菱形的判定证明即可;
(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.
【详解】
证明:(1)∵DE ∥BC ,DF ∥AB ,
∴四边形BFDE 是平行四边形,
∵BD 是△ABC 的角平分线,
∴∠EBD=∠DBF ,
∵DE ∥BC ,
∴∠EDB=∠DBF ,
∴∠EBD=∠EDB ,
∴BE=ED ,
∴平行四边形BFDE 是菱形;
(2)连接EF ,交BD 于O ,
∵∠BAC=90°,∠C=30°,
∴∠ABC=60°,
∵BD 平分∠ABC ,
∴∠DBC=30°,
∴BD=DC=12,
∵DF ∥AB , ∴∠FDC=∠A=90°,
∴4333
== 在Rt △DOF 中,()222243623DF OD -=
-= ∴菱形BFDE 的面积=
12×EF •BD =12
×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.。

相关文档
最新文档