苏科版八年级(上)第三次月考数学试卷解析版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版八年级(上)第三次月考数学试卷解析版
一、选择题
1.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )
A .0x >
B .0x <
C .2x <
D .2x >
2.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )
A .2
B .32
C .52
D .1
3.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )
A .(1,2)
B .(0,2)
C .(2,0)
D .(2,1)
4.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )
A .3
B 7
C .4
D 11
5.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是( )
A .A
B D
C = B .BE CE = C .AC DB =
D .A D ∠=∠
6.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )
A .18
B .22.5
C .36
D .45
7.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )
A .62︒
B .56︒
C .34︒
D .124︒
8.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )
A .7
B .8
C .9
D .10
9.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )
A .0条
B .1条
C .2条
D .3条
10.用科学记数法表示0.000031,结果是( )
A .53.110-⨯
B .63.110-⨯
C .60.3110-⨯
D .73110-⨯ 11.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )
A .(﹣5,3)
B .(1,﹣3)
C .(2,2)
D .(5,﹣1) 12.点M (3,-4)关于y 轴的对称点的坐标是( ) A .(3,4)
B .(-3,4)
C .(-3,-4)
D .(-4,3) 13.直线y=ax+b(a <0,b >0)不经过( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 14.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )
A .SSS
B .SAS
C .ASA
D .HL 15.点P(2,-3)所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 二、填空题
16.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则
CD =_______________.
17.17.85精确到十分位是_____.
18.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).
19.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.
20.若1712
a =,则352020a a -+=__________. 21.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.
22.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.
23.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.
24.在实数2,4π,227-,3.14,16中,无理数有______个. 25.一次函数32y x =-+的图象一定不经过第______象限.
三、解答题
26.如图,在ABC ∆中,AD BC ⊥,15AB =,12AD =,13AC =.求BC 的长.
27.建立模型:如图1,已知△ABC ,AC =BC ,∠C =90°,顶点C 在直线l 上.
(1)操作:
过点A 作AD ⊥l 于点D ,过点B 作BE ⊥l 于点E .求证:△CAD ≌△BCE .
(2)模型应用:
①如图2,在直角坐标系中,直线l :33y x =+与y 轴交于点A ,与x 轴交于点B ,将直线l 绕着点A 顺时针旋转45°得到直线m .求直线m 的函数表达式.
②如图3,在直角坐标系中,点B (4,3),作BA ⊥y 轴于点A ,作BC ⊥x 轴于点C ,P 是直线BC 上的一个动点,点Q (a ,5a ﹣2)位于第一象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a 的值,若不能,请说明理由.
28.一次函数()0y kx b k =+≠的图像为直线l .
(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达式;
(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.
29.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .
(1)求证:ABD ACE ∆∆≌;
(2)求证:ADE ∆为等边三角形.
30.某列车平均提速vkm/h ,用相同的时间,列车提速前行驶150km ,提速后比提速前多行驶50km ,提速前列车的平均速度为多少?(用含v 的式子表示)
31.3x y -+(x +y ﹣1)2=0,求y ﹣2x 的平方根.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
由图知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大,由此得出当x >0时,y >2,进而可得解.
【详解】
根据图示知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大; 即当x >0时函数值y 的范围是y >2;
因而当不等式kx+b-2>0时,x 的取值范围是x >0.
故选:A .
本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.
2.D
解析:D
【解析】
【分析】
图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.
【详解】
直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,
又∵AD ⊥OC ,BE ⊥OC ,
∴∠ADO=∠BEO=90°,
∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,
∴∠DAO=∠DOB ,
在△DAO 和△BOE 中,
DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△DAO ≌EOB ,
∴OD=BE.AD=OE ,
∵AD=4,
∴OE=4,
∵BE+BO=8,
∴B0=8-BE ,
在Rt △OBE 中,222BO BE OE =+,
∴222
(8)BE BE OE -=+
解得,BE=3,
∴OD=3,
∴ED=OE-OD=4-3=1.
【点睛】
此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 3.C
解析:C
【解析】
根据点(1,1)A ,点(3,2)C -建立平面直角坐标系,再结合图形即可确定出点B 的坐标.
【详解】
解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2),
∴点B 的坐标是:(2,0).
故选:C .
【点睛】
本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标. 4.C
解析:C
【解析】
【分析】
首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB =DC 12=
CB ,AD ⊥BC ,再利用勾股定理求出AD 的长.
【详解】
∵AB =AC ,AD 是边BC 上的中线,
∴DB =DC 12
=CB =3,AD ⊥BC , 在Rt △ABD 中,
∵AD 2+BD 2=AB 2,
∴AD 2253=-=4.
故选:C .
【点睛】
本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB 是直角三角形.
5.C
解析:C
【解析】
【分析】
全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,根据定理逐个判断即可.
A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;B.∵BE=CE,
∴∠DBC=∠ACB.
∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;
C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出
△ABC≌△DCB,故本选项正确;
D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误.
故选:C.
【点睛】
本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.
6.B
解析:B
【解析】
【分析】
易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.【详解】
根据翻折的性质可知:∠EBD=∠DBC.
又∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BE=DE.设BE=DE=x,∴AE=12﹣x.∵四边形ABCD是矩形,∴∠A=90°,∴AE2+AB2=BE2,即(12﹣x)2+62=x2,x=7.5,
∴S△EDB=1
2
×7.5×6=22.5.
故选B.
【点睛】
本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE的长是解决本题的关键.
7.A
解析:A
【解析】
【分析】
由AB=AC,利用等边对等角得到一对角相等,再由BF=CD,BD=CE,利用SAS得到三角形FBD与三角形DEC全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF与∠A之间的等量关系,进而求解.
【详解】
解:∵AB=AC,∴∠B=∠C,
在△BFD 和△EDC 中,
,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩
=== ∴△BFD ≌△EDC (SAS ),
∴∠BFD=∠EDC ,
∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-
1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-
12
∠A=62°. 故选:A .
【点睛】
此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 8.B
解析:B
【解析】
【分析】
根据正方形的面积公式及勾股定理即可求得结果.
【详解】
因为是以Rt ABC ∆的三边为边,分别向外作正方形,
所以AB 2=AC 2+BC 2
所以123S S S =+
因为12316S S S ++=
所以1S =8
故选:B
【点睛】
考核知识点:勾股定理应用.熟记并理解勾股定理是关键.
9.B
解析:B
【解析】
【分析】
先根据各边的长度画出三角形ABC ,作AD ⊥BC ,根据勾股定理求出AD ,BD ,结合图形可分析出结果.
【详解】
已知如图,所做三角形是钝角三角形,作AD ⊥BC ,
根据勾股定理可得:AC 2-CD 2=AB 2-BD 2
所以设CD=x,则BD=7-x
所以52-x 2=(32)2-(7-x )2
解得x=4
所以CD=4,BD=3,
所以,在直角三角形ADC 中
AD=
2222543AC CD -=-=
所以AD=BD=3
所以三角形ABD 是帅气等腰三角形 假如从点C 或B 作直线,不能作出含有边长为3的等腰三角形
故符合条件的直线只有直线AD
故选:B
【点睛】
本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.
10.A
解析:A
【解析】
【分析】
根据科学记数法的表示形式10(1||10)n
a a ⨯≤<(n 为整数)即可求解
【详解】
0.000031-5=3.110⨯,
故选:A .
【点睛】
本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键. 11.C
解析:C
【解析】
【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.
【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,
∴k>0,
A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣4
5
<0,不符合题意;
B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;
C、把点(2,2)代入y=kx﹣1得到:k=3
2
>0,符合题意;
D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,
故选C.
【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
12.C
解析:C
【解析】
【分析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(−x,y).
【详解】
∵点M(3,−4),
∴关于y轴的对称点的坐标是(−3,−4).
故选:C.
【点睛】
此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.
13.C
解析:C
【解析】
【分析】
先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.
【详解】
∵直线y=ax+b中,a<0,b>0,
∴直线y=ax+b经过一、二、四象限,
∴不经过第三象限.
故选:C.
【点睛】
本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,
b>0时函数的图象经过一、二、四象限.
14.A
解析:A
【解析】
【分析】
根据全等三角形的判定方法即可解决问题.
【详解】
由题意:OM=ON,CM=CN,OC=OC,
∴△COM≌△CON(SSS),
∴∠COM=∠CON,
故选:A.
【点睛】
此题主要考查三角形全等判定的应用,熟练掌握,即可解题.
15.D
解析:D
【解析】
析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,
∴点P(2,-3)所在象限为第四象限.
故选D.
二、填空题
16.【解析】
【分析】
根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】
∵D是AB的中点,
∴CDAB=2.
故答案为:2.
【点睛】
本题主要是运用了直角三角形的性质:直角三角形斜
解析:2
【解析】
【分析】
根据直角三角形斜边上的中线等于斜边的一半即可求出CD.
【详解】
∵D是AB的中点,
∴CD
1
2
AB=2.
故答案为:2.
【点睛】
本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.17.9.
【解析】
【分析】
把百分位上的数字5进行四舍五入即可.
【详解】
17.85精确到十分位是17.9
故答案为:17.9.
【点睛】
本题考查了近似数和有效数字:“精确到第几位”和“有几个有效
解析:9.
【解析】
【分析】
把百分位上的数字5进行四舍五入即可.
【详解】
17.85精确到十分位是17.9
故答案为:17.9.
【点睛】
本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.
18.①②④
【解析】
【分析】
根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.
【详解】
解:∵∠A=∠B﹣∠C,
∴∠A+∠C=∠B,
∵∠A+∠C+∠B=180°,
∴∠B=90°,
∴△A
解析:①②④
【解析】
根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.
【详解】
解:∵∠A=∠B﹣∠C,
∴∠A+∠C=∠B,
∵∠A+∠C+∠B=180°,
∴∠B=90°,
∴△ABC是直角三角形,故①符合题意;
∵a2=(b+c)(b﹣c)
∴a2+c2=b2,
∴△ABC是直角三角形,故②符合题意;
∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,
∴∠A=45°,∠B=60°,∠C=75°,
∴△ABC不是直角三角形,故③不符合题意;
∵a:b:c=5:12:13,
∴a2+b2=c2,
∴△ABC是直角三角形,故④符合题意;
故答案为:①②④.
【点睛】
此题主要考查直角三角形的判定,解题的关键是熟知勾股定理逆定理与三角形的内角和定理的运用.
19.y=-2x-4
【解析】
【分析】
两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.
【详解】
解:∵函数y=kx-4的图象平行于直线y=-2x,
∴k=-2,函数的表达式为y=-2
解析:y=-2x-4
【解析】
【分析】
两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.
【详解】
解:∵函数y=kx-4的图象平行于直线y=-2x,
∴k=-2,函数的表达式为y=-2x-4.
故答案为:y=-2x-4.
【点睛】
本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.
【解析】
【分析】
,代入a 值,根据乘法法则进行计算即可.
【详解】
=
=
=4+2020
=2024
故答案为:2024
【点睛】
考核知识点:二次根式运算.掌握运算法则,运用乘法公
解析:2024
【解析】
【分析】
352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.
【详解】
352020a a -+=()225202052020a a ⎡⎤⎢⎥-+=-+⎢⎥⎝⎭⎣⎦
=52020⎤+⎥⎣⎦
=
2020 =4+2020
=2024
故答案为:2024
【点睛】 考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.
21.【解析】
【分析】
根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,
解析:【解析】
【分析】
根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.
【详解】
解:如图,
∵四边形OABC 是矩形,
∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,
∵CD=3DB ,
∴CD=6,BD=2,
∴CD=AB ,
∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,
∴A′D=AD ,A′E=AE ,
在Rt △A′CD 与Rt △DBA 中,
CD AB A D AD
'=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),
∴A′C=BD=2,
∴A′O=4,
∵A′O 2+OE 2=A′E 2,
∴42+OE 2=(8-OE )2,
∴OE=3,
故答案是:3.
【点睛】
本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.
22.130°或90°.
【解析】
分析:根据题意可以求得∠B 和∠C 的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.
详解:∵在△ABC 中,AB=AC ,∠BAC=100°,
∴∠B=∠C=40°
解析:130°或90°.
【解析】
分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.
详解:∵在△ABC中,AB=AC,∠BAC=100°,
∴∠B=∠C=40°,
∵点D在BC边上,△ABD为直角三角形,
∴当∠BAD=90°时,则∠ADB=50°,
∴∠ADC=130°,
当∠ADB=90°时,则
∠ADC=90°,
故答案为130°或90°.
点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.
23.40°
【解析】
【分析】
根据等腰三角形的性质和三角形的内角和定理计算即可.
【详解】
解:∵等腰三角形的顶角为
∴这个等腰三角形的底角为(180°-100°)=40°
故答案为:40°.
【点睛
解析:40°
【解析】
【分析】
根据等腰三角形的性质和三角形的内角和定理计算即可.
【详解】
解:∵等腰三角形的顶角为100
∴这个等腰三角形的底角为1
2
(180°-100°)=40°
故答案为:40°.
【点睛】
此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.
24.2
【解析】
【分析】
初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.
【详解】
解:根据无理数的定义,属于无理数,所以无理数有2个.
解析:2
【解析】
【分析】
初中阶段无理数包括三方面的数:①类似于π,2π这样的数,②开方开不尽的数,③无限不循环小数,据此作出判断即可.
【详解】
,4 属于无理数,所以无理数有2个. 故答案为:2.
【点睛】
本题考查无理数的定义.熟记无理数的定义并理解初中阶段无理数的几种表现形式是解决此题的关键. 25.三
【解析】
【分析】
根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;
【详解】
解:在一次函数y=-3x+2中,
∵b=2>0,
∴函数图象经过y 轴的正半轴,
解析:三
【解析】
【分析】
根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;
【详解】
解:在一次函数y=-3x+2中,
∵b=2>0,
∴函数图象经过y 轴的正半轴,
k=-3<0,
∴y 随x 的增大而减小,
∴函数的图象经过第一、二、四象限,
∴不经过第三象限.
故答案为:三.
【点睛】
本题考查了一次函数的性质. 解题时可根据解析式中的k 、b 的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.
三、解答题
26.BC=14.
【解析】
【分析】
根据垂直的性质和勾股定理,先求出线段BD 的长度,再求出线段CD 的长度,最后求和即可.
【详解】
解:AD BC ⊥,
90ADB ADC ∴∠=∠=︒
∴在Rt ABD ∆中,
9BD ===∴
在Rt ACD ∆中,
5CD ∴==
9514BC BD CD =+=+=∴
【点睛】
本题考查了垂直的性质,勾股定理,解决本题的关键是正确理解垂直的性质,熟练掌握勾股定理中三边之间的关系.
27.(1)详见解析;(2)132y x =+;(3)32a =或14
a =
. 【解析】
【分析】
(1)根据AAS 即可证明△DAC ≌△ECB ;
(2)过点B 作BC ⊥BA ,交直线l 2于点C ,过点C 作CD ⊥x 轴于点D .根据33y x =+得到AO =3,OB =1,根据△DCB ≌△OBA 可得点C 的坐标为(-4,1),再根据待定系数法即可求解;
(3)根据题意分两种情况分别作图即可求解.
【详解】
(1)∵∠ACB =90°,
∴∠ACD +∠BCE =90°
∵AD ⊥l ,BE ⊥l ,
∴∠ADC =∠CEB =90°,
∴∠ACD +∠DAC =90° ,
∴∠DAC =∠ECB
∵在△DAC 和△ECB 中,∠ADC =∠CEB ,∠DAC =∠ECB ,AC =CB
∴△DAC ≌△ECB (AAS )
(2)过点B 作BC ⊥BA ,交直线l 2于点C ,过点C 作CD ⊥x 轴于点D .
由直线l :33y x =+与y 轴交于点A ,与x 轴交于点B ,
可求点A 坐标为(0,3),点B 坐标为(-1,0),
∴AO =3,OB =1.
由△DCB ≌△OBA 可得,DC =OB =1,DB =OA =3,
∴点C 的坐标为(-4,1)
设直线m 的解析式为:y =kx +b ,把(0,3),(-4,1)代入,
求得132y x =+ .
(3)如图3,由△AEQ ≌△QFP 可得AE =QF ,3-(5a -2)=4-a ,
求得14
a = . 如备用图,由△AEQ ≌△QFP 可得AE =QF ,(5a -2)-3=4-a , 求得3
2a = .
【点睛】
本题考查一次函数综合题,主要考查了点的坐标、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,需要考虑的多种情况,解题时注意分类思想的运用.
28.(1)y=2x-2;(2)b=2或-2.
【解析】
【分析】
(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;
(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.
【详解】
解:(1)∵直线l 与直线2y x =平行,
∴k=2,
∴直线l 即为y=2x+b .
∵直线l 过点(0,−2),
∴-2=2×0+b ,
∴b=-2.
∴直线l 的解析式为y=2x-2.
(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),
∴直线l 与两坐标轴围成的三角形面积=132
b ⨯⋅. ∴
132
b ⨯⋅=3, 解得b=2或-2.
【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标.
29.(1)见解析(2)见解析
【解析】
【分析】
(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;
(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.
【详解】
(1)ABC ∆为等边三角形,
,60AB AC BAC ︒∴=∠=
//AD EC
DAC ACE ∴∠=∠
又
ABD DAC ∠=∠
ABD ACE ∴∠=∠ 在BAD ∆与CAE ∆中,
AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩
()ADB AEC SAS ∴∆∆≌
(2)()ADB AEC SAS ∆∆≌
,AD AE BAD CAE ∴=∠=∠
CAE DAC BAD DAC ∴∠+∠=∠+∠
60DAE BAC ︒∴∠=∠=
ADE ∴∆为等边三角形.
【点睛】
此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.
30.3vkm/h
【解析】
【分析】
设提速前列车的平均速度为x /km h ,则依题意可得等量关系:提速前行驶150千米所用的时间=提速后行驶(15050)+千米所用的时间,根据等量关系列出方程即可.
【详解】
解:设提速前列车的平均速度为x /km h ,则依题意列方程得
15015050x x v +=+, 解得:3x v =,
经检验,3x v =是原分式方程的解,
答:提速前列车的平均速度为3/vkm h .
【点睛】
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
31.±2.
【解析】
【分析】
直接利用非负数的性质得出关于x ,y 的方程组进而得出答案.
【详解】
(x +y ﹣1)2=0,
∴3010x y x y
-+=⎧⎨+=⎩﹣, 解得:12x y =-⎧⎨
=⎩, 故2224y
x =+=﹣, 则y ﹣2x 的平方根为:±2.
【点睛】
此题主要考查了算术平方根以及偶次方的性质,正确得出x ,y 的值是解题关键.。