2019-2020年初二数学期末试卷有答案

合集下载

2019—2020学年度第二学期期末考试八年级数学试题及答案

2019—2020学年度第二学期期末考试八年级数学试题及答案

2019—2020学年度第二学期期末考试八年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B.C.D.2.下列调查中,最适宜采用普查方式的是A.对科学通信卫星上某种零部件的调查B.对我国初中学生视力状况的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查3.与5是同类二次根式的是A.3B.10C.25D.154.下列分式中,最简分式是A.24aB.21aa+C.22a ba b-+D.2a aba b++5.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),下列事件中是必然事件的为A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数均为偶数C.两枚骰子朝上一面的点数和不小于2 D.两枚骰子朝上一面的点数均为奇数6.已知反比例函数y=3x,下列结论中,不正确...的是A.图像必经过点(1,3)B.y随x的增大而减小C.图像在第一、三象限内D.若x>1,则0<y<37.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③八年级数学试题第1页共6页八年级数学试题 第2页 共6页8.如图,在矩形ABCD 中,AB =3,BC =4,若点P 是AD 边上的一个动点,则点P 到矩形 的对角线AC 、BD 的距离之和为A .2.4B .2.5C .3D .3.6二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上).9. 使二次根式1x -有意义的x 的取值范围是 ▲ . 10.当x = ▲ 时,分式12x x +-的值为0. 11.若点A (1,m )在反比例函数2y x=的图像上,则m 的值为 ▲ . 12.比较大小:32 ▲ 23.(填“>”、“<”或“=”)13.一个不透明的盒子里装有黑、白两种球共40个(除颜色外其它均相同),小明将盒子里 的球搅匀后,从中随机摸出一个记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65124 178 302 481 599 1803 摸到白球的频率mn0.650.620.5930.6040.6010.5990.601请估计摸到白球的概率为 ▲ (精确到0.01).14.平行四边形ABCD 的对角线AC 、BD 相交于点O ,当AC 、BD 满足 ▲ 时,平行四边形ABCD 为菱形.15.实数a 、b 在数轴上对应点的位置如右图所示,化简2()a b a --的结果是 ▲ .16.如图,过点P (5,3)作PM ⊥x 轴于点M 、PN ⊥y 轴于点N ,反比例函数ky x=(0)x >的图像交PM 于点A 、交PN 于点B .若四边形OAPB 的面积为10,则k = ▲ .ABP MNOxy 第16题图ABCDP第8题图ba第15题图第7题图① ②③④八年级数学试题 第3页 共6页三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)计算:(1)282- (2)(32)(32)+-18.(本题满分6分)解方程:11322xx x-=--- 19.(本题满分6分) 先化简再求值:31(1)12x x x x -+-⋅--,其中x =3.20.(本题满分6分)关注“安全”是一个永恒不变的话题.某中学对部分学生就安全知识的了解程度,采取了随机抽样调查的方式,将收集到的信息分为4种类别:A.非常了解;B.基本了解;C.了解很少;D.不了解.请你根据统计图中所提供的信息解答下列问题.(1)接受问卷调查的学生共有 ▲ 人,扇形统计图中“了解很少”部分所对应扇形的圆心角为 ▲ °;(2)请补全条形统计图;(3)若该学校共有学生3000人,估计该学校学生中对安全知识达到 “非常了解”和“基 本了解”程度的总人数.ACB D50%扇形统计图10 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第4页 共6页21.(本题满分6分)如图,在□ABCD 中,∠BAD 的角平分线分别交BC 以及DC 的延长线于点E 、 F . (1)求证:BC =DF ;(2)若∠F =65°,求∠D 的度数.22.(本题满分6分)已知m 是3的整数部分,n 是3的小数部分. (1)m = ▲ ,n = ▲ ; (2)求代数式22m n - 的值.23.(本题满分8分)彭师傅检修一条长为900米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长是原计划的1.2倍,结果提前3小时完成任务.彭师傅原计划每小时检修管道多少米?24.(本题满分8分)如图,点A (m ,4),B (n ,1)在反比例函数(0)ky x x =>的图像上,过点A 、B 分别作x轴的垂线,垂足为点C 和点D ,且CD =3. (1)求m 、n 的值,并写出反比例函数的表达式;(2)若直线AB 的函数表达式为(0)y ax b a =+≠,请结合图像直接写出不等式k ax b x+< 的解集.A B C D E F ABCDO xy八年级数学试题 第5页 共6页25.(本题满分10分)问题呈现:我们知道反比例函数(0)k y k x =≠的图像是双曲线,那么函数k y n x m =++(k 、m 、n 为常数且k ≠0)的图像还是双曲线吗?它与反比例函数(0)ky k x=≠的图像有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数41y x =+的图像. (1)填写下表,并画出函数41y x =+的图像. ①列表:x … -5-3-20 1 3 … y……②描点并连线.(2)观察图像,写出该函数图像的两条不同类型的特征: ① ▲ ; ② ▲ . 理解运用:函数41y x =+的图像是由函数4y x=的图像向 ▲ 平移 ▲ 个单位,其对称中心的坐标为 ▲ .灵活应用:根据上述画函数图像的经验,想一想函数421y x =++的图像大致位置,并根据图像指出,当x 满足 ▲ 时,y ≥3.–1 –2 –3 –4 –5 –6 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 xy O八年级数学试题 第6页 共6页26.(本题满分10分) 在数学兴趣小组活动中,小悦进行数学探究活动.将边长为1的正方形ABCD 与边长为2的正方形AEFG 按图①位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.连接DG 、BE ,易得DG =BE 且DG BE ⊥(不需要说明理由).(1)如图②,小悦将正方形ABCD 绕点A 逆时针旋转,旋转角为α(30 º <α<180 º). (Ⅰ)连接DG 、BE ,求证:DG =BE 且DG BE ⊥.(Ⅱ)在旋转过程中,如图③连接BG 、GE 、ED 、DB ,求出四边形BGED 面积的最 大值.(2)如图④,分别取BG 、GE 、ED 、DB 的中点M 、N 、P 、Q ,连接MN 、NP 、PQ 、 QM ,则四边形MNPQ 的形状为 ▲ ,四边形MNPQ 面积的最大值是 ▲ .A B C D EF G 图① AB C DG E F图③ A B C D EF G MQ P N图④A BCD GEF 图②八年级数学试题 第7页 共6页八年级数学答题纸题号 1-8 9-16 17 18 19 20 21 22 23 24 25 26 总分得分一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案二、填空题(本大题共8小题,每小题3分,共24分)9. 10. 11. 12. 13. 14. 15. 16. 三、解答题(本大题共有10小题,共72分) 17.(本题满分6分) (1) (2)18.(本题满分6分)19.(本题满分6分)20.(本题满分6分)(1)________;________.10 20 30 40ABCD5 类别人数条形统计图1530(3)21.(本题满分6分)(1)(2)22.(本题满分6分)(1)________;________.(2)23.(本题满分8分)AB CDEF八年级数学试题第8页共6页八年级数学试题 第9页 共6页24.(本题满分8分) (1)(2)25.(本题满分10分)探索思考:(1) ①x … -5-3-20 1 3 … y……② (2)①:________________________________________________________________; ②:________________________________________________________________.ABC DO xy–1 –2 –3 –4 –5 –6 12 3 45 6 –1–2 –3 –4 –5 –612 3 4 5 6 x y O理解运用:________________;________________;________________.灵活应用:__________________________________.26.(本题满分10分)(1)(Ⅰ)(Ⅱ)(2)________________;________________.ABCDGEF图②ABCDGEF图③八年级数学试题第10页共6页八年级数学试题 第11页 共6页八年级数学试题参考答案及评分细则一、选择题(每小题3分,共24分.) 1.D 2.A 3.C 4.B 5.C 6.B 7.D 8.A 二、填空题(每小题3分,共24分.)9.x ≥1 10.1- 11.2 12.>13.0.6014.AC ⊥BD15.b16.5三、解答题(本大题共有10小题,共72分) 17.解:(1)原式=222-=2. ················································································ 3分 (2)原式=92-=7. ··················································································· 3分 18.解:两边同乘以(2)x -1(1)3(2)x x =----2x = ································································································· 4分 检验:当2x =时,(2)x -=0 ································································· 5分 ∴2x =是原分式方程的增根,原分式方程无解. ······································· 6分 19.解:原式24112x x x x --=⋅-- 2x =+ ························································································ 4分 把3x =代入(2)x + 原式32=+5=. ·························································································· 6分 20.解:(1)60;90; ··············································································· 2分 (2)如图所示,就是我们所要补全的条件统计图; ······················· 4分 (3)30103000200060+⨯=(人) 答:该学校学生中对安全知识达到 “非常了解”和“基本了解”程度的 总人数为2000人. ········································································ 6分21.解:(1)∵四边形ABCD 为平行四边形1010 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第12页 共6页∴BA ∥CD ,AD =BC ···································································································· 1分 ∴∠BAF =∠F ∵AE 平分∠BAD ∴∠BAF =∠DAF∴∠DAF =∠F ··············································································································· 2分 ∴AD =DF∴BC =DF ······················································································································ 3分 (2)∵AD =DF∴∠F =∠DAF =65° ············································································ 5分 ∴∠D =50°. ····················································································· 6分 22.解:(1)1;31- ························································································ 2分 (2)原式()()m n m n =+⋅- ········································································ 3分 3(131)=⋅-+233=-. ··························································· 6分23.解:设彭师傅原计划每小时检修管道x 米,根据题意可得:90090031.2x x =+ ····················································································· 3分 解得:50x = ······················································································ 4分 经检验:50x =是原分式方程的解. ························································ 5分 答:彭师傅原计划每小时检修管道50米. ················································ 6分 24.解:(1)根据题意得:43m nn m =⎧⎨-=⎩·······································2分 解得:14m n =⎧⎨=⎩·································· 4分把(14),代入ky x= ∴4k =∴反比例函数的表达式为4y x=. ·························································· 6分 (2)01x <<或4x >. ········································································ 8分ABCO xy八年级数学试题 第13页 共6页25.解: (1)探索思考: ①列表:···························································································· 1分x … -5 -3 -2 0 1 3 … y…-1-2-4421…② ······································································································ 3分(2)①图像是中心对称图形; ········································································· 4分 ②当1x >-时,y 随着x 的增大减小. ························································ 5分 ③图像是轴对称图形 ④图像经过点(0,4) ⑤与x 轴没有交点…… (注:仅写两条即可) 理解运用:左;1;(1,0)-. ···················································································· 8分 灵活应用:13x -<≤. ························································································· 10分 26.解:(1) (Ⅰ)证明:∵正方形ABCD 和正方形AEFG∴AD =AB ,AE =AG ,∠BAD =∠GAE =90° ··············································· 1分 ∴∠DAG =∠BAE–1 –2 –3 –4 –5 –6 1 2 34 56 –1–2 –3 –4 –5 –612 3 4 5 6 xyO八年级数学试题 第14页 共6页在△DAG 和△BAE 中, DA BA DAG BAE GA EA =⎧⎪=⎨⎪=⎩∠∠ ∴△DAG ≌△BAE ·················································································· 2分 ∴DG =BE ···························································································· 3分 ∴∠DGA =∠BEA∵∠DGA +∠GHE =∠BEA +∠GAE ∴∠GHE =∠GAE =90°∴DG ⊥BE ···························································································· 4分 (Ⅱ)连接BE 、DG 相交点H ∵BE ⊥DG∴S 四边形BGED =S △BGE +S △BDE=1122GH BE DH BE ⋅+⋅ =12DG BE ⋅ =212BE ······························································································ 6分 当α=90°时BE 最大值=BA +AE =21+∴S 四边形BGED 的最大值为21(21)2+即为3222+. ········································· 8分(2)正方形;3224+. ······································································· 10分ABCDGEF图②ABCDG EF图③ HH。

2019~2020学年度第二学期期末考试八年级数学答案

2019~2020学年度第二学期期末考试八年级数学答案

2019~2020学年度第二学期期末考试八年级数学参考答案一.选择题(共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDDCADCDCB二.填空题(共6小题,每小题3分,共18分)11. 3 12.86 13. 45°14.y =5x ,y =4x +2; 15.-3≤k ≤2 且k ≠0; 16. 102-. 第14题第1个空2分,第2个空1分第15题 左、右端点值各1分;没写k ≠0扣1分;没带等号扣1分第15题 代数法: 解析:∵y 1<y 2 ∴kx -2<2x +3 ∴(k -2)x <5 经分析得:k -2≤0 且2-5k ≥-1 解得:-3≤k <0或 0<k ≤2 几何法:-3≤k <0或 0<k ≤2第16题三.解答题(共8小题,共72分)17.解:(1)∵直线y =kx +b 与直线y =x 平行,∴k =1,……………2分把(1,-1)代入y =x +b 得:b +1=-1,∴b =-2, ………………………………3分 (2)把(1,-1),(-1,3)代入y =kx +b 得:13k b k b +=-⎧⎨-+=⎩, 解得:21k b =-⎧⎨=⎩, ……………………………6分 把(m ,7)代入y =-2x +1得:-2m +1=7, ∴m =-3,……………………………8分18.证明:(1)∵E 是CD 的中点,∴DE =CE , …………………1分∵CF //OD ,∴∠ODE =∠FCE , ………………………………………3分在△EDO 和△ECF 中,,,,ODE FCE DE O E CE DE B F ⎧⎪⎨⎪∠=∠∠∠=⎩= ∴△EDO ≌△ECF ,…………………4分 (2)∵△EDO ≌△ECF ∴OD=CF , ……………………………………5分 ∵CF //OD ,∴四边形OCFD 是平行四边形形, ……………………………………6分 ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°, ……………………………7分 ∴四边形OCFD 是矩形. ……………………………………8分19. (1)a =20,b =28, ………………………………2分 (2)72°, ………………………………3分 (3)814181088714618510+++×+×+×+×=6.4, ………………………………5分答:所有被调查学生课外阅读的平均本数为6.4本.………………………………6分 (4)12008141810814×++++=528, ……………………………7分答:估计该校八年级学生课外阅读7本及以上的人数约有528人.………………8分 20.解:(1)画图如图:………3分 (2)画图如图:………6分 (3)画图如图:………8分21.解:(1)把D (3,m )代入y =x -2得:m =3-2=1, ………1分 ∴点D 的坐标为(3,1)把D (3,1)代入y =kx +7得:3k +7=1,∴k = -2, …………………………3分 (2)由(1)得:直线AB 的解析式为y = -2x +7,当y =n 时,x -2=n ,x = n +2 ∴点M 的坐标为(n +2,n )当x =n 时,y = -2n +7 ∴点N 的坐标为(n ,-2n +7) …………………………5分 ∵点P (n ,n ), ∴PM = 2,PN =7-3n , ∵PN =2PM , ∴47-3=n , ∴n = 1或311, …………………………8分22.(A B 总计(t)C x-60300-x240D 260-x x260总计(t)200 300 500(2)①y1 = -5x+5300;y2 = 20x+4500;………………………………5分②由题意得:60030002600xxxx⎧≥≥≥⎪≥⎪⎪⎨⎪⎩---,解得60≤x≤260,………………………………6分∴y1-y2= -25x+800<0,∴y1<y2,∴A城总运费比B城总运费少………………………………7分(3)设两城总运费为W元,则W= -5x+5300+15(300﹣x)+(35﹣a)x=(15﹣a)x+9800;若0<a<15时15﹣a>0,W随x的增大而增大,∴当x=60时y取最小值,∴60(15﹣a)+9800≥10160,解得a≤9,∴0<a≤9 ………………8分若a=15时W=9800,不符合题意;若a>15时15﹣a<0,W随x的增大而减少,∴当x=260时y取最小值,∴260(15﹣a)+9800≥10160,解得a≤13813,不符合题意;………………9分综合可得:0<a≤9.……………………………………………10分23.(1)①证明:连接AG,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,AD=BC,∵∠BAD=90°,BG=GF,∴AG=BG,……………………………………1分∴∠BAG=∠ABG,∴∠GAD=∠GBC,………………………2分在△GAD和△GBC中,AD BCDAG CBGAG BG=⎧⎪∠=∠⎨⎪=⎩∴△GAD≌△GBC,∴DG=CG;…………………………………………………………………………3分②解:连接FC 交DG 于点Q ,取FC 的中点H ,连接DH , ∵CE 垂直平分BF , ∴FC =BC ,∵四边形ABCD 是矩形, ∴AD =BC ,AB =DC , ∵BC =2AB , ∴FC =2CD ,∵∠FDC =90°,FH =HC , ∴FH =HC =DH ,∴CD =HC =DH , ∴△CDH 是等边三角形,∴∠FCD =60°,∴∠DFC =90°-∠FCD =30°, ………………5分 ∵FC =BC ,BG =GF , ∴∠FCG =∠BCG ,∵△GAD ≌△GBC ,∴∠ADG =∠BCG , ∴∠ADG =∠FCG ,∴∠FQG -∠ADG =∠FQG -∠FCG , ∴∠DGC =∠DFC =30°; ………………7分 (2)34; …………………………………………………………………………10分 24.解:(1)∵y =k (x -3)+4 ……………………………………2分∴当x =3时,y =4 ∴点P 的坐标为(3,4). ……………………………………3分 (2)延长AB 交x 轴于点E ,直线y =kx -3k +4交y 轴于点G ,∵当x =0时,y =4-3k , ∴G (0,4-3k ), ∴OG =4-3k .……………………4分 ∵BP 平分∠OBA , ∴∠ABP=∠OBP ,∵AB //y 轴, ∴∠ABP=∠OGB , ……………5分 ∴∠OBG=∠OGB , ∴OB =OG =4-3k . ……………6分 在Rt △OBE 中,222OB BE OE =+, ∴222)3-4()34(6k k =++,∴43-=k . …………………………………………7分(3)作PS ⊥x 轴于点S ,NT ⊥x 轴于点T , 在Rt △OPS 中,522=+=PS OS OP ,设M (m ,0) 当m =3时,PM =NM =4, ∴N (7,0) 当0<m <3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =3-m , ∴N (4+m ,m -3) 当m >3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =m -3, ∴N (4+m ,m -3) ∴点N 在直线y =x -7上 ………………………9分若直线y =x -7与y 轴交于点Q (0,7),则∠OQN =45°,作点O 关于直线y =x -7的对称点O '(7,-7),当点P 、N 、O '三点共线时,ON+PN 最小为PO ',此时,△OPN 的周长最小为OP+PO ',在Rt △O 'PR 中,137''22=+=PR RO PO ,………………10分 设直线PO '的解析式为y =kx +b , 把(3,4),(7,-7)代入得:3477k b k b +=⎧⎨+=-⎩, 解得:11-4494k b ⎧=⎪⎪⎨⎪=⎪⎩………11分 ∴直线PO '的解析式为449411-+=x y , 71149-44y x y x =-⎧⎪⎨=+⎪⎩, 解得:771528-15x y ⎧=⎪⎪⎨⎪=⎪⎩∴点N 的坐标为(1577,1528-).………12分。

2019~2020学年度第二学期期末测试题八年级数学试题含答案

2019~2020学年度第二学期期末测试题八年级数学试题含答案

2019~2020学年度名校第二学期期末测试题八年级数学第I 卷(选择题 共36分)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1). 2.下列方程是关于x 的一元二次方程的是( ); A 、02=++c bx ax B 、2112=+x xC 、1222-=+x x xD 、)1(2)1(32+=+x x 3.分式222b ab a a+-,22b a b -,2222b ab a b ++的最简公分母是( )A 、(a ²-2ab+b ²)(a ²-b ²)(a ²+2ab+b ²)B 、(a+b )2(a -b )2²C 、(a+b )²(a-b )²(a ²-b ²)D 、44b a - 4.把方程x 2-4x+1=0配方后所得到的方程是( ).A. (x -2)2+1=0B. (x -4)2+5=0C. (x -2)2-3=0D. (x -2)2+5= 0 5.下列命题中正确的是( ). A. 对角线相等的四边形是矩形 B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线平分每一组对角的四边形是正方形6.如图,矩形ABCD ,对角线AC 、BD 交于点O ,AE ⊥BD 于点E ,∠AOB =45°,则∠BAE 的大小为( ).A. 15°B. 22.5°C. 30°D. 45°7.若一个正多边形的每个内角等于120°,则这个多边形的边数是( ) A .8 B .7 C .6 D .5 8.若关于x 的一元二次方程ax 2-4x +1=0有实数根,则a 满足( ) A .a ≠0 B .4a ≤ C .40a a ≤≠且 D .40a a <≠且9.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90后,B 点的坐标为( ) A .(22)-, B .(41), C .(31), D .(40), 10.如下图左:∠A+∠B+∠C+∠D+∠E+∠F 等于( ) A 、180º B 、360º C 、540º D 、720º 11.如图,已知□ABCD 中,点M 是BC 的中点,且AM =6,BD =12,AD =45,则该平行四边形的面积为( ).A .245B .36C . 48D .72 12.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( ) A .4个 B .3个 C .2个 D .1个ABC DEO第6题FEDCBAABCDM第11题(第12题图)BO二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.) 13.分解因式:a 3b+2a 2b 2+a b 3= 。

2019-2020年八年级期末考试试题(数学卷)有答案

2019-2020年八年级期末考试试题(数学卷)有答案

A B C D A DB EC F2019-2020年八年级期末考试试题(数学卷)有答案可以看做由△ACD 绕D 点逆时针旋转得到的,旋转的角度是 。

9.如图所示,△DEF 是由△ABC 经过平移得到的,︒=∠30A , ︒=∠45B ,则=∠F 。

10.梯形ABCD 中,AD ∥BC ,AD =3,AB =4,BC =5,则腰 CD 的取值范围是 。

二、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应1.下列各题计算正确的是A 、632632x x x =⋅B 、923)(a a =C 、9336)2(a a -=-D 、n n b 226)(=-2.下列各式中,运算结果等于42-x 的是A 、)2)(2(-+x xB 、)2)(2(----x xC 、)2)(2(x x -+D 、)2)(2(+--x x3.如图,将图中的正方形图案绕中心旋转180°后,得到的图案是4.下列图形中,不是中心对称图形的是A 、矩形B 、等腰三角形C 、平行四边形D 、线段5.等腰三角形的腰长为10,底边长为12,则这个等腰三角形的面积为A 、60B 、50C 、48D 、306.下列说法中不正确的是A 、全等三角形的周长相等B 、全等三角形的面积相等C 、全等三角形能重合D 、全等三角形一定是等边三角形 7.用两块对称的含︒30角的三角形拼成形状不同的平行四边形,最多可以拼成A 、1个B 、2个C 、3个D 、4个8.下列性质中,菱形具有的是A 、四个角都是直角B 、对角线相等且互相平分C 、对角线垂直且互相平分D 、对角线垂直且相等 9.正方形具有面菱形不具有的性质是A 、四条边相等B 、对角线互相平分C 、对角线平分一组对角D 、对角线相等 10.矩形、菱形、正方形都具有的性质是A 、对角线相等B 、对角线平分一组对角C 、对角线互相平分D 、对角线互相垂直三、解答题(共70分)1.(12分)分解因式(或利用分解因式计算) (1)22363ay axy ax +-(2)114351156522⨯-⨯2.(8分)如图所示,AC 是矩形ABCD 的对角线,DAC BAC ∠=∠2,求BA C ∠和DAC ∠的度数。

2019-2020学年八年级第二学期数学期末试题及答案

2019-2020学年八年级第二学期数学期末试题及答案

2019-2020学年八年级第二学期数学期末试题及答案—学年八年级第二学期期末检测数学试题(满分:120分;考试时间:120分钟)一、选择题。

(本题共10小题,每小题3分,共30分) 1.若式子12x 在实数范围内有意义,则x 的取值范围是( ).A .x>1B .x<1C .x ≥1D .x ≤12.一组数据:0,1,2,3,3,5,5,10的中位数是( ). A .2.5B .3C .3.5D .53.在平面中,下列命题为真命题的是( ) A 、四个角相等的四边形是矩形。

B 、只有对角线互相平分且垂直的四边形是菱形。

C 、对角线互相平分且相等的四边形是矩形。

D 、四边相等的四边形是菱形。

4.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )A. 365B. 1225C. 94D. 3345.某特警队为了选拔”神枪手”,举行了1 000米射击比赛,最后由甲、乙两名战士进入决赛,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21.则下列说法中,正确的是( ) A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定[教育&%出版C .甲、乙两人成绩的稳定性相同D .无法确定谁的成绩更稳定6.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 等于( ).A .50°B .60°C .70°D .80°7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是( )DCBAA .众数是90B .中位数是90C .平均数是90D .极差是158.甲、乙两人在一次百米赛跑中,路程s (米)与赛跑时间t (秒)的关系如图所示,则下列说法正确的是( ) A 、甲、乙两人的速度相同 B 、甲先到达终点 C 、乙用的时间短D 、乙比甲跑的路程多9.童童从家出发前往奥体中心观看某演出,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 的函数关系式的大致图象是( )10.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE =CF ②∠AEB =750③BE+DF =EF ④S 正方形ABCD =2+3,其中正确的序号是 。

2019-2020年八年级第二学期期末教学质量检测数学试题(含答案)(解析版)

2019-2020年八年级第二学期期末教学质量检测数学试题(含答案)(解析版)

2019-2020年八年级第二学期期末教学质量检测数学试题(含答案)(解析版)学校名称姓名准考证号考生须知1.本试卷共6页,共三道大题,29道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个1. 实数a,b,c,d在数轴上的对应点位置如图所示,这四个数中,绝对值最小的是A. aB. bC. cD. d【答案】C【解析】根据数轴上某个数与原点的距离的大小求得结论.解:由图可知:c到原点O的距离最短,所以在这四个数中,绝对值最小的是c.故选C.“点睛”本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.2. 下列交通标志中是中心对称图形的是A. B.C. D.【答案】D【解析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中性对称图形,即可判断出.解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;D.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;故选D.“点睛“此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.考点:中心对称图形.3. 下列图形中,内角和与外角和相等的是A. B.C. D.【答案】B【解析】根据多边形内角和公式(n-2)×180°与多边形的外角和定理列式进行计算即可得解.设多边形的边数为n,根据题意得(n-2)序号180°=360°,解得n=4.故选B.“点睛”本题考查了多边形内角和公式与外角和定理,熟记公式与定理是解题的关键.4. 在平面直角坐标系xOy中,点P的坐标为(1,1).如果将x轴向上平移2个单位长度,y轴不变,得到新坐标系,那么点P在新坐标系中的坐标是( )A. (1,-1)B. (-1,1)C. (3,1)D. (1,2)【答案】A【解析】将坐标xOy中的x轴向上平移2个单位,y轴不变,根据左加右减,上加下减的规律求解即可. 解:∵点P平面直角坐标系xOy中的坐标为(1,1),将坐标系xOy中的x轴向上平移2个单位,y轴不变,∴在新坐标系x/O/y/中,点P的坐标为(1,-1).故选A.“点睛”本题考查了坐标与图形变化-平移,熟记左加右减,上加下减的规律是解题的关键.5. 如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A. 2B. 3C. 4D. 5【答案】B【解析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.6. 某校从初二年级抽出40名女生的身高数据,分组整理出如下频数分布表:表中a,b,c分别是()A. 6,12,0.30B. 6,10,0.25C. 8,12,0.30D. 6,12,0.24【答案】A【解析】根据题意,由频数分布表中各组的频率求出c,再由频数=总人数×频率可求出a、b的值.解:由频数分布表中,各组的频数之和为样本容量,则c=1-0.05-0.15-0.35-0.15=0.3,根据题意,用150~155之间频率是0.15,而总人数为40人,a=40×0.15=6,b=40×0.3=12.“点睛”本题考查频率分别直方表的运用,以及数据的分析、处理的能力,注意结合题意,认真分析,查找数据时务必准确.7. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,接着活动学具成为图2所示正方形,并测得对角线AC=40cm,则图1中对角线AC的长为A. 20 cmB. 30 cmC. 0 cmD. cm【答案】D【解析】图2中根据勾股定理即可求得正方形的边长,图1根据有一个角是60°的等腰三角形是等边三角形即可求得.解:如图2,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2.∴AB=BC=20,如图1,∠B=60°,连接AC,∴△A BC为等腰三角形,∴AB=AC=20,故选D.“点睛”本题考查了正方形的性质,勾股定理以及等边三角形的判定与性质,利用勾股定理得出正方形的边长是关键.8. 对二次三项式变形正确的是()A. B. C. D.【答案】C【解析】先把常数项移到方程右边,再在方程两边同时加上一次项系数一半的平方,再把左边配成一个完全平方式.解:x2-4x-1= x2-4x +22-22-1=(x-2)2-5.“点睛”解题时二次项系数不是1的应把二次项系数化为1,要注意出现只在二次三项式一边加上一次项系数一半的平方这种错误的情况.9. 已知点(-2,a),(3,b)都在直线上,对于a,b的大小关系叙述正确的是()A. B. C. D.【解析】先根据一次函数的解析式判断出一次函数的增减性,再根据-4<-2即可得出结论.解:∵一次函数y=2x+m(m为常数)中,k=2>0,∴y随x的增大而增大,∵-2<3,∴a<b.故选B.“点睛”本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10. 教师运动会中,甲,乙两组教师参加“两人背夹球”往返跑比赛,即:每组两名教师用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.若距起点的距离用y(米)表示,时间用x(秒)表示.下图表示两组教师比赛过程中y与x的函数关系的图象.根据图象,有以下四个推断:①乙组教师获胜②乙组教师往返用时相差2秒③甲组教师去时速度为0.5米/秒④返回时甲组教师与乙组教师的速度比是2:3其中合理的是()A. ①②B. ①③C. ②④D. ①④【答案】D【解析】根据函数图象可得乙组用时少,乙组教师获胜;由图象求出返回时甲组教师与乙组教师的速度比是2:3,所以选①④.“点睛”读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够根据函数的图象准确的把握住关键信息是解答此题的关键,然后根据实际情况采用排除法求解.二、填空题(本题共18分,每小题3分)11. 因式分解:=____________.【答案】【解析】应先提取公因式3,再对余下的多项式利用平方差公式继续分解.解:原式=3(m2﹣1),=3(m+1)(m﹣1).故答案为:3(m+1)(m﹣1).“点睛”分解因式的一般步骤:若有公因式,先提公因式;然后再考虑用公式法(平方差公式:a2-b2=(a +b)(a-b),完全平方公式:a2±2ab+b2=(a±b)2)或其它方法分解;直到每个因式都不能再分解为止. 12. 如图,平行四边形ABCD中,DE平分∠ADC,交BC边于点E,已知AD=6,BE=2,则平行四边形ABCD的周长为____________.【答案】20;【解析】试题分析:根据平行四边形的性质得出AB=CD,AD=BC=6,AD∥BC,根据平行线性质求出∠ADE=∠DEC,根据角平分线定义求出∠ADE=∠CDE,推出∠CDE=∠DEC,推出CE=DC,求出CD、即可求出答案.试题解析:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC=6,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CE=DC,∵BC=6,BE=2,∴CD=CE=6-2=4,∴AB=CD=4,∴平行四边形ABCD的周长为AD+CD+BC+A B=6+4+6+4=20.【点睛】本题考查了平行四边形的性质,角平分线定义,平行线的性质,等腰三角形的性质和判定的应用,解此题的关键是求出CD的长,注意:平行四边形的对边平行且相等,难度适中.13. 已知y是x的一次函数,下表列出了部分y与x的对应值.则m的值为____________.【答案】-1;【解析】当x=1时,y=1;x=3时,y=5.用待定系数法可求出函数关系式,然后把x=0代入,得到m的值.解:当x=1时,y=1;x=3时,y=5,据此列出方程组,求得,一次函数的解析式y=2x-1,然后把x=0代入,得到m= -1.故答案为-1.“点睛”本题考查待定系数法求函数解析式的知识,难度不大,要注意利用一次函数的特点,列出方程组,求出未知数.14. 关于x的一元二次方程有两个不相等的实数根,写出一个满足条件的实数c的值:c=____________.【答案】0(答案不唯一);【解析】因为方程x2+2x+c=0有两个不相等的实数根,所以△=b2-4ac>0,建立关于c的不等式,求出c的取值范围,在这个范围内即可.解:∵方程有两个不相等的实数根,∴△=b2-4ac=22-4c>0,解得: c<1,故答案为:0.(答案不唯一)“点睛”本题属于开放题,注意答案的不唯一性,同时本题还考查了一元二次方程根的判别式的应用.15. 小东、小林两名射箭运动员在赛前的某次测试中各射箭10次,成绩及各统计量如下图、表所示:若让你选择其中一名参加比赛则你选择的运动员是:__________________________,理由是:_____________________________________________________________.【答案】(1). 小东(2). 在水平相当的基础上小东的方差小说明波动小,发挥较小林稳定;【解析】观察折线图,从图中找出每人每次射击的环数,然后根据平均数、众数、方差的定义解答.解:求出小林平均数、众数、中位数、方差与小东的进行比较,选择的运动员是小东;在水平相当的基础上小东的方差小说明波动小,发挥较小林稳定.“点睛”此题结合图表,考查了对众数、中位数、的理解,并有一定的开放性,也对同学们提出比较高要求.16. 如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE=40°,则∠DFC的度数为_____.【答案】.【解析】利用ABCD是正方形得出角之间相等的关系,由已知条件得出∠DFC.解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠CBF,∴△BAF≌△CBF,∴∠AFB=∠CFB,∵∠AFB=∠CFB=70°,∴∠CFB=180°-70°-70°=40°∵∠EDC=∠EFC,∴C、E、D、F四点共圆,∴∠CFE=∠CDE=40°,∴∠DEC=70°,∴∠DFC=110°.故答案为:110°.三、解答题(本题共62分,第17-19题,每小题4分,第20-29题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17. 解不等式组:【答案】【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解:解不等式①得,解不等式②得,∴原不等式组的解为.“点睛”本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18. 用适当的方法解方程:.【答案】或【解析】:将型代数式加上一次项系数一半的平方,就可以配成完全平方式,配方时,在方程两边都要加一次项系数一半的平方,方程的解不变,此题可以利用等式的基本性质使方程一边是完全平方式,另一边是常数.解:或或“点睛”配方法是一种很重要的数学方法,但使用起来较复杂,故没有特别说明,一般不使用.但当二次项系数为1,一次项系数为偶数时,用配方法较简单.19. 如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,且△OAB为等边三角形.求证:四边形ABCD为矩形.【答案】见解析【解析】考查矩形的判定问题,平行四边形ABCD,再加上对角线相等进而证明是矩形.证明:∵四边形ABCD是平行四边形,∴ AC=2OA,BD=2OB,∵△OAB为等边三角形,∴ OA=OB,∴ AC=BD.∴四边形ABCD为矩形.20. 关于x的一元二次方程的一个根是0,求n的值.【答案】学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...学+科+网...解:∵关于x的一元二次方程的一个根是0,求n的值.∴,∴,∵,∴.21. 已知△ABC,请按要求完成画图、说明画图过程及画图依据.(1)以A,B,C为顶点画一个平行四边形;(2)简要说明画图过程;(3)所画四边形为平行四边形的依据是____________________________________【答案】(1)见解析;(2)见解析;(3)对角线相等的四边形是平行四边形.【解析】(1)由平行四边形的性质利用基本作图即可;(2)根据每步作图写出相应过程;(3)由平行四边形的判定得出结论.解:(1)如图所示,(2)画图过程:1.取AC中点D,2.连接BD并延长,使DE=BD,3.连接AE,CE.四边形ABCD是所求平行四边形.(3)依据:对角线相等的四边形是平行四边形.22. 随地球自转,一天中太阳东升西落,太阳经过某地天空的最高点时为此地的“地方时间”12点,因此,不同经线上具有不同的“地方时间”.两个地区“地方时间”之间的差称为这两个地区的时差.右图表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)下表是同一时刻的北京和首尔的时间,请填写完整.北京时间7:30首尔时间12:15(2)设北京时间为x(时),首尔时间为y(时),0≤x≤12时,求y关于x的函数表达式.【答案】(1)8:30,11:15;(2),.解:(1)根据如图表示同一时刻的北京时间得到首尔时间,首尔与北京时间的关系得,首尔时间为8:30,北京时间为11:15.(2)从图看出,同一时刻,首尔时间比北京时间多1小时,故y关于x的函数表达式是y=x+1.“点睛”本题考查的是一次函数的应用,根据题意正确求出函数解析式是解题的关键.23. 已知关于x的一元二次方程.(1)求证:此方程总有两个不相等的实数根;(2)若此方程的两个根都为整数,求整数a的值.【答案】(1) 方程有两个不相等的实数根;(2) .【解析】(1)先计算判别式的值达到△=4,然后根据判别式的意义即可得到方程总有两个不相等的实数根;(2)利用求根公式解方程,然后利用有理数的整除性确定a的值.证明:(1)∵m>0,△=[-2(m-1)]2-4m(m-2)=4m2-8m+4-4m2+8m=4>0,∴此方程总有两个不等实根;(2),,.∵ 方程的根均为整数,∴ .“点睛”本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0时,方程由两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.24. 如图,四边形ABCD是平行四边形,E,F分别为BC,AD的中点,(1)求证:AE=CF;(2)延长CF交BA的延长线于点M,求证:AM=AB.【答案】见解析.【解析】(1)利用平行四边形的性质和线段的中点定义即可得出AE=CF;(2)同(1)证明方法可得AM=AB.(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.又∵E,F分别为BC,AD的中点,∴AF=AD,CE=BC,∴AF=CE,∴四边形AECF是平行四边形,.∴AE=CF.(2)∵四边形AECF是平行四边形,∴AE∥CF,又∵E为BC的中点,∴A为BM的中点.即AM=AB.25. 绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.已知某地区从xx年1月到5月的共享单车投放量如右图所示.(1)求1月至2月共享单车投放量的增长率;(2)求2月至4月共享单车投放量的月平均增长率.【答案】(1)28%;(2)【解析】(1)由直方统计图得(2月投放量-1月投放量)÷1月投放量即得1月至2月共享单车投放量的增长率,(2)增长率问题,一般用增长后的量=增长前的量×(1+增长率),解:(1).(2)“点睛”求平均增长率的方法.若设变化前的量为a,变化后的量为b,平均增长率为x,则经过两次变化后的数量关系为a(1±x)2=b.26. 如图,在平面直角坐标系xOy中,过点A(4,0)的直线与直线相交于点B(-4,m).(1)求直线的表达式;(2)若直线与y轴交于点C,过动点P(0,n)且平行于的直线与线段AC有交点,求n的取值范围.【答案】(1) ;(2) .【解析】(1)先求出B点坐标,再用待定系数法即可解决问题;(2)由图象可知直线l1在直线l2上方即可,由此即可写出m的范围.解:(1)∵点B(-4,m)在直线上,∴.∵点A(4,0)和B(-4,8)在直线上,设,∴ 解得∴直线的表达式为.(2)点C坐标为(0,4),平行于的直线过点C时表达式为,平行于的直线过点D时表达式为,∴n的取值范围是.“点睛”本题考查两条直线平行、相交问题,解题的关键是灵活应用待定系数法,学会利用图象根据条件确定自变量取值范围.27. 有这样一个问题:探究函数的图象与性质.小东根据学习一次函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)在函数中,自变量x可以是任意实数;下表是y与x的几组对应值.4 3 2 1求m的值;在平面直角坐标系xOy中,描出上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;(3)结合函数图象,写出该函数的一条性质:__________.【答案】(1)①m=4;②见解析;(2) 时y随x的变大而变小,时y随x的变大而变大.【解析】(1)把x=4代入函数解析式,求出y的值即可;在坐标系内描出各点,再顺次连接即可;(2)根据函数图象即可得出结论.解:(1)①时,②(2)时y随x的变大而变小,时y随x的变大而变大.28. 已知将一矩形纸片ABCD折叠,使顶点A与C重合,折痕为EF.(1)求证:CE=CF;(2)若AB =8 cm,BC=16 cm,连接AF,写出求四边形AFCE面积的思路.【答案】见解析.【解析】(1)根据图形折叠前后图形不发生大小变化,证明两角相等推出CE=CF;(2)运用平行四边形的判定和勾股定理列方程求解,再用平行四边形面积公式计算出四边形AFCE的面积.(1)证明:∵矩形纸片ABCD折叠,顶点A与C重合,折痕为EF,∴∠1=∠2,AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CE=CF.(2)思路:连接AF① 由矩形纸片ABCD折叠,易证四边形AFCE为平行四边形;② Rt△CED中,设DE为x,则CE为16-x,CD=8,根据勾股定理列方程可求得DE,CE的长;③由CF=CE,可得CF的长;运用平行四边形面积公式计算CF×CD可得四边形AFCE的面积.29. 在平面直角坐标系xOy中,点P的坐标为,点Q的坐标为,且,,若P,Q为某正方形的两个顶点,且该正方形的边均与某条坐标轴平行(含重合),则称P,Q互为“正方形点”(即点P是点Q的“正方形点”,点Q也是点P的“正方形点”).下图是点P,Q互为“正方形点”的示意图.已知点A的坐标是(2,3),下列坐标中,与点A互为“正方形点”的坐标是____________.(填序号)①(1,2);②(-1,5);③(3,2).(2)若点B(1,2)的“正方形点”C在y轴上,求直线BC的表达式;(3)点D的坐标为(-1,0),点M的坐标为(2,m),点N是线段OD上一动点(含端点),若点M,N互为“正方形点”,求m的取值范围.【答案】(1) ①③;(2) 或 ;(3) 或.【解析】(1)根据点A互为“正方形点”的坐标定义即可求出所求的坐标;(2)由已知条件先求出点C的坐标,利用待定系数法求得直线BC的表达式;(3)由点N是线段OD上一动点(含端点),求出点D、O的正方形点坐标,结合图象写出m的取值范围.解:(1)①③(2)∵点B(1,2)的“正方形点”C在y轴上,∴点C的坐标为(0,1),(0,3),∴直线BC的表达式为,.(3)过点OD分别作与x轴夹角为的直线,∵点M的坐标为(2,m),点N是线段OD上一动点(含端点),点M,N互为“正方形点”,∴点D的正方形点坐标是(2,3),(2,-3),点O的正方形点坐标是(2,2),(2,-2),∴或.-----如有帮助请下载使用,万分感谢。

人教版2019-2020学年度第二学期期末八年级数学试卷及答案

人教版2019-2020学年度第二学期期末八年级数学试卷及答案

2019-2020学年度下学期期末八年级数学试卷一、选择题(共10小题, 每小题3分, 共30分)1. 二次根式2+x 在实数范围内有意义, 则x 的取值范围是( ) A. x≥-2 B.x≠0 C. x≠-2D. x >02.下图中分别给出了变量x 和y 之间的对应关系, 其中y 是x 的函数的是( )A B C D 3.下列各组数据中能作为直角三角形三边长的是() A .1、2、3B .1、2、3C .4、5、6D .3、4、54. 下列各式中,运算正确的是()A .2)2(2-=-B .1082=+C .482=⨯D .2222=+5. 甲、乙两班的学生人数相等,参加了同一次数学测试,两班的平均分都为83分,方差分别为45.22=甲s 和90.12=乙S ,那么成绩较为整齐的是()A 、甲班B 、乙班C 、两班一样整齐D 、无法确定6. 如图,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC•于M ,交AB 于N ,若AC=6,MB=2MC ,则AB 为()A .26B .22C .32D .22-7. 矩形具有而菱形不一定具有的性质是()A .对角线相等B .四边相等C .对角线互相垂直D .对角线互相平分8. 第七届世界军人运动会将于2019年10月18日至27日在武汉举行。

光谷某中学开展了“助力军动会”志愿者招募活动,同学们踊跃报名参与竞选。

经选拔,最终每个班级都有同学光荣晋升为本次军运会志愿者。

下面的条形统计图描述了这些班级选拔出的志愿者人数的情况;下列说法错误的是()A.参加竞选的共有28个班级B.本次竞选共选拔出166名志愿者C.各班选拔出的志愿者人数的众数为4D.各班选拔出的志愿者人数的中位数为69.一次函数111b x k y +=和222b x k y +=中变量x 与y 的部分对应值如上表,下列结论: ①直线1y 、2y 与y 轴围成的三角形面积为100;②直线1y 、2y 互相垂直;③x >20时,1y >2y ;④方程0--2211=+b x k b x k 的解为x=25;其中正确的结论序号为()A.①③B. ①④C.①③④D.①②③④10.如图,正方形ABCD 的边长为2,点E 、F 分别为边AD 、BC 上的点,点G 、H 分别为边AB 、CD 上的点,线段GH 与EF 的夹角为45°,GH =3102.则EF =(). A .5B .3102 C .352 D .7二、填空题(共6小题, 每小题3分, 共18分)11. 化简-(-π)2=__________.12. 已知:在Rt △ABC 中,∠C=90°,∠A=30°,AC=2,则斜边AB 的长为_______. 13. 在直角坐标系中,若直线y =21x +3与直线y =-2x +a 相交于x 轴上,则直线y =-2x +a 不经过的象限是第_______象限.14. 如图:四边形ABCD 是菱形,∠ADC=100°,DH ⊥AB 交AC 于点F ,垂足为H ,则∠AFH 的度数为_________°.x… -10 0 20 … 1y … -5 5 25 … 2y …101525…班级个数 8 - 6 - 4 – 2 - 03 4 5 6 7 8 人数15. △ABC 中, AB =AC =5,S △ABC =7.5,则BC 的长为_______________.16. 定义:Min{a ,b}表示a 、b 中较小的数,一次函数y=kx+k -5的图像与函数y=Min{ -2x+11,2x-9}的图像有两个交点,则k 的取值范围是__________.三、解答题(共8题, 共72分) 17. (本题8分) 计算:(1)483316122+-(2)226324÷-)(18. (本题8分)已知直线l 1:y=kx+(k-3)与直线l 2:y=2x+b 交于点A (1,3),请求出这两条直线与x 轴所围成的三角形的面积。

2019-2020学年度八年度级数学第二学期期末模拟试卷及答案(共五套)

2019-2020学年度八年度级数学第二学期期末模拟试卷及答案(共五套)

2019-2020学年八年级数学第二学期期末模拟试卷及答案(共五套)2019-2020学年八年级数学第二学期期末模拟试卷及答案(一)一、选择题(本大题共12小题,共36分)1.下列二次根式中,是最简二次根式的是()A. B.C.D.2.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形3.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个B.2个C.3个D.4个4.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF5.若一个直角三角形的两边长分别为3和4,则它的第三边长为()A.5 B.C.5或4 D.5或6.函数y=﹣4x﹣3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限7.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF8.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA 的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.8 B.6 C.4 D.39.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.A.2个B.3个C.4个D.5个10.化简:a的结果是()A.B.C.﹣ D.﹣11.已知关于x的不等式组的整数解共有4个,则a的最小值为()A.2 B.2.1 C.3 D.112.已知(﹣5,y1),(﹣3,y2)是一次函数y=x+2图象上的两点,则y1与y2的关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较二、填空题:本大题共6小题,共18分13.若最简二次根式与是同类二次根式,则a=.14.一次函数y=﹣x﹣3与x轴交点的坐标是.15.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm 的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.16.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.17.如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD、BC于E、F,则阴影部分的面积是.18.观察图象,可以得出不等式组的解集是.三、解答题:本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤19.计算.20.计算:(﹣3)0﹣+|1﹣|+.21.已知x=+2,求x2﹣4x+6的值.22.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合.如果AP=3,那么线段P P′的长是多少?23.已知,在平面直角坐标系中,直线y=2x+3与直线y=﹣2x﹣1交于点C.(1)求两直线与y轴交点A,B的坐标;(2)求点C的坐标;(3)求△ABC的面积.24.如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.25.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区1800 1600B地区1600 1200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.附加题:26.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(a,0)、(0,b),且(a﹣3)2+=0.(1)求出点A、B、C的坐标;(2)若过点C的直线CD交矩形OABC的边于点D,且把矩形OABC的面积分为1:4两部分,求直线CD的解析式.参考答案与试题解析一、选择题(本大题共12小题,共36分)1.下列二次根式中,是最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数不含分母且被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形【考点】命题与定理.【分析】根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B 进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选D.3.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的定义(无理数就是无限不循环小数)判断即可.【解答】解:无理数有﹣π,0.1010010001…,共2个,故选B.4.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【考点】正方形的判定;线段垂直平分线的性质.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.5.若一个直角三角形的两边长分别为3和4,则它的第三边长为()A.5 B.C.5或4 D.5或【考点】勾股定理.【分析】分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选D.6.函数y=﹣4x﹣3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】一次函数的性质.【分析】由于k、b都小于0,则根据一次函数的性质可判断直线y=﹣4x﹣3经过第二、三、四象限.【解答】解:∵k=﹣4<0,∴函数y=﹣4x﹣3的图象经过第二、四象限,∵b=﹣3<0,∴函数y=﹣4x﹣3的图象与y轴的交点在x轴下方,∴函数y=﹣4x﹣3的图象经过第二、三、四象限.故选C.7.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF【考点】全等图形.【分析】把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF.【解答】解:∵RRt△ABC沿直角边BC所在直线向右平移到Rt△DEF∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选A.8.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA 的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.8 B.6 C.4 D.3【考点】中点四边形.【分析】连接AC,BD,FH,EG,得出平行四边形ABFH,推出HF=AB=2,同理EG=AD=4,求出四边形EFGH是菱形,根据菱形的面积等于×GH×HF,代入求出即可.【解答】解:连接AC,BD,FH,EG,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴AH=AD,BF=BC,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD是矩形,∴AC=BD,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴HG∥AC,HG=AC,EF∥AC,EF=AC,EH=BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH是平行四边形,∴平行四边形EFGH是菱形,∴FH⊥EG,∴阴影部分EFGH的面积是×HF×EG=×2×4=4,故选C.9.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.A.2个B.3个C.4个D.5个【考点】中心对称图形.【分析】根据中心对称图形的概念求解即可.【解答】解:(1)正方形是中心对称图形;(2)等边三角形不是中心对称图形;(3)长方形是中心对称图形;(4)角不是中心对称图形;(5)平行四边形是中心对称图形;(6)圆是中心对称图形.所以一共有4个图形是中心对称图形.故选C.10.化简:a的结果是()A.B.C.﹣ D.﹣【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质得出a的符号,进而化简求出即可.【解答】解:由题意可得:a<0,则a=﹣=﹣.故选:C.11.已知关于x的不等式组的整数解共有4个,则a的最小值为()A.2 B.2.1 C.3 D.1【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a 的范围.【解答】解:解不等式组得﹣2<x≤a,因为不等式有整数解共有4个,则这四个值是﹣1,0,1,2,所以2≤a<3,则a的最小值是2.故选A.12.已知(﹣5,y1),(﹣3,y2)是一次函数y=x+2图象上的两点,则y1与y2的关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较【考点】一次函数图象上点的坐标特征.【分析】k=﹣<0,y将随x的增大而减小.【解答】解:∵﹣5<﹣3,∴y1>y2.故选C.二、填空题:本大题共6小题,共18分13.若最简二次根式与是同类二次根式,则a=±1.【考点】同类二次根式.【分析】根据同类二次根式的定义列出方程求解即可.【解答】解:∵最简二次根式与是同类二次根式,∴4a2+1=6a2﹣1,∴a2=1,解得a=±1.故答案为:±1.14.一次函数y=﹣x﹣3与x轴交点的坐标是(﹣3,0).【考点】一次函数图象上点的坐标特征.【分析】令y=0,代入一次函数解析式,可求得x的值,可求得答案.【解答】解:在y=﹣x﹣3中,令y=0可得﹣x﹣3=0,解得x=﹣3,∴一次函数y=﹣x﹣3与x轴交点的坐标是(﹣3,0),故答案为:(﹣3,0).15.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm 的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】由题意可知长方体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,利用勾股定理求解即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.16.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式y=﹣x+3.【考点】一次函数的性质.【分析】由一次函数过(1,2),设出一次函数解析式为y=kx+b,将此点代入得到k+b=2,又此一次函数y随x的增大而减小,可得出k小于0,取k=﹣1,可得出b=3,确定出满足题意的一次函数解析式.【解答】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=﹣1,可得出b=3,则一次函数为y=﹣x+3.故答案为:y=﹣x+317.如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD、BC于E、F,则阴影部分的面积是.【考点】正方形的性质.【分析】采取利用图形的全等的知识将分散的图形集中在一起,再结合图形的特征选择相应的公式求解.【解答】解:依据已知和正方形的性质及全等三角形的判定可知△AOE≌△COF,则得图中阴影部分的面积为正方形面积的,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为.故答案为18.观察图象,可以得出不等式组的解集是﹣<x<2.【考点】一次函数与一元一次不等式.【分析】观察图象可知,当x>﹣时,3x+1>0;当x<2时,﹣0.5x+1>0.所以该不等式组的解集是这两个不等式解集的交集.【解答】解:由图象知,函数y=3x+1与x轴交于点(,0),即当x>﹣时,函数值y的范围是y>0;因而当y>0时,x的取值范围是x>﹣;函数y=3x+1与x轴交于点(2,0),即当x<2时,函数值y的范围是y>0;因而当y>0时,x的取值范围是x<2;所以,原不等式组的解集是﹣<x<2.故答案是:﹣<x<2.三、解答题:本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤19.计算.【考点】二次根式的混合运算.【分析】观察可知,先化简括号内的并合并,再相除计算.【解答】解:原式=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.20.计算:(﹣3)0﹣+|1﹣|+.【考点】二次根式的混合运算;零指数幂.【分析】先根据零指数幂的意义、二次根式的性质和分母有理化得到原式=1﹣3+﹣1+﹣,然后合并即可.【解答】解:原式=1﹣3+﹣1+﹣=﹣2.21.已知x=+2,求x2﹣4x+6的值.【考点】二次根式的化简求值.【分析】首先把所求的式子化成(x﹣2)2+2的形式,然后代入求解即可.【解答】解:原式=(x2﹣4x+4)+2=(x﹣2)2+2=(+2﹣2)2+2=2+2=4.22.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合.如果AP=3,那么线段P P′的长是多少?【考点】旋转的性质.【分析】将△ABP绕点A逆时针旋转后与△ACP′重合,旋转角是90度,可以得到△APP′是等腰直角三角形,根据勾股定理即可求解.【解答】解:根据旋转的性质可知将△ABP绕点A逆时针旋转后与△ACP′重合,则△ABP≌△ACP′,所以AP=AP′,∠BAC=∠PAP′=90°,所以在Rt△APP′中,PP′=.23.已知,在平面直角坐标系中,直线y=2x+3与直线y=﹣2x﹣1交于点C.(1)求两直线与y轴交点A,B的坐标;(2)求点C的坐标;(3)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)分别令x=0得出两直线与y轴交点A,B的坐标;(2)把y=2x+3与y=﹣2x﹣1联立列方程组,即可得出点C坐标;(3)求得AB,再得出点C到AB边的高为1,根据三角形的面积公式即可得出答案.【解答】解:(1)把x=0,代入y=2x+3,得y=3∴A(0,3)把x=0代入y=﹣2x﹣1,得y=﹣1∴B(0,﹣1)(2)由题意得方程组,解之得,∴C(﹣1,1)(3)由题意得AB=4,点C到AB边的高为1,∴S△ABC=×4×1=2.24.如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.【考点】矩形的性质;全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定.【分析】(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=DN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP 是菱形.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB和△NDC中,∵,∴△MBA≌△NDC(SAS);(2)四边形MPNQ是菱形.理由如下:连接AP,MN,则四边形ABNM是矩形,∵AN和BM互相平分,则A,P,N在同一条直线上,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN的中点,∴PM=NQ,∵,∴△MQD≌△NPB(SAS).∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∵MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形.25.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区1800 1600B地区1600 1200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.【考点】一次函数的应用.【分析】(1)在A、B两地分配甲、乙两种类型的收割机,注意各数之间的联系;(2)由租金总额不低于79 600元求出x的取值范围设计分配方案;(3)此为求函数的最大值问题.【解答】解:(1)若派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30﹣x)台,派往B地区的乙型收割机为(30﹣x)台,派往B地区的甲型收割机为20﹣(30﹣x)=(x﹣10)台.∴y=1600x+1800(30﹣x)+1200(30﹣x)+1600(x﹣10)=200x+74 000,x的取值范围是:10≤x≤30,(x是正整数);(2)由题意得200x+74 000≥79 600,解不等式得x≥28,由于10≤x≤30,x是正整数,∴x取28,29,30这三个值,∴有3种不同的分配方案.①当x=28时,即派往A地区的甲型收割机为2台,乙型收割机为28台;派往B地区的甲型收割机为18台,乙型收割机为2台;②当x=29时,即派往A地区的甲型收割机为1台,乙型收割机为29台;派往B地区的甲型收割机为19台,乙型收割机为1台;③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区;(3)由于一次函数y=200x+74 000的值y是随着x的增大而增大的,所以当x=30时,y取得最大值,如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74 000=80 000.建议农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区,可使公司获得的租金最高.附加题:26.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(a,0)、(0,b),且(a﹣3)2+=0.(1)求出点A、B、C的坐标;(2)若过点C的直线CD交矩形OABC的边于点D,且把矩形OABC的面积分为1:4两部分,求直线CD的解析式.【考点】待定系数法求一次函数解析式;非负数的性质:偶次方;非负数的性质:算术平方根;矩形的性质.【分析】(1)根据平方与算术平方根的和为0,可得平方与算术平方跟同时为0,可得a、b的值,根据矩形,可得B点的坐标;(2)根据面积的比,可得D点的坐标,根据待定系数法求解析式,可得答案.【解答】解:(1)由(a﹣3)2+=0.可知(a﹣3)2+|b﹣5|=0,∴a=3 b=5,∵矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(a,0)、(0,b),∴A(3,0)B(3,5)C(0,5);=OA•OC=3×5=15(2)S矩形OABC由题意知CD分矩形OABC的两部分面积为3和12①CD与OA交于点DS△ODC=3 即•OD•OC=3OD=,即D(,0)C(0,5)y=﹣x+5②CD与AB交于点DS△CBD=3×3×BD=3BD=2即D(3,3)y=﹣x+5.2019-2020学年八年级数学第二学期期末模拟试卷及答案(二)一、选择题(本大题共有8小题,每小题3分,共24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.函数y=中自变量x的取值范围是()A.x≤2 B.x≥2 C.x<2 D.x≠23.分式可变形为()A.B.﹣C.D.﹣4.2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.1.6万名考生B.2000名考生C.1.6万名考生的数学成绩D.2000名考生的数学成绩5.下列事件中,是不可能事件的是()A.抛掷2枚正方体骰子,都是6点朝上B.任意画一个三角形,其内角和是360°C.通常加热到100℃时,水沸腾D.经过有交通信号灯的路口,遇到红灯6.若点(﹣3,y1),(﹣2,y2),(2,y3)都在反比例函数y=的图象上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y27.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q8.反比例函数的图象如图所示,则k的值可能是()A.﹣1 B.C.1 D.2二、填空题(本大题有8个小题,每小题3分,共24分)9.计算:=______.10.当x=______时,分式的值为零.11.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60.52 0.52 0.49 0.51 0.5012.方程4x=的解的个数为______.13.进行数据的收集调查时,在明确调查问题、确定调查对象后,还要完成以下4个步骤:①展开调查②得出结论③记录结果④选择调查方法,但它们的顺序弄乱了,正确的顺序应该是______(填写序号即可).14.若A(﹣1,m)与B(2,m﹣3)是反比例函数y=图象上的两个点,则m=______.15.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC的周长等于______.16.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线l∥x轴,l分别与反比例函数y=和y=的图象交于A、B两点,若S△AOB=3,则k 的值为______.三、解答题(本大题有9个小题,共72分)17.计算:(1)×(2)2﹣6+3.18.(1)计算:÷﹣1;(2)解方程:=.19.为了解“数学思想作文对学习数学帮助有多大?”研究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据用下面的扇形图和表1来表示(图、表都没制作完成).表1选项帮助很大帮助较大帮助不大几乎没有帮助人数 a 540 270 b根据上面图、表提供的信息,解决下列问题:(1)这次共有多少名学生参加了问卷调查?(2)求a、b的值.20.已知:如图,E,F是四边形ABCD的对角线AC上的两点,AF=CE,连接DE,DF,BE,BF.四边形DEBF为平行四边形.求证:四边形ABCD是平行四边形.21.如图,在平面直角坐标系中,用描点法分别画出函数y=﹣x+1与y=﹣的图象,并写出不等式﹣x+1>﹣的解集.解:列表:x ……y=﹣x+1 ……y=﹣……画图象:不等式﹣x+1>﹣的解集为______.22.如图,在方格纸中,已知格点△ABC和格点O.(1)画出△ABC关于点O对称的△A′B′C′;(2)若以点A、O、C、D为顶点的四边形是平行四边形,则点D的坐标为______.(写出所有可能的结果)23.如图,在平面直角坐标系中,矩形OABC的对角线OB、AC相交于点D,且BE∥AC,CE∥OB.(1)求证:四边形CDBE是菱形;(2)如果OA=4,OC=3,求出经过点E的反比例函数解析式.24.某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式.并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多20%,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?25.已知反比例函数的两支图象关于原点对称,利用这一结论解集下列问题:如图,在同一直角坐标系中,正比例函数y=kx的图象与反比例函数y=的图象分别交于第一、三象限的点B、D,已知点A(﹣m,0)、C(m,0).(1)填空:无论k值取何值时,四边形ABCD的形状一定是______;(2)①当点B坐标为(p,1)时,四边形ABCD的形状一定是______;②填空:对①中的m值,能使四边形ABCD为矩形的点B共有______个;(3)四边形ABCD能不能是菱形?若能,直接写出B点的坐标;若不能,说明理由.参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.2.函数y=中自变量x的取值范围是()A.x≤2 B.x≥2 C.x<2 D.x≠2【考点】函数自变量的取值范围.【分析】根据二次根式要有意义可以得到函数y=中自变量x的取值范围,本题得以解决.【解答】解:∵y=,∴2﹣x≥0,解得x≤2,故选A.3.分式可变形为()A.B.﹣C.D.﹣【考点】分式的基本性质.【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣1,得﹣,故选:D.4.2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.1.6万名考生B.2000名考生C.1.6万名考生的数学成绩D.2000名考生的数学成绩【考点】总体、个体、样本、样本容量.【分析】根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.【解答】解:2015年我市有近1.6万名考生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析,在这个问题中抽取的2000名考生的数学成绩为样本.故选:D.5.下列事件中,是不可能事件的是()A.抛掷2枚正方体骰子,都是6点朝上B.任意画一个三角形,其内角和是360°C.通常加热到100℃时,水沸腾D.经过有交通信号灯的路口,遇到红灯【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:抛掷2枚正方体骰子,都是6点朝上是随机事件,A错误;任意画一个三角形,其内角和是360°是不可能事件,B正确;通常加热到100℃时,水沸腾是必然事件,C错误;经过有交通信号灯的路口,遇到红灯是随机事件,D错误,故选:B.6.若点(﹣3,y1),(﹣2,y2),(2,y3)都在反比例函数y=的图象上,则()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y1>y3>y2【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质,图象在一、三象限,在双曲线的同一支上,y 随x的增大而减小,则0<y1<y2,而y3>0,则可比较三者的大小.【解答】解:∵k=3>0,∴图象在一、三象限,∵x1<x2,∴y2<y1<0,∵x3>0,∴y3>0,∴y2<y1<y3,故答案为:y3>y1>y2.7.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()。

2019-2020学年人教版八年级下册期末数学试卷附答案

2019-2020学年人教版八年级下册期末数学试卷附答案

2019-2020学年人教版八年级下册期末数学试卷附答案人教版八年级下学期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若式子 $\frac{x-2}{x-3}$ 有意义,则 $x$ 的取值范围为()A。

$x≥2$B。

$x≠3$C。

$x≥2$ 或$x≠3$D。

$x≥2$ 且$x≠3$2.下列各组数中,以 $a$、$b$、$c$ 为边的三角形不是直角三角形的是()A。

$a=2$,$b=3$,$c=5$B。

$a=1.5$,$b=2$,$c=3$C。

$a=6$,$b=8$,$c=10$D。

$a=3$,$b=4$,$c=5$3.下列计算错误的是()A。

$3+22=52$B。

$\frac{4}{2}=2$C。

$2×3<5$D。

$2^2=4$4.设 $n$ 为正整数,且 $n<\frac{5}{2}$,则 $n$ 的值为()A。

5B。

6C。

7D。

85.若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为()A。

$\sqrt{2}$B。

$2\sqrt{2}$C。

4D。

86.如图,在平行四边形 $ABCD$ 中,$\angle B=80°$,$AE$ 平分 $\angle BAD$ 交 $BC$ 于点 $E$,$CF\parallelAE$ 交 $AD$ 于点 $F$,则 $\angle 1=$()A。

40°B。

50°C。

60°D。

80°7.___与___本学期都参加5次数学考试(总分都为120分),数学老师想判断这两个同学的数学成绩谁更稳定,在做统计分析时,老师需要比较这两个人5次数学成绩的()A。

方差B。

平均数C。

众数D。

中位数8.如图,已知四边形 $ABCD$ 是平行四边形,下列结论中不正确的是()A。

当 $AB=BC$ 时,平行四边形 $ABCD$ 是菱形B。

当 $AC\perp BD$ 时,平行四边形 $ABCD$ 是菱形C。

2019-2020学年度下学期初二数学期末试题附答题卡、答案

2019-2020学年度下学期初二数学期末试题附答题卡、答案

初二学年期末数学试题 第 页 共4页12019——2020学年度第二学期初二数学试题考生注意:1、考试时间为120分钟2、全卷共三道大题,总分120分题号一 二 三 总分 核分人得分一.选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项写在括号内)。

1. 以下列各组数为边长,能组成直角三角形的是( ) A. 5,8,10 B. 8,15,17 C. 4,5,7 D. 7,19,21 2.下列计算正确的是 ( ) A. 93-=- B. 3355-= C. 255=± D. 233-=-() 3. .在实数0.41,32,4π,227,•0.32,0.1010010001…中,无理数有( )A. 1个B. 2个C. 3个D. 4个 4. 在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是 ( )A. 1+3B. 2+3C. 23﹣1D. 23+15.如图,两直线b kx y +=1和k bx y +=2在同一坐标系内图象的位置可能是( )A. B. C. D.6. 关于函数3y x =-,下列结论正确的是( )A .y 的值随x 值的增大而增大B .它的图像必经过点(1,3)-C .它的图像不经过第三象限D .当1x >时,0y < 7.如图,//DE BC ,BE 平分ABC ∠,若170∠=o ,则CBE ∠的度数为( )A. 20oB. 35oC. 55oD. 70o 8.下列命题是假命题的是 ( ) A. 角平分线上的点到角两边的距离相等 B. 直角三角形的两个锐角互余 C. 同旁内角互补 D. 一个角等于60°的等腰三角形是等边三角形9. 已知⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-51by x by ax 的解,则a 、b 的值分别为( ) A.2,7 B.1-,3 C.2,3 D.1-,710.如图,一块直角三角形的纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ). 考 号姓 名装订( 装订线内 不要答题 )班 级初二学年期末数学试题 第 页 共4页2A. 2 cmB. 4 cmC. 5cmD. 3 cm二.填空题(每题3分,共30分) 11. 9的平方根是_________ .12. 函数y =1x -中,自变量x 的取值范围是________.13.已知,AB ∥x 轴,点A 的坐标是(3,2),并且AB=5,则点B 的坐标为________. 14..已知0)3(22=++-b a ,则2)(b a -= .15. 点P (3,-1)关于x 轴对称的点的坐标是________.16. 如图,把直线y =﹣2x 向上平移后,经过(0,3)则平移后的直线表达式为________ .17.若2(1)1y a x a =-+-是关于x 的正比例函数,则2019a 的值为 . 18.如图,函数y =ax +b 和y =k x 的图象交于一点,则二元一次方程组y ax by kx =+=⎧⎨⎩的解是______. 19.如图,已知在Rt △ABC中,∠ACB =90°,AB =10,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2=_________.20.若a 、b 为实数,且b 2211a a -+-,则a+b =_____. 三.解答题(共60分,解答时应写出必要过程) 21.计算(每题4分,共8分)(11287007(2)2262622-22.解方程组:(4分)⎩⎨⎧-=--=-y y x y x 2212第18题图 第16题图 第19题图y=kxy=ax+b23.(7分)已知:如图,∠1+∠2=180°,∠3=∠B.求证:∠AED=∠C.24.(8分)列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元) 零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.25. (7分)如图,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD 的面积.26. (8分)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出ABCV,则ABCV的面积是______;(2)若点D与点C关于原点对称,则点D的坐标为______;(3)已知P为x轴上一点,若ABPV的面积为4,求点P的坐标.初二学年期末数学试题第页共4页327. (8分)某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生,对他们一周的课外阅读时间进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为________,图①中m的值为________.(2)本次调查获取的样本数据的众数________ 、中位数________和平均数________;(3)根据样本的数据,估计该校一周的课外阅读时间大于6h的学生人数. 28. (10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.(1)小张骑自行车的速度________;小李出发后________分钟到达甲地(2)小张出发后________分与小李相遇.(3)求小张停留后再出发时y与x之间的函数表达式,并写出自变量x的取值范围。

2019-2020年初二数学期末考试题答案

2019-2020年初二数学期末考试题答案

2019-2020年初二数学期末考试题答案一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6 道小题,每小题5分,共 30 分) 13.解:原式2+325222………………………………………………………………… 4分=3222. ………………………………………………………………… 5分 14.解:原式=2(3)(3)2(3)(a 3)69a a aa a a ++-÷+--+ …………………………………………………………2分=()232(3)(a 3)2a aa a-⨯+- ……………………………………………………… 3分=33a a -+ . ………………………………………………………………………… 4分 当2a =-时, 原式=23523--=--+. ………………………………………………………5分15.解:方程两边同乘(1)x x -,得22(1)(1)x x x x --=-. ………………………………………………………………2分2222x x x x -+=-. ……………………………………………………………………3分2x -=-.2x =. ……………………………………………………………………………4分经检验:2x =时,是原分式方程的解. …………………………………………………5分 16.解:(解法一)∵a =2,b =-8,c =3, ………………………………………… 1分∵224(8)423b ac ∆=-=--⨯⨯, ……………………………………………………… 2分 ∴400>∆=. ……………………………………………………………………… 3分∴====x ………………… 5分∴原方程的解是1244,22+-==x x . 解法二:23402-+=x x . …………………………………………………………… 1分 22234222-+=-+x x . ………………………………………………………… 2分25(2)2-=x . ……………………………………………………… 3分2-=x . ……………………………………………… 4分∴原方程的解为:122222=+=-x x . ………………………………… 5分 17.证明:∵ AB =CD ,∴AB +BC =CD+BC .即AC =DB . ………………………………… 1分 在△ACE 与△DBF 中,∠A=∠D , AC =DB ,∠ECA=∠FBD ,…………………………… 3分∴ △ACE ≌△DBF (ASA ). ………………………………………………… 4分 ∴AE =DF . …………………………………………………………………… 5分18.解:在△ABC 中,∵∠C =90°, ………………………………1分 由勾股定理得:BC =8(舍负).………………………3分∵D 是BC 的中点, ∴DC =1 4.2BC =…………………………………4分在Rt △ADC 中,∵∠C =90°,由勾股定理得:AD =(舍负).…………………………………………………5分四、解答题(共 4 道小题,每小题5分,共 20 分)19.解:如图所示,正确添加一种图形给1分,两个给3分,三个给5分.ABDCFEBA321E DCBA图1图2图320.解:设APEC 会议期间这路公交车每天运行x 车次. ………………………………… 1分根据题意,得56008000-30x x=. …………………………………………………… 2分 解这个方程,得 x =100. …………………………………………………… 3分 经检验:x =100是所列方程的根,且符合题意.……………………………………………… 4分 答:APEC 会议期间这路公交车每天运行100车次. …………………………………… 5分 21.解:如图,连接CD .∵ ∠B=22.5°,BD=3,∠A=90°,∴由已知可得∠3=∠B =22.5°,CD=B D =3, ∠ACB =67.5° . .………………………………1分 ∴∠1=45°. ………………………………2分∵∠A=90°,∴∠2=∠1=45°.∴AD=AC . ……………………………………………………………………………… 3分 在Rt △ADC 中,根据勾股定理可得(舍负).…………………………………………… 4分 ∴AB=BD+AD=. ……………………………………………………………… 5分 22.解:16.如图2,当BA=DB 时,△ADB的周长为10+如图3,当AD=DB 时,△ADB 的周长为403.D D图3图2C BAA C B五、解答题(共3道小题,23小题6分,24,25小题每题8分,共 22 分) 23. (1)证明:Δ=)4(14)]15([22m m m +⨯⨯-+- =1692++m m=2)13(+m ………………………………………………………………1分∵无论m 取任何实数时,∴2)13(+m ≥0. ………………………………………………………………2分 即无论m 取任何实数时,原方程总有两个实数根.(2)解:解关于x 的一元二次方程04)15(22=+++-m m x m x ,得 1241x m x m ,==+. ……………………………………………4分 由题意得 38418413m m m m ,,或,.⎧⎧><⎨⎨+<+>⎩⎩ ………………………………………5分 解之得无解或821<<m . ∴m 的取值范围是821<<m . ………………………………………………………6分24.解:1<AD <4. ………………………………………………………………………1分(1) ①如图2,延长FD 到G ,使得DG =DF ,连接BG 、EG .∵BD =DC ,∠1=∠2,∴△BDG ≌△CDF (SAS ).∴CF =BG . …………………………………2分 ∵ED ⊥DF ,DG =DF ,∴ED 是GF 的垂直平分线.∴EG =EF . ……………………………………3 分 在△BEG 中, ∵BE +BG >EG ,∴BE +CF >EF . ……………………………………………………………4分 ②BE 2+CF 2=EF 2. ……………………………………………………………5分21G图2FA BCDEM 321图2EF D CBA321图1EF D CBA (2) BE +CF =EF . ……………………………………………………………………………………6分如图3,延长AB 到G ,使得BG =CF ,连接DG .∴∠ABD +∠GBD =180°. ∵∠ABD +∠C =180°, ∴∠GBD =∠C .又∵DB =DC , ∴△BDG ≌△CDF (SAS ). …………………………7分∴GD =DF ,∠1=∠2.依题意可知:∠EDF =60°, ∴∠3+∠2=∠BDC -∠EDF =60°.∴∠GDE =∠3+∠1 =60°=∠EDF .又∵DE =DE ,∴△EDG ≌△EDF (SAS ).∴EF =EG =BE +BG =BE +FC . ……………………………………………………………………8分25.解:(1)如图1,∵△CDE 为等腰直角三角形,CD 为腰, ∴∠DCE=90°,CD=CE . ∵∠ABC=90°, EF ⊥BC 于F ,∴∠B=∠CFE= 90°. ∴∠1+∠2=∠3+∠2= 90°.∴∠1=∠3. 在△DBC 与△CFE 中,∠1=∠3,∠B=∠CFE ,CD=CE ,∴△DBC ≌△CFE (AAS ). ……………… 2分(2) 如图2,由(1)得△DBC ≌△CFE ,∴BC=FE ,DB=CF .∵△ABC 为等腰直角三角形, ∴AB=BC .∴AB =EF , BF=AD在△ABM 与△EFM 中, ∠B=∠MFE = 90°,∠AMB=∠EMF ,AB =EF , ∴△ABM ≌△EFM (AAS ). ∴BM=FM . ∴BF=2BM .∵BF=AD , ∴AD=2BM .∴ADBM=2. ……………………………………………………5分 (3)如图3,当点D 在边AB 上运动时,式子-HE GDGH的值不会发生变化. 过点C 作CK ⊥AC 交HE 于点K . ∵∠DCE=90°,∴∠1+∠DCK=∠2+∠DCK =90°.312G 图3AC FE B D∴∠1=∠2.∵CE⊥EH,DG⊥DC,∴∠3=∠CEH=90°.在△CGD与△CKE中,∠1=∠2, CD=CE,∠3=∠CEK=90°,∴△CGD≌△CKE(ASA).∴GD=KE,CG=CK.∵△ABC为等腰直角三角形,∴∠GCB=45°.∴∠4=45°.∴∠GCB=∠4.在△CGH与△CKH中,CG=CK,∠GCB=∠4,CH=CH,∴△CGH≌△CKH(SAS).∴HG=HK.∴HK =HE-KE=HE-GD.∴-1HE GDGH.……………………………………………………………………8分即当点D在边AB上运动时,式子-HE GDGH的值不会发生变化.4321K图3AB CDGH。

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P

M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111

2019-2020学年中山市八年级下期末考试数学试题(有答案)

2019-2020学年中山市八年级下期末考试数学试题(有答案)

广东省中山市八年级(下)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.下列式子为最简二次根式的是()A.B.C.D.2.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.93.下列各比值中,是直角三角形的三边之比的是()A.1:2:3B.2:3:4C.3:4:6D.1::24.下列各式计算正确的是()A.B.C.3+=3D.=﹣25.如图,在▱ABCD中,∠A=140°,则∠B的度数是()A.40°B.70°C.110°D.140°6.鞋店老板去进货时,他必须了解近期各种尺码的鞋销售情况,他应该最关心统计量中的()A.众数B.中位数C.平均数D.方差7.下列条件中,不能判定一个四边形为平行四边形的是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.一组对边平行,另一组对边相等8.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=19.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.710.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大二、填空题(共6个小题,每小题4分,满分24分)11.在函数y=中,自变量x的取值范围是.12.若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是.13.将函数y=的图象向上平移个单位后,所得图象经过点(0,1).14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.15.如图,在△ABC中,AB=3,AC=5,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为.16.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.三、解答题(一)(共3个小题,每小题6分,满分18分)17.计算:(2+)(2﹣)+(﹣)÷.18.如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式.(2)根据函数图象,直接写出y<2时x的取值范围.19.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?四、解答题(二)(共3个小题,每小题7分,满分21分)20.如图,∠B=90°,AB=4,BC=3,CD=l2,AD=13,点E是AD的中点,求CE的长.21.甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.根据以上信息,整理分析数据如下:队员平均/环中位数/环众数/环甲7b7乙a7.5c(1)写出表格中的a、b、c的值;(2)已知乙队员射击成绩的方差为 4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.22.如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形.五、解答题(三)(共3个小题,每小题9分,满分27分)23.某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y 元.(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?24.如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB的中点,连接AH、DE、EF、FG、GD,其中HA=BC.(1)证明:四边形DEFG为菱形;(2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由.25.如图,把矩形OABC放入平面直角坐标系xO中,使OA、OC分别落在x、y轴的正半轴上,其中AB =15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点B的坐标;(2)求EA的长度;(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.广东省中山市八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.9【分析】根据这组数据是从大到小排列的,找出最中间的数即可.【解答】解:∵9,8,8,6,9,5,7,从大到小排列为9,9,8,8,7,6,5,∴处于最中间的数是8,∴这组数据的中位数是8;故选:C.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.3.下列各比值中,是直角三角形的三边之比的是()A.1:2:3B.2:3:4C.3:4:6D.1::2【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵x+2x=3x,∴三条线段不能组成三角形,不能组成直角三角形,故A选项错误;B、∵(2x)2+(3x)2≠(4x)2,∴三条线段不能组成直角三角形,故B选项错误;C、∵(3x)2+(4x)2≠(6x)2,∴三条线段不能组成直角三角形,故C选项错误;D、∵x2+(x)2=(2x)2,∴∴三条线段能组成直角三角形,故D选项正确;故选:D.【点评】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.下列各式计算正确的是()A.B.C.3+=3D.=﹣2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵不能合并,故选项A错误,∵=6,故选项B正确,∵3+不能合并,故选项C错误,∵=2,故选项D错误,故选:B.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.如图,在▱ABCD中,∠A=140°,则∠B的度数是()A.40°B.70°C.110°D.140°【分析】根据平行四边形的性质,邻角互补,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=140°,∴∠B=40°,故选:A.【点评】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.6.鞋店老板去进货时,他必须了解近期各种尺码的鞋销售情况,他应该最关心统计量中的()A.众数B.中位数C.平均数D.方差【分析】根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.【解答】解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最关心的统计量应该是众数.故选:A.【点评】此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.下列条件中,不能判定一个四边形为平行四边形的是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.一组对边平行,另一组对边相等【分析】根据平行四边形的判定方法一一判断即可;【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项不符合题意;B、两组对角分别相等的四边形是平行四边形,故本选项不符合题意;C、对角线互相平分的四边形是平行四边形,故本选项不符合题意;D、四边形可能是等腰梯形,本选项符合题意;故选:D.【点评】本题考查平行四边形的判定方法,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.8.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=1【分析】根据正比例函数的性质直接解答即可.【解答】解:A.图象经过原点,错误;B.y随x的增大而减小,错误;C、图象经过第二、四象限,正确;D.当x=时,y=﹣1,错误;故选:C.【点评】本题考查了正比例函数的性质,解题的关键是了解正比例函数的比例系数的符号与正比例函数的关系,难度不大.9.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.7【分析】12和5为两条直角边长时,求出小正方形的边长7,即可利用勾股定理得出EF的值.【解答】解:∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12﹣5=7,∴EF=;故选:C.【点评】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.10.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大【分析】根据一次函数图象上点的坐标特征可设出点C的坐标为(m,﹣m+4)(0≤m≤2),根据矩形的=4,此题得解.周长公式即可得出C矩形CDOE【解答】解:设点C的坐标为(m,﹣m+4)(0<m<4),则CE=m,CD=﹣m+4,∴C=2(CE+CD)=8(当m=0或4时,C与A或B重合,2AO或2BO=8).矩形CDOE故选:B.【点评】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.二、填空题(共6个小题,每小题4分,满分24分)11.在函数y=中,自变量x的取值范围是x≥﹣1.【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x+1≥0,解得,x≥﹣1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是5.【分析】根据题意可以求得x的值,从而可以求的这组数据的众数.【解答】解:∵一组数据1,3,x,4,5,6的平均数是4,∴,解得,x=5,∴这组数据是1,3,5,4,5,6,∴这组数据的众数是5,故答案为:5.【点评】本题考查众数、算术平均数,解答本题的关键是明确题意,利用众数的知识解答.13.将函数y=的图象向上平移3个单位后,所得图象经过点(0,1).【分析】按照“左加右减,上加下减”的规律,可设新函数解析式为y=+b,然后将点(0,1)代入其中,即可求得b的值.【解答】解:设平移后的解析式是:y=+b.∵此函数图象经过点(0,1),∴1=﹣2+b,解得b=3.故答案是3.【点评】本题主要考查一次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了2cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.15.如图,在△ABC中,AB=3,AC=5,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为8.【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.【解答】解:∵BD=AD,BE=EC,∴DE=AC=2.5,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=1.5,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=8.故答案为:8【点评】本题考查三角形中位线定理、平行四边形的判定和性质等知识,解题的关键是出现中点想到三角形中位线定理,记住三角形中位线平行于第三边且等于第三边的一半,属于中考常考题型.16.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.【分析】先根据菱形的性质得OA=OC=4,OB=OD=3,AC⊥BD,再利用勾股定理计算出AB=5,然后根据菱形的面积公式得到•AC•BD=DH•AB,再解关于DH的方程即可.【解答】解:∵四边形ABCD是菱形,∴OA=OC=4,OB=OD=3,AC⊥BD,在Rt△AOB中,AB==5,∵S=•AC•BD,菱形ABCDS=DH•AB,菱形ABCD∴DH•5=•6•8,∴DH=.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.三、解答题(一)(共3个小题,每小题6分,满分18分)17.计算:(2+)(2﹣)+(﹣)÷.【分析】根据平方差公式和多项式除以单项式可以解答本题.【解答】解:(2+)(2﹣)+(﹣)÷=4﹣3+2﹣=3﹣.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.18.如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式.(2)根据函数图象,直接写出y<2时x的取值范围.【分析】(1)将(﹣2,0)、(2,2)两点代入y=kx+b,解得k,b,可得直线l的解析式;(2)根据函数图象可以直接得到答案.【解答】解:(1)将点(﹣2,0)、(2,2)分别代入y=kx+b,得:,解得.所以,该一次函数解析式为:y=x+1;(2)由图象可知,当y<2时x的取值范围是:x<2.【点评】本题主要考查了待定系数法求一次函数的解析式,利用代入法是解答此题的关键.19.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据加权平均数的计算公式分别进行解答即可.【解答】解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分),∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.【点评】本题主要考查平均数,解题的关键是熟练掌握算术平均数和加权平均数的计算公式.四、解答题(二)(共3个小题,每小题7分,满分21分)20.如图,∠B=90°,AB=4,BC=3,CD=l2,AD=13,点E是AD的中点,求CE的长.【分析】先由勾股定理求得AC的长度,再根据勾股定理的逆定理判定△ADC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴,∵CD=12,AD=13,∵AC2+CD2=52+122=169,AD2=169,∴AC2+CD2=AD2,∴∠C=90°,∴△ACD是直角三角形,∵点E是AD的中点,∴CE=.【点评】本题考查的是勾股定理,勾股定理的逆定理及直角三角形的性质,能根据勾股定理的逆定理判断出△ADC是直角三角形是解答此题的关键.21.甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.根据以上信息,整理分析数据如下:队员平均/环中位数/环众数/环甲7b7乙a7.5c(1)写出表格中的a、b、c的值;(2)已知乙队员射击成绩的方差为 4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.【分析】(1)利用加权平均数的计算公式、中位数、众数的概念解答;(2)利用方差的计算公式求出S甲2,根据方差的性质判断即可.【解答】解:(1)a=(3+6+4+8+7+8+7+8+10+9)=7,b=7,c=8;(2)S甲2=×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×1]=1.2,则S甲2<S乙2,∴甲队员的射击成绩较稳定.【点评】本题考查的是加权平均数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.22.如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形.【分析】可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=AD,FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.【点评】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.五、解答题(三)(共3个小题,每小题9分,满分27分)23.某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y 元.(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?【分析】(1)分别根据:未超过20吨时,水费y=2×相应吨数;超过20吨时,水费y=2×20+超过20吨的吨数×2.5;列出函数解析式;(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,然后依据两个月共交水费95元列方程求解即可.【解答】解:(1)当0≤x≤20时,y=2x;当x>20时,y=2×20+2.5(x﹣20)=2.5x﹣10;(2)设该户居民5月份用水x吨,则6月份用水量为(45﹣m)吨,.根据题意,得:2m+2.5(45﹣m)﹣10=95,解得:m=15.答:该户居民5月份用水15吨,6月份用水量为30吨.【点评】本题考查了一次函数的应用、一元一次方程的应用;得到用水量超过20吨的水费的关系式是解决本题的关键.24.如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB的中点,连接AH、DE、EF、FG、GD,其中HA=BC.(1)证明:四边形DEFG为菱形;(2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由.【分析】(1)利用三角形中位线定理推知ED∥FG,ED=FG,则由“对边平行且相等的四边形是平行四边形”证得四边形DEFG是平行四边形,同理得EF=HA=BC=DE,可得结论;(2)AC=AB时,四边形DEFG为正方形,通过证明△DCB≌△EBC(SAS),得HC=HB,证明对角线DF=EG,可得结论.【解答】(1)证明:∵D、E分别为AC、AB的中点,∴ED∥BC,ED=BC.同理FG∥BC,FG=BC,∴ED∥FG,ED=FG,∴四边形DEFG是平行四边形,∵AE=BE,FH=BF,∴EF=HA,∵BC=HA,∴EF=BC=DE,∴▱DEFG是菱形;(2)解:猜想:AC=AB时,四边形DEFG为正方形,理由是:∵AB=AC,∴∠ACB=∠ABC,∵BD、CE分别为AC、AB边上的中线,∴CD=AC,BE=AB,∴CD=BE,在△DCB和△EBC中,∵,∴△DCB≌△EBC(SAS),∴∠DBC=∠ECB,∴HC=HB,∵点G、F分别为HC、HB的中点,∴HG=HC,HF=HB,∴GH=HF,由(1)知:四边形DEFG是菱形,∴DF=2FH,EG=2GH,∴DF=EG,∴四边形DEFG为正方形.【点评】本题考查了平行四边形、矩形的判定、菱形的判定、正方形的判定、三角形的中位线性质定理,三角形中线的性质及等腰三角形的性质,其中三角形的中位线的性质定理为证明线段相等和平行提供了依据.25.如图,把矩形OABC放入平面直角坐标系xO中,使OA、OC分别落在x、y轴的正半轴上,其中AB =15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点B的坐标;(2)求EA的长度;(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.【分析】(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;(2)在Rt△BCD中,BC=9,BD=AB=15,KDCD==12,TCOD=15﹣12=3,设DE=AE =x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;【解答】解:(1)∵AB=15,四边形OABC是矩形,∴OC=AB=15,∴C(0,15),代入y=y=﹣x+b得到b=15,∴直线AC的解析式为y=﹣x+15,令y=0,得到x=9,∴A(9,0),B(9,15).(2)在Rt△BCD中,BC=9,BD=AB=15,∴CD==12,∴OD=15﹣12=3,设DE=AE=x,在Rt△DEO中,∵DE2=OD2+OE2,∴x2=32+(9﹣x)2,∴x=5,∴AE=5.(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.∵E(4,0),∴E′(﹣4,0),设直线BE′的解析式为y=kx+b,则有,解得,∴直线BE′的解析式为y=x+,∴P(0,).【点评】本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.。

人教版2019-2020年八年级下期末考试数学试题(含答案)

人教版2019-2020年八年级下期末考试数学试题(含答案)

人教版2019-2020年八年级下期末考试数学试题(含答案)八年级(下)期末数学试卷一、选择题(请将题中唯一正确的答案序号填入题后的括号内;不填、错填或多填均不得分,每小题3分,共21分)1.下列各式中是二次根式的是()A.B.C.D.2.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:23.点M在一次函数y=2x﹣1的图象上,则M的坐标可能为()A.(1,1) B.(1,﹣1)C.(﹣2,0)D.(2,0)4.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米5.若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.476.小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为()7.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B 的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,) C.(﹣,1) D.(﹣,2)二、填空题(每小题3分,共24分)8.若式子在实数范围内有意义,则x的取值为.9.一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:.10.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.11.一组数据2,3,x,5,7的平均数是4,则这组数据的众数是.12.直角三角形的两边长分别为5和4,则该三角形的第三边的长为.13.如图,直线y=kx+b(k≠0)与x轴的交点为(2,0),与y 轴的交点为(0,3),则关于x的不等式0<kx+b<3的解集是.。

2019-2020学年度人教版八年级数学期末考试题(有答案)

2019-2020学年度人教版八年级数学期末考试题(有答案)

2019-2020学年度人教版八年级数学期末考试题(有答案)学校:___________姓名:___________班级:___________考号:___________一、选择题 )①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.A .4个B .3个C .2个D .1个2.如图,将一副三角板按图中方式叠放,则角α等于( )A .30°B .45°C .60°D .75° 3.当3=a 时,化简121112+-÷⎪⎭⎫ ⎝⎛-+a a a a 的结果是 A .2 B .3 C .4 D .54.如图,AB 的中垂线为CP 交AB 于点P ,且AC=2CP .甲、乙两人想在AB 上取D 、E 两点,使得AD=DC=CE=EB ,其作法如下:甲作∠ACP、∠BCP 的角平分线,分别交AB 于D 、E 两点,则D 、E 即为所求;乙作AC 、BC 的中垂线,分别交AB 于D 、E 两点,则D 、E 即为所求.对于甲、乙两人的作法,下列正确的是( )A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确5.下列图形中,既是轴对称图形,又是中心对称图形的是( )6.下列计算正确的是( )A.2x 3·3x 4=5x 7B. 4a 3·2a 2=8a 5C.2a 3+3a 3=5a 6D.12x 3÷4x 3=3x 37.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB 、AC 上,则∠1+∠2等于( )A .130°B .230°C .180°D .310°8.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.51562x x+=B.51562x x-=C.55102x x+=D.55102x x-=9.如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是().A.60° B.80° C.100° D.120°10.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD11.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是().A.1对 B.2对 C.3对 D.4对12.(3分)(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值().2 D.1二、填空题13.分式方程的解为.14.观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2 (a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=____.15.分式方程473x x=-的解是.16.已知a2﹣b2=6,a﹣b=1,则a+b= .17.△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠A=°.18.方程3221xx=-的解是.19.若关于x 的方程2222x m x x ++=--的解为正数,则m 的取值范围是__. 20.引发春季传染病的某种病毒的直径是0.00000027米,数据0.00000027用科学记数法三、计算题(1)103×97(2)(2a ﹣b )2+2a (2b ﹣a )(3)(3﹣1﹣1)0﹣2﹣3+(﹣3)2﹣()﹣1(4)[(x+y )2﹣(x﹣y )2]÷(2xy ) 22.(﹣2016)0+||﹣(13)﹣1.23.计算:.1112122-÷+--a a a a = .四、解答题25.(1)当x=2014时,求代数式2014)32(3)32)(3(2322+--+---x x x x x x x 的值.(2)x xy x y y y x 2]8)4()2[(2÷-+-+,其中2=x ,2-=y26.如图,△ABC 中,BD 、CE 分别是AC 、AB 上的高,BD 与CE 交于点O ,BE=CD 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长春外国语学校2016-2017学年第一学期期末考试初二年级
2019-2020年初二数学期末试卷有答案
本试卷包括两道大题,共24道小题。

共6页。

全卷满分120分。

考试时间为120分钟。

考试结束后,将答题卡交回。

注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共24分) 1.-64的立方根是( )
A .-4
B .8
C .-4和4
D . -8和8 2.若m -3为二次根式,则m 的取值为( )
A .m≤3
B .m <3
C .m≥3
D .m >3
3.如图,在△ABC 中,AB=AC ,∠A=︒40,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连结BE ,则∠CBE 的度数为( )
A .︒70
B .︒80
C .︒40
D .︒30
第3题图
4.如果a 、b 、c 是一个直角三角形的三边,则a ,b ,c 可能为 ( ) A .1,2,4
B .1,3,5
C .3,4,7
D .5,12, 13
第5题图
S 3S 2
S 1
C
B
A
D
C
A 5. 如图,要测量河两岸相对的两点A 、
B 的距离,先在AB 的垂线BF 上取两点
C 、
D ,使BC =CD ,再作出BF 的垂线D
E ,使点A 、C 、E 在同一条直线上(如图所示),可以说明△ABC ≌△EDC ,得AB =DE ,因此测得DE 的长就是AB 的长,判定△ABC ≌△EDC ,最恰当的理由是( ) A .边角边 B .角边角 C .边边边 D .边边角
第6题图 第8题图
6.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ). A .4 B .3 C .5
2
D .2
7. 小明统计了他家今年11月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20 频数(通话次数)
19
16
5
10
则通话时间不超过15min 的频率为( )
A .0.1
B .0.4
C .0.5
D .0.8
8.如图所示,以Rt △ABC 的三边向外作正方形,其面积分别为S 1,S 2,S 3且1234,8,S S S ===则( )
A .4
B .8
C .12
D .32
二、填空题(每小题3分,共18分)
9.因式分解: ap an am ++= .
10.计算:5
3a a ⋅= .
11.25的平方根是 .
12.若代数式x x ---22有意义,则x 的值为 .
13.如图,△ABC 中,∠C =︒90,AB =10,AD 是△ABC 的一条角平分线,若CD =3,则 △ABD 的面积为 .
14.如图,90,4,3,12C ABD AC BC BD ︒
∠=∠====,则AD= .
第13题图 第14题图 三、计算题(每小题6分,共24分) 15.()43-•a a 16. ()
xy y x y x
÷+223
2
17.49321621•⎪⎭⎫
⎝⎛-
18.因式分解 x x 43-
四、解答题:(每小题8分,共32分)
19..先化简,再求值()()y x x y x +-+22
,其中x=3,y=2.
20.已知:5=+b a ,1022=-b a ,求b a -的值.
21.如图,BD、CE是△ABC的高,且AE=AD,求证:AB=AC.
第21题图
22.如图,延长□ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E 和C、F.求证:AE=CF.
第22题图
五、解答题(23题10分,24题12分,共22分)
23.某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.
第23题图
请根据所给信息解答下列问题:
(1)求本次抽取的学生人数;
(2)补全条形图,在扇形统计图中的横线上填上正确的数值;
(3)该校有3000名学生,求该校喜爱娱乐节目的学生大约有多少人.
90,AB=7cm,AC=25cm.点P从点A沿AB方向以1cm/s的速24.如图,在Rt△ABC中,∠B=
度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.
(1)求BC的长.
(2)若运动2s时,求P、Q两点之间的距离.
(3)P、Q两点运动几秒,AP=CQ.
第24题图
答案:一、1.A 2.A 3.D 4.D 5.A 6.B 7.D 8.C
二、9.a(m+n+p) 10.a811. ±5 12.x=2 13.15 14.13
三、15.3a2-12a 16.x2+2xy 17.0 18.x(x+2)(x-2)
四、19.-x2+y2,-5 20.221.略22.略
24五、23.(1)50 (2)30% (3)1080 24.(1)24 (2)13 (3)
7
数学试题第2页(共4页)。

相关文档
最新文档