长葛市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长葛市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 两个随机变量x ,y 的取值表为
若x ,y 具有线性相关关系,且y ^
=bx +2.6,则下列四个结论错误的是( )
A .x 与y 是正相关
B .当y 的估计值为8.3时,x =6
C .随机误差e 的均值为0
D .样本点(3,4.8)的残差为0.65
2. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →
|为( )
A .1 B.4
3
C.53
D .2 3. 复数i ﹣1(i 是虚数单位)的虚部是( )
A .1
B .﹣1
C .i
D .﹣i
4. 若某算法框图如图所示,则输出的结果为( )
A .7
B .15
C .31
D .63
5. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )
A .10 13
B .12.5 12
C .12.5 13
D .10 15
6. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )
A .{}4,2
B .{}1,3
C .{}1,2,3,4
D .以上情况都有可能 7. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2
B .12πcm 2
C .16πcm 2
D .20πcm 2
8. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4 B .﹣4 C .0
D .2
9. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )
A .﹣16
B .14
C .28
D .30
10.若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥α
C .l ⊂α
D .l 与α相交但不垂直
11.已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0) 12.若函数1,0,
()(2),0,
x x f x f x x +≥⎧=⎨
+<⎩则(3)f -的值为( )
A .5
B .1-
C .7-
D .2
二、填空题
13.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .
14.【南通中学2018届高三10月月考】已知函数()3
2f x x x =-,若曲线()f x 在点()()
1,1f 处的切线经
过圆()2
2
:2C x y a +-=的圆心,则实数a 的值为__________.
15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,
则△ABC 的面积是 .
16.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .
17.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 18.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .
三、解答题
19X
(I )求该运动员两次都命中7环的概率; (Ⅱ)求ξ的数学期望E ξ.
20.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条
谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
21.(本小题满分12分)
如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;
(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.
【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.
22.设p :关于x 的不等式a x >1的解集是{x|x <0};q :函数的定义域为R .若p ∨q 是真命题,
p ∧q 是假命题,求实数a 的取值范围.
23.(本小题满分10分)
已知曲线22
:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩
(为参数). (1)写出曲线C 的参数方程,直线的普通方程;
(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.
24.已知曲线2
1()f x e x ax
=+(0x ≠,0a ≠)在1x =处的切线与直线2
(1)20160e x y --+= 平行.
(1)讨论()y f x =的单调性;
(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.
长葛市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】
【解析】选D.由数据表知A 是正确的,其样本中心为(2,4.5),代入y ^=bx +2.6得b =0.95,即y ^
=0.95x +
2.6,当y ^
=8.3时,则有8.3=0.95x +2.6,∴x =6,∴B 正确.根据性质,随机误差e 的均值为0,∴C 正确.样
本点(3,4.8)的残差e ^
=4.8-(0.95×3+2.6)=-0.65,∴D 错误,故选D. 2. 【答案】
【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →
,
∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴⎩
⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53
,
∴CD →
=(2,53)-(2,0)=(0,53
),
∴|CD →
|=02+(53)2=53
,故选C.
3. 【答案】A
【解析】解:由复数虚部的定义知,i ﹣1的虚部是1, 故选A .
【点评】该题考查复数的基本概念,属基础题.
4. 【答案】 D
【解析】解:模拟执行算法框图,可得 A=1,B=1
满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4 满足条件A ≤5,B=31,A=5 满足条件A ≤5,B=63,A=6
不满足条件A ≤5,退出循环,输出B 的值为63. 故选:D .
【点评】本题主要考查了程序框图和算法,正确得到每次循环A ,B 的值是解题的关键,属于基础题.
5. 【答案】C
【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标, ∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5
而中位数是把频率分布直方图分成两个面积相等部分的平行于Y 轴的直线横坐标 第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可 ∴中位数是13 故选:C .
【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距
×
,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.
6. 【答案】A 【解析】
试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为
{}4,2.
考点:复合函数求值. 7. 【答案】B
【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R ,
R=
,S=4πR 2
=12π
故选B
8. 【答案】A
【解析】解:由约束条件
作出可行域如图,
联立,得A (6,2),
化目标函数z=x ﹣y 为y=x ﹣z ,
由图可知,当直线y=x ﹣z 过点A 时,直线在y 轴上的截距最小,z 有最大值为4. 故选:A .
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
9. 【答案】B 【解析】解:∵a n =(﹣1)n
(3n ﹣2),
∴S 11=()+(a 2+a 4+a 6+a 8+a 10)
=﹣(1+7+13+19+25+31)+(4+10+16+22+28)
=﹣16,
S 20=(a 1+a 3+...+a 19)+(a 2+a 4+...+a 20) =﹣(1+7+...+55)+(4+10+ (58)
=﹣+
=30, ∴S 11+S 20=﹣16+30=14.
故选:B .
【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.
10.【答案】B
【解析】解:∵ =(1,0,2),=(﹣2,0,4),
∴=﹣2,
∴∥, 因此l ⊥α. 故选:B .
11.【答案】A
【解析】解:令x ﹣1=0,解得x=1,代入f (x )=4+a x ﹣1
得,f (1)=5,
则函数f (x )过定点(1,5). 故选A .
12.【答案】D111] 【解析】
试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值.
二、填空题
13.【答案】4
π 【
解
析
】
考
点:正弦定理.
【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.
14.【答案】2-
【解析】结合函数的解析式可得:()3
11211f =-⨯=-,
对函数求导可得:()2
'32f x x =-,故切线的斜率为()2
'13121k f ==⨯-=,
则切线方程为:()111y x +=⨯-,即2y x =-,
圆C :()2
2
2x y a +-=的圆心为()0,a ,则:022a =-=-.
15.【答案】 4 .
【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,
∴sin 2B=sinAsinC ,由正弦定理可得:b 2
=ac ,
∵c=2a ,可得:b=a ,
∴cosB==
=,可得:sinB=
=
,
∵
•
=24,可得:accosB=ac=24,解得:ac=32,
∴S
△ABC =acsinB==4
.
故答案为:4.
16.【答案】
.
【解析】解:由于角A 为锐角,
∴
且
不共线,
∴6+3m >0且2m ≠9,解得m >﹣2且m .
∴实数m 的取值范围是.
故答案为:
.
【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.
17.【答案】
【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×9
2×c =200,∴c =4.
答案:4
18.【答案】 (0,
)∪(64,+∞) .
【解析】解:∵f (x )是定义在R 上的偶函数, ∴f (log 8x )>0,等价为:f (|log 8x|)>f (2),
又f (x )在[0,+∞)上为增函数, ∴|log 8x|>2,∴log 8x >2或log 8x <﹣2,
∴x >64或0<x <
.
即不等式的解集为{x|x >64或0<x <}
故答案为:(0,
)∪(64,+∞)
【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.
三、解答题
19.【答案】
【解析】解:(1)设A=“该运动员两次都命中7环”,
则P (A )=0.2×0.2=0.04.
(2)依题意ξ在可能取值为:7、8、9、10
且P (ξ=7)=0.04,
P(ξ=8)=2×0.2×0.3+0.32=0.21,
P(ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,
P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,
∴ξ的分布列为:
ξ7 8 9 10
P 0.04 0.21 0.39 0.36
ξ的期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.
【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.
20.【答案】
【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,
(0.0015+0.019)×20+(x﹣140)×0.025=0.5,
解得:x=143.6.
∴测试成绩中位数为143.6.
进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.
(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,
则ξ~B(3,),
∴E(ξ)=.
∴最后抢答阶段甲队得分的期望为[]×20=30,
∵P(η=0)=,
P(η=1)=,
P(η=2)=,
P(η=3)=,
∴Eη=.
∴最后抢答阶段乙队得分的期望为[]×20=24.
∴120+30>120+24,
∴支持票投给甲队.
【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.
21.【答案】 【
解
析
】
∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,
22.【答案】
【解析】解:∵关于x的不等式a x>1的解集是{x|x<0},∴0<a<1;
故命题p为真时,0<a<1;
∵函数的定义域为R,
∴⇒a≥,
由复合命题真值表知:若p∨q是真命题,p∧q是假命题,则命题p、q一真一假,
当p真q假时,则⇒0<a<;
当q真p假时,则⇒a≥1,
综上实数a的取值范围是(0,)∪[1,+∞).
23.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩
,26y x =-+;(2.
【解析】
试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θ
θ
=⎧⎨
=⎩,(为参数),直线的普通方程为26y x =-+.
(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为4cos 3sin 6|d θθ=
+-.
则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取
得最大值,最大值为5.当sin()1θα+=时,||PA 取得最小值,最小值为5
.
考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.
24.【答案】(1)()f x 在1
(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e 上单调递减;(2)1[,)2
+∞. 【解析】
试题解析:(1)由条件可得2
21
'(1)1f e e a
=-
=-,∴1a =, 由21()f x e x x =+,可得222
22
11'()e x f x e x x -=-=,
由'()0f x >,可得2210,0,
e x x ⎧->⎨≠⎩解得1x e >或1
x e <-;
由'()0f x <,可得2210,0,
e x x ⎧-<⎨≠⎩解得10x e -<<或1
0x e <<.
所以()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1
(0,)e
上单调递减.
(2)令()ln g t t t =,当(0,)s ∈+∞,(1,]t e ∈时,()0f s >,()ln 0g t t t =>, 由()ln kf s t t ≥,可得ln ()
t t
k f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立, 即max ln ()t t k f s ⎡⎤≥⎢
⎥⎣⎦max
()()g t f s ⎡⎤
=⎢⎥⎣⎦,故只需求出()f s 的最小值和()g t 的最大值.
由(1)可知,()f s 在1(0,)e 上单调递减,在1
(,)e +∞上单调递增,
故()f s 的最小值为1
()2f e e
=,
由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立, 所以()g t 在(1,]e 上的最大值为()ln g e e e e ==,
所以只需122
e k e ≥
=, 所以实数的取值范围是1
[,)2
+∞.
考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.
【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).。