2020年安阳市九年级数学下期末第一次模拟试卷(及答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.C
解析:C 【解析】 【分析】 蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求 其对角线,比较大小即可求得最短路程. 【详解】
如图所示,路径一:AB 22 (11)2 2 2 ; 路径二:AB (2 1)2 12 10 . ∵ 2 2< 10 ,∴蚂蚁爬行的最短路程为 2 2 .
9.B
解析:B 【解析】 【分析】 【详解】
过 P 作 PQ∥DC 交 BC 于点 Q,由 DC∥AB,得到 PQ∥AB, ∴四边形 PQCD 与四边形 APQB 都为平行四边形, ∴△PDC≌△CQP,△ABP≌△QPB, ∴S△PDC=S△CQP,S△ABP=S△QPB, ∵EF 为△PCB 的中位线, ∴EF∥BC,EF= 1 BC,
3.A
解析:A 【解析】 试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50= ;
∵这组样本数据中,3 出现了 17 次,出现的次数最多, ∴这组数据的众数是 3; ∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 2, ∴这组数据的中位数为 2, 故选 A. 考点:1.方差;2.加权平均数;3.中位数;4.众数.
1 x(x﹣1)=36, 2
故选:A. 【点睛】 此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.
7.B
解析:B 【解析】 【分析】
根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到 m 2 0 ,
3 m≥0 , 3 m 2 4m 2 1 0 ,然后解不等式组即可. 4
25.已知抛物线 y=ax2﹣ 1 x+c 经过 A(﹣2,0),B(0,2)两点,动点 P,Q 同时从原点出发 3
均以 1 个单位/秒的速度运动,动点 P 沿 x 轴正方向运动,动点 Q 沿 y 轴正方向运动,连接 PQ,设运动时间为 t 秒 (1)求抛物线的解析式;
(2)当 BQ= 1 AP 时,求 t 的值; 3
16.使分式
的值为 0,这时 x=_____.
17.分式方程 3 2x + 2 =1 的解为________. x2 2x
18.如图,在平行四边形 ABCD 中,连接 BD,且 BD=CD,过点 A 作 AM⊥BD 于点
M,过点 D 作 DN⊥AB 于点 N,且 DN= 3 2 ,在 DB 的延长线上取一点 P,满足∠ABD
C. x(x y) y( y x) (x y)2
D. x2 4x 4 (x 2)(x 2)
二、填空题
13.计算:2cos45°﹣(π+1)0+ 1 ( 1 )1 =______. 42
14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的 概率是 0.2,摸出白球的概率是 0.5,那么摸出黑球的概率是 . 15.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆 AB 的影子一部分落在水平地面 L 的影长 BC 为 5 米,落在斜坡上的部分影长 CD 为 4 米.测得 斜 CD 的坡度 i=1: .太阳光线与斜坡的夹角∠ADC=80°,则旗杆 AB 的高度 _____.(精确到 0.1 米)(参考数据:sin50°=0.8,tan50°=1.2, =1.732)
2.C
解析:C 【解析】 【分析】 【详解】 试题分析:∵在矩形 ABCD 中,AE 平分∠BAD, ∴∠BAE=∠DAE=45°, ∴△ABE 是等腰直角三角形,
∴AE= 2 AB, ∵AD= 2 AB,
∴AE=AD, 又∠ABE=∠AHD=90° ∴△ABE≌△AHD(AAS), ∴BE=DH, ∴AB=BE=AH=HD,
2020 年安阳市九年级数学下期末第一次模拟试卷(及答案)
一、选择题
1.下列计算正确的是( )
A.2a+3b=5ab
B.( a-b )2=a 2-b 2 C.( 2x 2 )3=6x 6
D.x8÷x3=x5
2.如图,在矩形 ABCD 中,AD= 2 AB,∠BAD 的平分线交 BC 于点 E,DH⊥AE 于点
A. 1 x x 1 36
2
C. x x 1 36
B. 1 x x 1 36
2
D. x x 1 36
7.方程 (m 2)x2 3 mx 1 0 有两个实数根,则 m 的取值范围( ) 4
A. m 5 2
B. m 5 且 m 2 C. m 3 2
D. m 3 且 m 2
【详解】 解:根据题意得
m2 0, 3m≥0 ,
3 m 2 4m 2 1 0 , 4 解得 m≤ 5 且 m≠2.
2
故选 B.
8.D
解析:D 【解析】 【分析】 根据从上边看得到的图形是俯视图,可得答案. 【详解】 解:从上边看是一个圆形,圆形了简单组合体的三视图,从上边看得到的图形是俯视图.
B.12
C.6
D.3
10.某商品的标价为 200 元,8 折销售仍赚 40 元,则商品进价为( )元.
A.140
B.120
C.160
D.100
11.下列各式化简后的结果为 3 2 的是( )
A. 6
B. 12
12.下列分解因式正确的是( )
C. 18
D. 36
A. x2 4x x(x 4)
B. x2 xy x x(x y)
故选 C.
【点睛】 本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面 几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.
6.A
解析:A 【解析】 【分析】 共有 x 个队参加比赛,则每队参加(x-1)场比赛,但 2 队之间只有 1 场比赛,根据共安排
36 场比赛,列方程即可. 【详解】 解:设有 x 个队参赛,根据题意,可列方程为:
级 300 名学生读书情况,随机调查了八年级 50 名学生读书的册数,统计数据如下表所
示:
册数 0
1
2
3
4
人数 4
12
16
17
1
关于这组数据,下列说法正确的是( )
A.中位数是 2
B.众数是 17
C.平均数是 2
D.方差是 2
4.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所示,则该
上,设点 M 坐标为(a,b),则 y=﹣abx2+(a+b)x 的顶点坐标为

三、解答题
21.计算: 31 2 1 2sin45 (2 π)0 .
22.某小微企业为加快产业转型升级步伐,引进一批 A,B 两种型号的机器.已知一台 A 型机器比一台 B 型机器每小时多加工 2 个零件,且一台 A 型机器加工 80 个零件与一台 B 型机器加工 60 个零件所用时间相等. (1)每台 A,B 两种型号的机器每小时分别加工多少个零件?
2 ∴△PEF∽△PBC,且相似比为 1:2, ∴S△PEF:S△PBC=1:4,S△PEF=3,
8.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )
A.
B.
C.
D.
9.如图,P 为平行四边形 ABCD 的边 AD 上的一点,E,F 分别为 PB,PC 的中点,△PEF,
△PDC,△PAB 的面积分别为 S, S1 , S2 .若 S=3,则 S1 S2 的值为( )
A.24
=∠MAP+∠PAB,则 AP=_____.
19.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区
覆盖总人口约为 4400000000 人,将数据 4400000000 用科学记数法表示为______.
20.已知 M、N 两点关于 y 轴对称,且点 M 在双曲线 y 1 上,点 N 在直线 y=﹣x+3 2x
4.B
解析:B 【解析】 【分析】 根据平均数的定义进行求解即可得. 【详解】 根据折线图可知该球员 4 节的得分分别为:12、4、10、6,
所以该球员平均每节得分= 12 4 10 6 =8, 4
故选 B. 【点睛】 本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求 解方法.
(3)随着点 P,Q 的运动,抛物线上是否存在点 M,使△MPQ 为等边三角形?若存在,请求 出 t 的值及相应点 M 的坐标;若不存在,请说明理由.
26.已知 n 边形的内角和 θ=(n-2)×180°. (1)甲同学说,θ 能取 360°;而乙同学说,θ 也能取 630°.甲、乙的说法对吗?若对,求
∴∠ADE=∠AED= 1 (180°﹣45°)=67.5°, 2
∴∠CED=180°﹣45°﹣67.5°=67.5°, ∴∠AED=∠CED,故①正确;
∵∠AHB= 1 (180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等), 2
∴∠OHE=∠AED, ∴OE=OH, ∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°, ∴∠OHD=∠ODH, ∴OH=OD, ∴OE=OD=OH,故②正确; ∵∠EBH=90°﹣67.5°=22.5°, ∴∠EBH=∠OHD, 又 BE=DH,∠AEB=∠HDF=45° ∴△BEH≌△HDF(ASA), ∴BH=HF,HE=DF,故③正确; 由上述①、②、③可得 CD=BE、DF=EH=CE,CF=CD-DF, ∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确; ∵AB=AH,∠BAE=45°, ∴△ABH 不是等边三角形, ∴AB≠BH, ∴即 AB≠HF,故⑤错误; 综上所述,结论正确的是①②③④共 4 个. 故选 C. 【点睛】 考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角 形的判定与性质
(2)若∠ACB=30°,菱形 OCED 的而积为 8 3 ,求 AC 的长.
24.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点 D,DE⊥BC 于点 E. (1)试判断 DE 与⊙O 的位置关系,并说明理由;
(2)过点 D 作 DF⊥AB 于点 F,若 BE=3 3 ,DF=3,求图中阴影部分的面积.
出边数 n.若不对,说明理由; (2)若 n 边形变为(n+x)边形,发现内角和增加了 360°,用列方程的方法确定 x.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 分析:A.原式不能合并,错误;
B.原式利用完全平方公式展开得到结果,即可做出判断; C.原式利用积的乘方运算法则计算得到结果,即可做出判断; D.原式利用同底数幂的除法法则计算得到结果,即可做出判断. 详解:A.不是同类项,不能合并,故 A 错误; B.(a﹣b)2=a2﹣2ab+b2,故 B 错误; C.( 2x 2 )3=8x 6,故 C 错误; D.x8÷x3=x5,故 D 正确. 故选 D. 点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除 法,熟练掌握公式及法则是解答本题的关键.
(2)如果该企业计划安排 A,B 两种型号的机器共 10 台一起加工一批该零件,为了如期 完成任务,要求两种机器每小时加工的零件不少于 72 件,同时为了保障机器的正常运转, 两种机器每小时加工的零件不能超过 76 件,那么 A,B 两种型号的机器可以各安排多少 台? 23.矩形 ABCD 的对角线相交于点 O.DE∥AC,CE∥BD. (1)求证:四边形 OCED 是菱形;
H,连接 BH 并延长交 CD 于点 F,连接 DE 交 BF 于点 O,下列结论:①∠AED=∠CED;
②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A.2 个
B.3 个
C.4 个
D.5 个
3.在“朗读者”节目的影响下,某中学开展了“好 书伴我成长”读书活动.为了解 5 月份八年
球员平均每节得分为( )
A.7 分
B.8 分
C.9 分
D.10 分
5.如图,长宽高分别为 2,1,1 的长方体木块上有一只小虫从顶点 A 出发沿着长方体的外
表面爬到顶点 B,则它爬行的最短路程是( )
A. 10
B. 5
C. 2 2
D.3
6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛 36 场,设有 x 个队参 赛,根据题意,可列方程为()
相关文档
最新文档