2024年人教版数学四年级下册乘法交换律导学案精选3篇

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学四年级下册乘法交换律导学案精选3篇
〖人教版数学四年级下册乘法交换律导学案第【1】篇〗
教材分析
学生在前几年的学习中对乘法交换律已经有了初步的认识,知道了两个因数交换位置积不变的知识,这节课是正式概括出任意两个例子让学生观察,从中发现对任意两个整数相乘有同样的性质,进而总结出“乘法交换律”这个术语。

1和0在乘法中都具有特殊性,要通过让学生进行口算观察,让学生明白、发现特殊的地方
本节课主要是让学生在观察、比较、讨论、概括、应用中学习知识。

学情分析
乘法交换律的教学要敢于放手让学生自主探索,通过计算从几组算式间的联系发现并总结规律,逐步概括出乘法的交换律,最后抽象出用字母表示的定律。

它是由学生经过自己探索得到的,在学生心中就有实感,有了实感就有认识,有了认识就有理解学生理解了才能运用,理解得透彻就能熟练运用。

教学目标
1,使学生理解和掌握乘法交换律,并能运用它进行验算。

2,借助观察、比较、概括等方法培养学生的分析推理能力。

3,培养学生运用新知识解决实际问题的能力。

教学重点和难点
教学重点:使学生理解并运用乘法交换律。

教学难点:乘法交换律的熟练使用。

教学过程
一,猜谜引入
1,猜谜:“兄弟四五个,各有各的家,有谁走错门,让人笑掉牙。


让学生回答谜底(纽扣)
师:你为什么会想到纽扣?
生:(因为扣错纽扣了,衣服穿出去会让人笑话)
师:纽扣交换了位置会闹笑话,我们刚学了什么运算定律也和交换位置有关系?谁愿意把加法交换律说给同学们听?
(要求举例说明,并用字母表示)
2,师:今天我们一起来学习乘法有哪些运算定律,谁愿意猜猜?
学生:可能有乘法交换律和乘法结合律。

师:你们怎么会想到有乘法交换律和乘法结合律的?
学生:(根据加法中的运算定律来猜的)
师:你们能根据加法中的运算定律,大胆来猜想乘法中有什么运算定律,
这份勇气是值得肯定的也是值得表扬的,那么你们认为什么是乘法交换律,什么是乘法结合律呢?
(让学生说一说,能说多少就多少)
二,验证猜想
验证乘法交换律
1,师:同学们说得好像有道理但是你们的猜想到底对不对?乘法是不是具有你们猜想的运算定律呢?怎样确认你们自己的猜想呢?
你们想不想自己来亲自验证一下呢?
好,下面我们就来研究“乘法交换律”,我们分组合作完成这个光荣而又有意义的任务。

(要求:独立思考,想出自己的验证方法,把它写下来)
每人都把自己的想法告诉自己的合作伙伴。

比一比,看谁的验证方法最好,让他作为组代表向全班汇报。

2,学生分组研究,教师巡视指导。

3,汇报
学生可能出现的情况:
(1)我们小组经过讨论认为乘法有交换律,比如:3×5=5×3,6×2=2×6等等,两个因数的位置变了,但它们的积不变.
(2)我们也找了两个数,将它们相乘发现两个因数的位置变了,但它们的结果是相等的.
(3)我们小组也认为乘法有交换律,比如,我们班有四个小组每组有9人,求全班有多少人可以列成算式:4×9=36,也可以用9×4=36来计算.这就是说4×9=9×4,因此乘法和加法一样有交换律.
(4)根据乘法口诀,一句乘法口诀可以算两道乘法算式,如四七
二十八能算4×7=28,7×4=28.
(5)我们想到的是乘法验算时,交换因数的位置再乘一遍积是一样的,所以乘法有交换律.
(6)解决问题时,一个问题可以列两个算式,.
(7)看图列式时,一个图也可以列两个算式..
(教师根据学生发言板出算式)
师:(总结方法)有没有不同意见(如有不同意见的,请认为乘法没有交换律的同学发言)
师:看来乘法确实有交换律,我们的数学家也通过大量的研究证明乘法是有交换律的,你们一样很了不起.
师:经过刚才的研究和验证,你们现在能用自己的语言描述一下“乘法交换律”吗
(两个数相乘,交换两个因数的位置,积不变)
你们能用字母来表示这个运算定律吗板书:a×b=b×a
三,课堂练习
第35页做一做
四,课堂总结
今天的学习你有什么收获?需要注意什么问题?
〖人教版数学四年级下册乘法交换律导学案第【2】篇〗
教学目的:
1、理解乘法交换律和结合律,能运用运算定律使计算简便
2、培养学生的分析、比较、综合能力以及初步的抽象概括能力
3、培养学生的探究意识和问题解决能力
4、通过学生的自主学习,激发学生学习数学的兴趣。

教学重点:理解乘法交换律、结合律及简便运算的方法。

教学难点:抽象的语言表述。

教学设想:本教材是在学生已经掌握了乘法的意义并且对乘法的交换律、结合律有了初步认识的基础上进行教学的。

本节课力求突出以学生发展为本的教育思想;所以整个教学过程要求以学生自主学习为主,通过学生的观察、验证、归纳、类比等数学学习形式,让学生去感受数学问题的探索性和挑战性。

同时体现“主动参与、积极思考、合作发现、体验成功、健康发展”的教学思路。

本节设计中,在新课引入阶段,创设了生活情境,从学生已有的生活经验和知识出发,引导学生观察、思考并发现算式的'联系。

在新课展开阶段,注重学生动手操作,让学生在独立思考、出题验证的基础上进行小组交流、探求规律,使学生感受到数学的发展是一个充满着观察、试验、归纳的探索过程,同时培养了学生与他人合作能力。

在整个知识探索的过程阶段,重视学生的体验,通过各种方法的比较、体会和欣赏,感受到运用运算定律的好处,使学生自然而然地产生运用运算定律进行简算的欲望,培养了学生的优化意识。

在巩固练习阶段,教师没有给出统一的要求,而是让学生选择自己最喜欢的方式进行计算,充分给学生以自主权,诶学生以“创造”的空间,并通过比较,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力。

在练习的设计上,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”的新教学理念。

教学过程:
一、情境引入、发现特征
1、①用鸡蛋盘放鸡蛋,(如图)一盘可以放多少个鸡蛋?
②阳光小区有楼房8幢,每幢12层,每层6户,共有多少户?
(让学生在练习本上独立地用自己喜欢的方式解题)
2、汇报所写的算式,并说出你的想法?
3、研究算式的特征。

①观察 5×6=30(个) 6×5=30(个)
(6×12)×8=576(户) 6×(12×8)=576(户)
问题:这两组算式分别有什么特征?你发现了什么规律?
②交流:每个同学过观察、分析和眼,把自己的想法相互交流、取长补短。

③汇报:让部分同学向全班汇报你研究的结果。

5×6 = 6×5 (6×12)×8 = 6×(12×8)
二、举例验证、得出定律
1、是不是类似这样的算式都有这些特征呢?以四人小组为单位一起来验证。

活动建议:
①每人自己出题验证
②四人小组中交流验证题,并选一题写在黑板上。

2、小组活动
3、大组汇报、得出定律
①观察各小组出题,找一找每组题有什么规律?引导出乘法交换律和结合律
②让学生说一说什么是乘法交换律、结合律。

③如果用a、b、c表示任意的自然数,乘法交换律、结合律怎么表示?
a ×
b =b ×a (a×b )×c=a ×(b×c)
三、运用定律、进行简算
1、出示算式:8×3×125 25×37×4
让学生运用今天所学的知识写出与它们相等的式子
2、比较同学们所写的式子,你最欣赏的是哪一种?为什么?你有什么体会?
3、让学生用今天所学的知识,用自己最喜欢的方式计算下面各题?
396×25×4 125×19×8 8×25×125×4 25×28 125×32
4、校对讲评、对不同方法进行评价
四、巩固练习
1、是不是所有的乘法都能运用运算定律进行简算呢?
出示:能简算的打“√”,并说出简算的第一步。

25×34×4() 8×36×125() 43×25×9 ()
35×64 () 24×125 () 36×25 ()
小结:在什么情况下能够简算。

2、作业:怎样算简便就怎样算。

25×195×4 125×17×8 13×25×4 125×56
72×125 25×125×4×9×8 25×48×5
〖人教版数学四年级下册乘法交换律导学案第【3】篇〗
授课内容:乘法交换律
教学目标:
1、理解乘法交换律的意义。

2、通过观察、猜想、验证、总结得出乘法交换律。

3、会用字母公式表示乘法交换律,并会利用乘法交换律进行简便计算和验算。

4、让学生受到科学方法、科学态度的启蒙教育。

教学重点:掌握、猜想、验证、总结的学习方法。

教学难点:利用知识的正迁移,自主探究乘法交换律内容。

教学过程:
一、复习旧知,谈话导入
1、回忆加法交换律
师:同学们还记得加法交换律吗?
认能用自己的话或者公式,或者举一个例子,说一说加法交换律?
生:a+b=b+a2+3=3+2两个数相加,交换加数的位置,和不变,这叫做加法交换律
2、提出问题:
师:学了加法交换律你有什么想问的?
师:同学们加法具有交换律,减法、乘法、除法、也具有效换律吗?请同学们大胆猜想一下。

生:减法、除法没有。

乘法有。

二、猜想验证,合作探究
1、提出假设
师:①这只是我们的猜想,到底是否成立,我们必须想办法去“验证”。

②用什么办法去验证呢?
生:用算式法验证
师:得出结论后,用自己的话概括规律。

2、探究要求
(1)验证,减法、乘法、除法是否具备交换律、请写出算式。

(2)你发现什么结论,记录下来。

(3)小组推选一名同学进行汇报。

3、小组合作探究
4、汇报、验证规律。

三、合作探究,得出结论
小结:减法和除法不具有交换律,乘法具有交换律。

师:你能举出乘法交换律的例子吗?这么多的例子举也举不完,能用字母公式表示一下吗?用字母表示a×b=b×a。

师:用语言怎样说?它有什么特点?(两个数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。

),这就是我们今天研究的问题“乘法交换律”板书课题。

师:我们是怎样研究这个问题的?
生:<先假设(猜想)再验证,最后得出结论>
师:其实许多数学问题都可以用这种方法来研究。

四、思考引领,应用知识
1、根据乘法交换律,在x里填上合适的数。

54×7=72×x38×160=x×x54×a=x×x
8200×x=x×x409×x=x×xx×x=x×x
2、把相等的两个算式用线连起来。

75×69429+257
a×26591×b
257+42969×75
b×91265×a
3、师:联系实际,巩固达标
师:同学们以前我们在什么地方用到乘法交换律?
生:做乘法验算时,交换因数的位置再乘一遍的方法来验算乘法,就是应用了这个定律。

4、计算下面两道题,并用交换因数的位置再乘一遍的方法进行验算。

140×251=108×123=
(1)指名板演、集体练习
(2)讲评:在这两题的验算中你有什么发现?
生:验算时只用乘法2次,使计算简便。

(3)那你们说学了乘法交换律有什么作用呢?
生:可以简便计算过程:
师:利用发现的规律,说一说。

5、下面哪些题目利用乘法交换律可以简便计算过程?
①444×213④555×632⑦2680×310
②302×512⑤450×208⑧723×456
③700×542⑥1800×635⑨109×606
总结交流:
(1)因数中间有零或者未尾有零交换位置相乘一般情况下可以简便计算过程。

(2)其中一个因数由重复的数字组成的,利用交换律计算也有简便。

5、两个数交换位置相乘,有时会有简便的地方?想一想,三个数相乘利用交换律是否有方便之处呢?
师出示:4×73×25=4×25×73=100×73=7300
生举例:2×73×50=2×50×73=100×73=7300
总结交流:三个相乘,若其中两个数相乘可以凑成整十、整百、整千交换位置相乘有方便之处。

五、全课的总结:这节课我们学习了什么?
你学会了什么?还有什么不懂之处?。

相关文档
最新文档