2011年—2018年新课标全国卷1理科数学分类汇编——4.平面向量
2011-2018新课标全国卷高考数学考点汇总(理科)

离散型随机变量及其分布列
服从正态分布模型及数学期望
直线与椭圆的位置关系;探究直线斜率关系
20
解析几何与函数(轨迹、导数)
抛物线与直线位置关系(圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式等)
解析几何:轨迹方程(定义法)、韦达定理
圆与圆锥曲线的综合;抛物线的简单性质.
抛物线与过焦点弦长问题
几何概型
11
三角函数(性质)
球与空间几何体(锥体及其外接球的结构特征)
函数性质:数形结合
考察导数、函数的零点,意在考察学生综合运用数学知识解题能力及运算求解能力
借助着简单组合体的三视图考察球及圆柱的表面积
异面直线及其所成的角
指数与函数结合
双曲线
与二面角有关的立体几何综合题
空间面面垂直判定与性质;二面角余弦值
空间面面垂直判定与性质;线面角正弦值
19
统计概率(分布列)
立体几何线线垂直、二面角(空间直线与直线、直线与平面、平面与平面的位置关系;二面角的概念和计算)
统计与概率:独立重复试验概率、分布列
考察空间中的线面关系及其二面角的求解,意在考查空间想象能力及运算求解能力
正余弦定理的综合应用,数型结合思想
简单线性规划的应用
平面图形折叠后最大体积
三角函数最值
17
等比数列(列项求和)
解斜三角形(正余弦定理应用)
解三角形:正弦定理、余弦定理
考察等差数列,意在考察学生的运算求解能力、逻辑推理能力
递推公式和等差数列的通项公式;裂项消去法求其前n项和.
解三角形
三角函数与解三角形
2011-年高考新课标全国卷理科数学分类汇编

2011—2017年新课标全国卷理科数学【2018年】数学(2011—2017)真题分类汇编班级:姓名:砚山县第二高级中学王永富目录1、集合与常用逻辑用语……………………………………………………………………12、函数及其性质 (2)3、导数及其应用 (4)4、三角函数、解三角形..............................................................................115、平面向量 (16)6、数列 (17)7、不等式、线性规划、推理与证明 (20)8、立体几何 (22)9、解析几何……………………………………………………………………………………3010、统计、概率分布、计数原理 (40)11、复数及其运算………………………………………………………………………………5512、程序框图................................................................................................57 13、坐标系与参数方程.................................................................................60 14、不等式选讲 (66)1.集合与常用逻辑用语一、选择题【2017,1】已知集合{}1A x x =<,{}31xB x =<,则( )A.{|0}AB x x =< B.A B =R C.{|1}A B x x => D.A B =∅【2016,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则AB =( )A.)23,3(--B.)23,3(-ﻩC .)23,1(D.)3,23(【2015,3】设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n > B.n ∃∈N ,22n n ≤ C.n ∀∈N ,22n n ≤ D .n ∃∈N ,22n n =【2014,1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A ={x |x 2-2x >0},B ={x x },则( )A.A ∩B =B.A ∪B =R C .B ⊆A D.A⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A.3 B.6C.8 ﻩD.10(2017·2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A.{}1,3- B .{}1,0 C.{}1,3 D .{}1,5(2016·2)已知集合A={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( )A.{1}ﻩﻩﻩB.{1,2} ﻩC.{0,1,2,3}ﻩD.{-1,0,1,2,3}(2015·1)已知集合A ={-2,-1,0,2},B={x |(x-1)(x +2)<0},则A ∩B =( )A.{-1,0} ﻩB.{0,1} ﻩC .{-1,0,1}D.{0,1,2}(2014·1)设集合M={0, 1, 2},N ={}2|320x x x -+≤,则MN =( )A.{1}ﻩﻩB .{2}ﻩ C.{0,1}ﻩD.{1,2}(2013·1)已知集合M ={x|(x -1)2< 4, x ∈R},N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2} ﻩB .{-1, 0, 1, 2}ﻩC.{-1, 0, 2, 3}D .{0, 1, 2, 3}(2012·1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3 ﻩﻩﻩB. 6ﻩﻩﻩC. 8 ﻩﻩD. 10(2011·10)已知a 与b均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈⎥⎝⎦a b3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a bA. P 1,P4ﻩ B.P 1,P 3C.P2,P 3ﻩD.P 2,P 42.函数及其性质一、选择题【2017,5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =- ,则满足21()1x f --≤≤的x 的取值范围是( )A .[2,2]- ﻩB. [1,1]-ﻩC. [0,4]D. [1,3]【2017,11】设,,x y z 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3y C.3y <5z<2x D.3y <2x <5z【2016,7】函数xe x y -=22在]2,2[-的图像大致为( )A. B .C. D .【2016,8】若1>>b a ,10<<c ,则( )A .c c b a < B.c c ba ab < C.c b c a a b log log < ﻩD .c c b a log log < 【2014,3】设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B ﻩ.|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【2013,11】已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x)|≥ax ,则a的取值范围是( )A.(-∞,0] B .(-∞,1] C.[-2,1] D .[-2,0] 【2012,10】已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为( )【2011,12】函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( )A.2 B .4 C.6 D.8【2011,2】下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A.3y x = B.1y x =+ C.21y x =-+ D.2xy -=【2015,13】若函数f (x )=x ln (x +2a x +)为偶函数,则a =xy O 11A .1yxO 1xyO 111x y1O B .C .D .(2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A.0ﻩ B.m ﻩﻩ C.2m ﻩD.4m(2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>ﻩB .b c a >>ﻩﻩC.a c b >>D .a b c >>(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A.00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点,则0()0f x '=(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.3.导数及其应用一、选择题【2014,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 【2012,12】设点P在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( ) A.1ln2- ﻩB.2(1ln 2)- ﻩ C.1ln2+ ﻩﻩﻩD.2(1ln 2)+【2011,9】由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为( )A.103 B .4 C.163D.6 二、填空题【2017,16】如图,圆形纸片的圆心为O ,半径为5 cm,该纸片上的等边三角形A BC的中心为O .D 、E 、F 为圆O 上的点,△D BC ,△ECA ,△F AB 分别是以B C,CA ,A B为底边的等腰三角形.沿虚线剪开后,分别以B C, CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC .的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【2013,16】若函数f (x)=(1-x2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________.(2017·11)若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1- B.32e -- C.35e - D.1 (2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=- ,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A.0ﻩ B .m ﻩ C.2m ﻩ D .4m(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A.3 ﻩB.6 ﻩC .9ﻩﻩD .12(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BO P=x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A.ﻩﻩﻩB .ﻩ C.ﻩD.(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -= ,当x>0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( )A .(,1)(0,1)-∞-ﻩ ﻩ B.(1,0)(1,)-+∞C .(,1)(1,0)-∞--ﻩ ﻩD .(0,1)(1,)+∞(2014·8)设曲线y =ax -ln (x+1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0ﻩﻩB .1C .2ﻩD.3(2014·12)设函数()x f x m π=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A.(,6)(6,+)-∞-∞ﻩ B .(,4)(4,+)-∞-∞ C.(,2)(2,+)-∞-∞ D .(,1)(4,+)-∞-∞ (2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >> ﻩB .b c a >>C .a c b >> ﻩD .a b c >>(2012·12)设点P在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1-ﻩﻩB.)2ln 1(2-ﻩC. 2ln 1+D.)2ln 1(2+(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C.21y x =-+ﻩD.||2x y -=(2011·9)由曲线y =直线2y x =-及y轴所围成的图形的面积为( )A.103ﻩﻩ B .4ﻩC .163ﻩﻩ D .6 (2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A.2ﻩﻩB.4C .6ﻩD .8(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x-1)>0,则x 的取值范围是_________.(2016·16)若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x+1)的切线,则b = .三、解答题【2017,12】已知函数()()22xx f x aea e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【2016,12】已知函数2)1()2()(-+-=x a e x x f x有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x .【2015,12】已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值错误!未定义书签。
2011年高考新课标全国卷理科数学试题(附答案)

2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)复数212ii +=- (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是(A )120 (B ) 720 (C ) 1440 (D ) 5040 (4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B ) 12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ= (A ) 45-(B )35- (C ) 35 (D )45(6)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为(A (B (C ) 2 (D ) 3(8)51()(2)ax x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )40(9)曲线y =,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C ) 163(D ) 6 (10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题1:||1p +>a b ⇔2[0,)3πθ∈ 2:p ||+a b 1>⇔θ∈2(,]3ππ 3:||1p ->a b ⇔θ∈[0,)3π 4:||1p ->a b ⇔θ∈(,]3ππ其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-剟的图象所有交点的橫坐标之和等于(A )2 (B )4 (C )6 (D )8第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.(14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为.过点1F 的直线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,BC =锥O ABCD -的体积为_____________.(16)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为_________. 三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==. (I )求数列{}n a 的通项公式.(II )设31323log log log n n b a a a =+++ ,求数列1{}nb 的前n 项和.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD(I )证明:PA BD ⊥;(II )若PD AD =,求二面角A PB C --的余弦值.(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).(20)(本小题满分12分)在平面直角坐标系xOy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.(21)(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=.(I )求,a b 的值;(II )如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:,,,C B D E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .(24)(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >.(I )当1a =时,求不等式()32f x x ≥+的解集. (II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试(新课标全国卷)理科数学答案(1)C 【解析】212i i+-=(2)(12),5i i i ++=共轭复数为C . (2)B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .(3)B 【解析】框图表示1n n a n a -=⋅,且11a =所求6a =720,选B .(4)A 【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,选A . (5)B 【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .(6)D 【解析】条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
2011—2018年新课标全国卷1理科数学分类汇编——5.平面向量

一、选择题【2018,6】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 【2015,7】设D 为ABC ∆错误!未找到引用源。
所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-【2011,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是( )A .14,P PB .13,P PC .23,P PD .24,P P 二、填空题【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= .【2016,13】设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .【2014,15】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________. 【2012,13】已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________.一、选择题【2018,6】在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 解:2121+=+= )(21)(2121-++⨯⨯=4143-= 故选A 【2015,7】设D 为ABC ∆错误!未找到引用源。
2011—2018年新课标全国卷1理科数学分类汇编——9.解析几何

9.解析几何(含解析)一、选择题【2018,8】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN⋅= A .5B .6C .7D .8【2018,11】已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=A .32B .3C .D .4【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【2015,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(33-B .(66-C .(,33-D .(33- 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【2014,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .72 B .52C .3D .2【2013,4】已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x【2013,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【2012,4】设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .45【2012,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为( )AB .C .4D .8【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A B C .2 D .3 二、填空题【2017,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【2015,14】一个圆经过椭圆221164x y +=错误!未找到引用源。
2018全国卷高考复习平面向量(知识总结+题型)

第一部分平面向量的概念及线性运算向量a( a z 0)与b共线的充要条件是存在唯一一个实数入,使得bi a.【基础练习】1. 判断正误(在括号内打或“X”)⑴零向量与任意向量平行.()(2)若a// b, b// c,贝U a// c.()⑶向量云B与向量6D是共线向量,贝y A B, C, D四点在一条直线上.()(4)当两个非零向量a, b共线时,一定有b=入a,反之成立.()⑸在厶ABC中, D是BC中点,则A D= 2(心A B.()2. 给出下列命题:①零向量的长度为零,方向是任意的;②若③向量ABW BA相等.则所有正确命题的序号是()A.①B.③C.①③D.①②3.(2017•枣庄模拟)设D ABC所在平面内一点,K D= —4A C若目C= X D C X€ R), 则X =()A.2B.3C. —2D. —34.(2015 •全国n卷)设向量a, b不平行,向量入a+ b与a+ 2b平行,则实数X =5.(必修4P92A12改编)已知?ABCD勺对角线AC和BD相交于Q且OA= a,O B= b,则张 _____ BC= ______ (用a, b 表示).1 26.(2017 •嘉兴七校联考)设D, E分别是△ ABC的边AB BC上的点,AD= -AB BE=§BC若DE= 入l AB+ 入2AC 入 1 , 入2为实数),贝V 入 1 = _____________ , 入2= _______________ .考点一平面向量的概念【例1】下列命题中,不正确的是 _________ (填序号).①若I a| = |b| ,则a= b;②若A, B, C, D是不共线的四点,贝厂’AB=承”是“四边形ABCD为平行四边形”的充要条件;③若a= b, b= c,贝V a= c.【训练1】下列命题中,正确的是 _________ (填序号).①有向线段就是向量,向量就是有向线段;②向量a与向量b平行,则a与b的方向相同或相反;③两个向量不能比较大小,但它们的模能比较大小解析①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a与b中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;a, b都是单位向量,则a= b;考点三共线向量定理及其应用【例3】 设两个非零向量a 与b 不共线.(1)若 AB= a + b , BC= 2a + 8b , CD= 3( a — b ).求证:A, B , ⑵ 试确定实数k ,使ka + b 和a + kb 共线.【训练 3】已知向量 AB= a + 3b , BC= 5a + 3b , CD=- 3a + 3b ,则( )A.AB, C 三点共线 B.A, B, D 三点共线 C.A, C D 三点共线D.B, C, D 三点共线第二部分平面向量基本定理与坐标表示1. 平面向量的基本定理如果e 1, e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 对实数入1,入2,使a =入e+入2e 2.其中,不共线的向量 e 1, e 2叫做表示这一平面内所有向量的一组基底.2. 平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解3. 平面向量的坐标运算(1) 向量加法、减法、数乘向量及向量的模 设 a =(X 1, y” , b = (X 2, y 2),贝U③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小 答案③考点二平面向量的线性运算1【例2】(2017 •潍坊模拟)在厶ABC 中, P , Q 分别是AB BC 的三等分点,且 AP= 3AB BQ= 13BC 若AB= a , AC= b ,则 PQ=( )311 A ・3a +3b 1 1B. — 3a +3b 1 1 C.J a -3b1 1 D. - 3a — 3b【训练2】(1)如图,正方形 ABCDK 点 E 是DC 的中点, 靠近B 点的三等分点,那么 EF 等于(A .^AB ^2D 三点共线;a ,有且只有-点F 是BC 的一个A BC.a+ b= (x i + X2, y土y) , a—b= (x i—X2, y i—y2), X a=(入x i, hy , | a| = :x1+y?.(2) 向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标②设A(x i,y i),B(x?,y?),则AB= (x? —X i,y?—y i),| AB = : (x?—X i)?+( y? —y i) 24. 平面向量共线的坐标表示设a= (x i, y i) , b= (x?, y?),贝y a// b? x i y? —x?y i = o.【基础练习】i.(?0i7 •东阳月考)已知向量a= (2 , 4) , b= ( —1 , 1),则2a+ b 等于()A.(5 , 7)B.(5 , 9)C.(3 ,7)D.(3 , 9)2.(20i5 -全国I卷)已知点A(0 , i), B(3 , 2),向量AC= ( —4, —3),则向量BC=( )A.( —7,—4)B.(7 ,4)C.( —1,4)D.(i ,4)3.(20i6 -全国n卷)已知向量a= (m4) , b= (3 , —2),且a / b,则m=4.(必修4Pi0iA3改编)已知?ABCD勺顶点A—i, —2),耳3 , —i) , C(5 , 6),则顶点D的坐标为考点一平面向量基本定理及其应用【例1】(2014 •全国I卷)设D, E, F分别为△ ABC的三边BC CA AB的中点,贝U EB+ F C= ( )A.ADB.[A DC.1B CD. BC >4【训练1】如图,已知AB= a , AC= b , BD= 3DC用a , b表示AD则AD= __ .a DC"考点二平面向量的坐标运算【例2】(1)已知向量a = (5 , 2) , b= ( —4, —3) , c= (x , y),若3a—2b+ c = 0,则c =( ) A.( —23 , —12) B.(23 , 12)C.(7 , 0)D.( —7 , 0)【训练2】(1)已知点A— 1 , 5)和向量a= (2, 3),若AB= 3a ,则点B的坐标为()A.(7 , 4)B.(7 , 14)C.(5 , 4)D.(5 , 14)⑵(2015 •江苏卷)已知向量a= (2 , 1), b= (1 , —2).若na+ nb= (9 , —8)( m n € R),则m—n的值为_________ .考点三平面向量共线的坐标表示【例3】(1)已知平面向量a= (1 , 2), b= ( — 2 , m,且a / b,贝U 2a+ 3b= ___________(2)(必修4P101练习7改编)已知A (2 , 3) , B (4 , — 3),点P 在线段AB 的延长线上,且| AFf =|| Bp ,则点P 的坐标为 ____________单位向量是()⑵若三点A (1 , - 5),政a , — 2) , q — 2, - 1)共线,则实数a 的值为 _____________ .第三部分 平面向量的数量积及其应用1. 平面向量数量积的有关概念⑴ 向量的夹角:已知两个非零向量a 和b ,记O A a , O B- b ,则/ AOB- 0 (0 ° < 0 < 180°)叫做向量a 与b 的夹角.⑵ 数量积的定义:已知两个非零向量a 与b ,它们的夹角为 0,则数量| a || b |cos 0叫做a 与b 的数量积(或内积),记作a • b ,即a • b = | a || b |cos ___ 0,规定零向量与任一向量的数量积为0,即0 • a = 0.⑶数量积几何意义:数量积a • b 等于a 的长度| a |与b 在a 的方向上的投影| b |cos 0的乘积. 2. 平面向量数量积的性质及其坐标表示设向量a = (x i , y i ), b = (X 2, y 2), 0为向量a , b 的夹角.⑴ 数量积:a • b = | a || b |cos 0 = X 1X 2+ y i y 2.(2) 模:| a | = , a • a = , x i + y i . 亠宀 a • bX 1X 2+ y i y 2(3) 夹角:C0S 0= 1 冲=——2222.丨 a ll b | 寸x i + y i •寸X 2 + y 2⑷ 两非零向量 a 丄b 的充要条件:a • b = 0? X 1X 2+ y i y 2= 0.(5)| a • b | <| a || b |(当且仅当 a // b 时等号成立)? | X 1X 2+ yyl w 寸x ;+ y : • p x 2+ y 2. 3. 平面向量数量积的运算律:(1) a - b = b • a (交换律).(2)入a • b = X (a • b ) = a •(入b )(结合律).(3)( a + b ) - c = a - c + b - c (分配律). 【基础练习】1. (2015 •全国 n 卷)向量 a = (1 , — 1), b = ( — 1, 2),则(2a + b ) - a 等于( )A. — 1B.0C.1D.22. (2017 •湖州模拟)已知向量a , b ,其中|a | = 3, | b | = 2,且(a — b )丄a ,则向量a 和b 的 夹角是 ________ .2 n3. (2016 •石家庄模拟)已知平面向量a , b 的夹角为, |a | = 2,|b | = 1,则| a + b | = ________ .【训练3】 (1)(2017 •浙江三市十二校联考)已知点A (1 , 3) , B (4 , — 1),则与AB 同方向的3-4-- D4 - 53 - 5-3 - 5 -4 -4 - 5-3 - 5A35. (必修4P104例1改编)已知I a| = 5, | b| = 4, a与b的夹角0 = 120°,则向量b在向量a方向上的投影为 _________ .6. _______________________________________ (2017 •瑞安一中检测)已知a , b , c 是同一平面内的三个向量,其中 a = (1 , 2) , |b | = 1, 且a + b 与a — 2b 垂直,则向量 a • b =; a 与b 的夹角0的余弦值为 ________________________________ .【考点突破】考点一平面向量的数量积及在平面几何中的应用(用已知表示未知) 【例1】(1)(2015 •四川卷)设四边形ABCD 为平行四边形, 足B M= 3^C 6N = 2hf c 则 AM ・ NM 等于( ) A.20B. 15C.9D.6⑵(2016 •天津卷)已知△ ABC 是边长为1的等边三角形,点连接DE 并延长到点F ,使得DE= 2EF,则AF • BC 的值为(【训练1】(1)(2017 •义乌市调研)在Rt △ ABC 中 , / A = 90° , AB= AC= 2,点D 为AC 的中 点,点E 满足1BE= 3B C 则尺E ・E3D= _____⑵(2017 •宁波质检)已有正方形 ABC 啲边长为1,点E 是AB 边上的动点,贝U 0E- CB 勺值为 ________ ; 6E - [5C 的最大值为 ______ . 考点二平面向量的夹角与垂直【例2】(1)(2016 •全国n 卷)已知向量a = (1 , m ) , b = (3 , — 2),且(a + b )丄b ,则 作( )A. — 8B. — 6C.6D.8⑵ 若向量a = (k , 3), b = (1 , 4), c = (2, 1),已知2a — 3b 与c 的夹角为钝角,贝U k 的取值 范围是_______________ .【训练2】(1)(2016 •全国川卷)已知向量BA= 1 ,右3 , BC= , 2 ,则/ ABC=()A.30 °B.45 °C.60°D.120°2 2 2(2)(2016 •全国I 卷)设向量 a = (m 1) , b = (1 , 2),且 |a + b | = | a | + | b | ,贝 Um ^ .考点三平面向量的模及其应用n【例3】(2017 •云南统一检测)已知平面向量a 与b 的夹角等于—,若|a | = 2 , | b | = 3,则 |2a — 3b | =()| AB = 6, |AD | = 4,若点 M N 满D, E 分别是边AB BC 的中点,11A . —8B.81。
2011—2018年新课标全国卷2文科数学试题分类汇编——4.平面向量

A.4
B. 3
C. 2
D. 0
【答案】 B 解析:解法一:常规解法
2
a 2a b 2 a
a b2 1
13
解法二:特值法: 设 a = 0,-1 , b= 0,1 ,则 2a b 0,-3 ,故 a 2a b 3
( 2017·新课标Ⅱ,文 4) 设非零向量 a, b ,满足 a +b = a - b 则( )
A .1 二、填空题
B.2
C.3
D .5
( 2016·13)已知向量 a=(m ,4),b=(3,- 2),且 a ∥b,则 m =___________.
uuur uuur ( 2013·14)已知正方形 ABCD 的边长为 2, E 为 CD 的中点,则 AE BD _______.
( 2012·15)已知向量 a, b 夹角为 45o,且 |a|=1, |2a b|= 10 ,则 |b|=
D .5
【答案】 A 解析: |a b |
10, a2
2
b
2ab
10. | a
b|
6, a2
2
b
2ab
则 ab 1.
二、填空题 ( 2016·新课标Ⅱ,文 13)已知向量 a=(m,4), b=(3,- 2),且 a∥ b,则 m=___________.
【答案】 - 6 解析: 因为 a∥ b,所以 2m 4 3 0 ,解得 m 6 .
2011—2018 年新课标全国卷 2 文科数学试题分类汇编
4.平面向量
一、选择题 (2018 ·4)已知向量 a , b 满足 | a | 1 , a b 1 ,则 a (2a b) ( )
A. 4
B. 3
2011-2018年全国一卷解析几何理汇编 带答案

2011年7.(5分)(2011•新课标)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【分析】不妨设双曲线C:,焦点F(﹣c,0),由题设知,,由此能够推导出C的离心率.【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e=.故选B.【点评】本题考查双曲线的性质和应用,解题时要注意公式的灵活运用.14.(5分)(2011•新课标)在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过F l的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.【分析】根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16,结合椭圆的定义,有4a=16,即可得a的值;又由椭圆的离心率,可得c的值,进而可得b的值;由椭圆的焦点在x轴上,可得椭圆的方程.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即=,则a=c,将a=c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为+=1;故答案为:+=1.【点评】本题考查椭圆的性质,此类题型一般与焦点三角形联系,难度一般不大;注意结合椭圆的基本几何性质解题即可.20.(12分)(2011•新课标)在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,=•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【分析】(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1)并代入∥,=•,即可求得M点的轨迹C的方程;(Ⅱ)设P(x0,y0)为C上的点,求导,写出C在P点处的切线方程,利用点到直线的距离公式即可求得O点到l距离,然后利用基本不等式求出其最小值.【解答】解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所=(﹣x,﹣1﹣y),=(0,﹣3﹣y),=(x,﹣2).再由题意可知()•=0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y=﹣2.(Ⅱ)设P(x0,y0)为曲线C:y=﹣2上一点,因为y′=x,所以l的斜率为x0,因此直线l的方程为y﹣y0=x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d=.又y0=﹣2,所以d==≥2,所以x02=0时取等号,所以O点到l距离的最小值为2.【点评】此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.2012年4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P 为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.。
2011年—2018年新课标全国卷Ⅰ理科数学分类汇编不等式选讲

12011年—2018年新课标全国卷Ⅰ理科数学分类汇编不等式选讲【2018,23】已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【2017,23】已知函数()24f x x ax =-++,()11g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围.【2016,23】已知函数321)(--+=x x x f . (Ⅰ)在答题卡第(24)题图中画出)(x f y =的图像; (Ⅱ)求不等式1)(>x f 的解集.【2015,24】已知函数()12,0f x x x a a =+-->.(I )当1a =时求不等式()1f x >的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.3【2014,24)】若0,0a b >>,且11a b+=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【2013,24】已知函数()||1|22|f x x x a =-++,()3g x x =+. (1)当2a =-时,求不等式()()f x g x <的解集; (2)设1a >-,且当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()()f x g x ≤,求a 的取值范围.【2012,24】已知函数()|||2|f x x a x =++-。
(1)当3-=a 时,求不等式3)(≥x f 的解集;(2)若|4|)(-≤x x f 的解集包含[1,2],求a 的取值范围。
【2011,24】设函数()3f x x a x =-+,其中0a >。
(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值.5【2018,23】已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥; 若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(0,2].【2017,23】已知函数()24f x x ax =-++,()11g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围.【解析】(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12x =的二次函数. ()211121121x x g x x x x x >⎧⎪=++-=-⎨⎪-<-⎩,,≤x ≤,,当(1,)x ∈+∞时,令242x x x -++=,解得x ,()g x 在()1+∞,上单调递增,()f x 在()1+∞,上单调递减,∴此时()()f x g x ≥解集为1⎛ ⎝⎦.当[]11x ∈-,时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-,时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥解集1⎡-⎢⎣⎦.(2)依题意得:242x ax -++≥在[]11-,恒成立.即220x ax --≤在[]11-,恒成立. 则只须()()2211201120a a ⎧-⋅-⎪⎨----⎪⎩≤≤,解出:11a -≤≤.故a 取值范围是[]11-,. 【2016,23】已知函数321)(--+=x x x f .(Ⅰ)在答题卡第(24)题图中画出)(x f y =的图像; (Ⅱ)求不等式1)(>x f 的解集.【解析】:⑴ 如图所示:⑵ ()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥ ,()1f x >,①1x -≤,41x ->,解得5x >或3x <,1x -∴≤ ②312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x << ③32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >综上,13x <或13x <<或5x > ()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,7【2015,24】已知函数()12,0f x x x a a =+-->.(I )当1a =时求不等式()1f x >的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.解析:(I )(方法一)当1a =时,不等式()1f x >可化为1211x x +-->,等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<. (方法二)当1a =时,不等式()1f x >可化为1211x x +-->,结合绝对值的几何意义,不等式的含义为:数轴上一点x 到点1-的距离与它到1的距离的2倍之差大于1.设点x 到1-的距离为1d ,到1的距离为2d ,结合数轴可知:若x 在[1,1]-内,则有1212221d d d d +=⎧⎨->⎩解得213d <;故2(,1]3x ∈. 若x 在(1,)+∞内,则有1212221d d d d -=⎧⎨->⎩解得21d <;故(1,2)x ∈.综上可得223x <<. (Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩, 所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +.由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞).【2014,24)】若0,0a b >>,且11a b+=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由. 【解析】:(Ⅰ) 11a b =+≥,得2ab ≥,且当a b ==-1 1x -1 1x故3342a b+≥=,且当a b ==∴33a b +的最小值为……5分(Ⅱ)由623a b =+≥32ab ≤,又由(Ⅰ)知2ab ≥,二者矛盾, 所以不存在,a b ,使得236a b +=成立. ……………10分【2013,24】已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )≤g (x ),求a 的取值范围. 解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a-≥a -2,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.【2012,24】已知函数()|||2|f x x a x =++-。
2011年—2018年新课标全国卷(1卷、2卷、3卷)理科数学试题分类汇编——11.立体几何

2011年—2018年新课标全国卷理科数学试题分类汇编(逐题解析)11.立体几何一、选择题(2018·新课标Ⅰ,理7) 某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .2(2018·新课标Ⅰ,理12) 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C D(2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15B C D (2018·新课标Ⅲ,理3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )(2018·新课标Ⅲ,理10)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .(2017·新课标Ⅰ,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2017·新课标Ⅱ,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2017·新课标Ⅰ,7) (2017·新课标Ⅱ,4) (2016·新课标Ⅰ,6)(2017·新课标Ⅱ,10)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D (2017·新课标Ⅲ,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4(2016·新课标Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )π17 (B )π18 (C )π20 (D )π28(2016·新课标Ⅰ,11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为( )(A (B (C (D )13(2016·新课标Ⅱ,6积为( ) A .20πB .24πC .28πD .32π(2016·新课标Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18+B. 54+C. 90D. 81(2016·新课标Ⅲ,10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A. 4πB.9π2C. 6πD. 32π3(2015·新课标Ⅰ,6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛 (2015·新课标Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )8(2015·新课标Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A .81B .71 C .61 D .51(2015·新课标Ⅱ,6) (2014·新课标Ⅰ,12)(2015·新课标Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π(2014·新课标Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .B .C .6D .4(2014·新课标Ⅱ,6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .13(2014·新课标Ⅱ,6) (2013·新课标Ⅰ,6) (2013·新课标Ⅰ,8)(2014·新课标Ⅱ,11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( ) A .110B .25CD(2013·新课标Ⅰ,6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3(2013·新课标Ⅰ,8)某几何体的三视图如图所示,则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π(2013·新课标Ⅱ,4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A.α // β且l // αB.αβ⊥且l β⊥C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l(2013·新课标Ⅱ,7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(2012·新课标Ⅰ,7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15(2012·新课标Ⅰ,11)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.6B.6C.3D.2(2011·新课标Ⅰ,6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题(2018·新课标Ⅱ,理16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成B. C. D.角为45︒.若SAB △的面积为_________.(2017·新课标Ⅲ,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60角时,AB 与b 成30角;②当直线AB 与a 成60角时,AB 与b 成60角; ③直线AB 与a 所称角的最小值为45;④直线AB 与a 所称角的最小值为60;其中正确的是________.(填写所有正确结论的编号)(2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.)(2011·新课标Ⅰ,15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O ABCD -的体积为 . 三、解答题(2018·新课标I ,理18)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(2018·新课标Ⅱ,20)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.(2018·新课标Ⅲ,理19)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD上异于C ,D 的点.⑴证明:平面AMD ⊥平面BMC ;⑵当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.(2017·新课标Ⅰ,18)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.(2017·新课标Ⅱ,19)如图,四棱锥P -ABCD 中,侧面P AD 为等比三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)证明:直线//CE 平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为o 45 ,求二面角M -AB -D 的余弦值(2017·新课标Ⅲ,19)如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角––D AE C 的余弦值.(2016·新课标Ⅰ,18)如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60.(Ⅰ)证明:平面⊥ABEF 平面EFDC ; (Ⅱ)求二面角A BC E --的余弦值.ABCDE(2016·新课标Ⅱ,19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H . 将△DEF 沿EF 折到△D ´EF的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.(2016·新课标Ⅲ,19)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.OBACFDHED '(2015·新课标Ⅰ,18)如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值.(2015·新课标Ⅱ,19)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.(2014·新课标Ⅰ,19)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC 求二面角111A A B C --的余弦值.(2014·新课标Ⅱ,18)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设二面角D -AE -C 为60º,AP =1,ADE -ACD 的体积.(2013·新课标Ⅰ,18)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.1AD1B1CA CEB(2012·新课标Ⅰ、Ⅱ,19)如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点, DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.(2011·新课标Ⅰ、Ⅱ,18)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.A 1C2011年—2018年新课标全国卷理科数学试题分类汇编11.立体几何(解析版)一、选择题(2018·新课标全国Ⅰ卷理7) 某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .2【答案】B 解析:当路径为线段MN(2018·新课标Ⅰ,理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C D 【答案】A 解析:(直接法)平面11A C B 符合题意,如图(1)所示,例题中的平面α可得面11A C B 平移平移后的图象如图(1)所示,六边形EFGHMN 为该截面设1A N x =,则有,)EN MN x ==-根据对称性可知),EF x FG =-=,延长,EN HM 相交于点P延长,EF HG 相交于点Q ,易证60HEF EHG ∠=∠= 所以EHQ ∆为等边三角形,同理EHP ∠为等边三角形, 所以maxEHG EPG PMN FGQEFGHMNS S S S S ∆∆∆∆=+--六边形2222)))4444x =+---2(221)2x x =-+当12x =时,max 4EFGHMN S =六边形.【解法2】(特殊位置法)由题可知,截面α应与正方体体对角线垂直,当平面平移至截面为六边形时,此时六边形的周长恒定不变,所以当截面为正六边形时,面积最大max26(2EFGHMN S ==六边形.(2018·新课标Ⅱ,9)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15B C D .2【答案】C 解析:法一:由几何关系可知:112EF B D ==,AE ,1AF =,由余弦定理可知:cos θ解法二:坐标法:由几何关系可知:(1B D =,点A 的坐标为(,点1D 的坐标为()1,1,0(10,1,AD = ,cos θ==解法三:补型法(以右补为例):由几何关系可知:BD ,2DG =,1B G =cos θ=.(2018·新课标Ⅲ,理3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A 解析:根据题意,A 选项符号题意.(2018·新课标Ⅲ,理10)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .【答案】B 解析:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由ABC S ∆=,得6AB =,取BC 的中点H ,∴sin 60AH AB =⋅︒=,∴23AG AH ==O 到面ABC 的距离为2d ==,∴三棱锥D ABC -体积最大值1(24)3D ABC V -=⨯+=(2017·新课标Ⅰ,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16【答案】 B 解析:由三视图可画出立体图,该立体图平面内只有两个相同的梯形的面,()24226S =+⨯÷=梯,6212S =⨯=全梯,故选B ;(2017·新课标Ⅱ,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π【答案】 B 解析:从三视图可知:一个圆柱被一截面截取一部分而剩余的部分,剩下的体积分上下两部分阴影的体积,下面阴影的体积为V Sh =,3r =,4h =,∴ 136V π=;上面阴影的体积2V 是上面部分体积3V 的一半,即2312V V =,3V 与1V 的比为高的比(同底),即3132V V =,213274V V π==,故总体积02163V V V π=+=.方法2:354V Sh π==,其余同上,故总体积02163V V V π=+=.(2017·新课标Ⅱ,10)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )ABCD【答案】 B 解析:解法一:在边1BB ﹑11B C ﹑11A B ﹑AB 上分别取中点E ﹑F ﹑G ﹑H ,并相互连接. 由三角形中位线定理和平行线平移功能,异面直线1AB 和1BC 所成的夹角为FEG ∠或其补角,通过几何关系求得EF =FG =FH =,利用余弦定理可求得异面直线 1AB 和1BC.解法二:补形通过补形之后可知:1BC D ∠或其补角为异面直线1AB 和1BC 所成的角,通过几何关系可知:1BC =1C D =,BD 1AB 和1BC. 解法三:建系建立如左图的空间直角坐标系,()0,2,1A ,()10,0,0B ,()0,0,1B,11,02C ⎫-⎪⎪⎝⎭,∴ 131,12BC ⎛⎫=-- ⎪⎪⎝⎭,()10,2,1B A =,∴1111cos 5B A BC B A BC θ⋅===⋅ (2017·新课标Ⅲ,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【答案】 B 解析:由题可知球心在圆柱体中心,圆柱体上下底面圆半径r =则圆柱体体积23ππ4V r h ==.故选B.(2016·新课标Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) (A )π17 (B )π18 (C )π20 (D )π28【答案】 A 解析:原立体图如图所示:是一个球被切掉左上角的18表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S ⨯⨯⨯⨯πππ,故选A .(2016·新课标Ⅰ,11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为( )(A )23 (B )22 (C )33(D )31【答案】 A 解析:如图所示:111∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==(均为面对交线),因此113CD B π∠=,即11sin CD B ∠=. 故选A .(2016·新课标Ⅱ,6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π【答案】 C 解析:几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =, 2π4πc r ==,由勾股定理得:4l ==,21π4π16π8π28π2S r ch cl =++=++=表,故选C .(2016·新课标Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 18+B. 54+C. 90D. 81【答案】 B 解析:由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为2332362354⨯⨯+⨯⨯+⨯=+(2016·新课标Ⅲ,10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A. 4πB.9π2C. 6πD. 32π3【答案】 B 解析:由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2, 又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为34932R ππ=2016,62015,62014,686(2015·新课标Ⅰ,6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛 【答案】 B 解析:284R π=,圆锥底面半径16R π=,米堆体积21320123V R h ππ==,堆放的米约有221.62V≈,选(B ).(2015·新课标Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )8【答案】 B 解析:由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱的半径与球的半径都r ,圆柱的高为2r ,其表面积为2222142225416202r r r r r r r r πππππ⨯+⨯++⨯=+=-,解得2r =,故选(B ).(2015·新课标Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51(2015·6)D 解析:由三视图得,在正方体ABCD-A 1B 1C 1D 1中,截去四面体A-A 1B 1D 1,如图所示,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为,故选D.1(2015·新课标Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π【答案】 C 解析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故R=6,则球O 的表面积为24144S R ππ==,故选C .(2014·新课标Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A. B. C .6 D .4D ABC -,【答案】 C 解析:(解析):如图所示,原几何体为三棱锥其中4,AB BC AC DB DC =====6DA ==,故最长的棱的长度为6DA =,选C(2014·新课标Ⅱ,6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .13【答案】 C 解析:原来毛坯体积为π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛坯体积的比值为20105427ππ=.(2014·新课标Ⅱ,11)直三棱柱ABC-A1B1C1中,∠BCA=90º,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.110B.25CD【答案】C 解析:取BC的中点P,连结NP、AP,∵M,N分别是A1B1,A1C1的中点,∴四边形NMBP为平行四边形,∴BM//PN,∴所求角的余弦值等于∠ANP的余弦值,不妨令BC=CA=CC1=2,则AN=APNP=,∴222||||||cos2||||AN NP APANPAN NP+-∠=⨯⋅=.【另解】如图建立坐标系,令AC=BC=C1C=2,则A(0, 2, 2),B(2, 0, 2),M(1, 1, 0),N(0, 1, 0),(1,1,2)(0,1,2),BM AN∴=--=--,cos||||BM ANθBM AN⋅===⋅(2013·新课标Ⅰ,6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为().A.500π3cm3B.866π3cm3 C.1372π3cm3D.2048π3cm3【答案】 A 解析:设球半径为R,由题可知R,R-2,正方体棱长一半可构成直角三角形,即△OBA为直角三角形,如图.BC=2,BA=4,OB=R-2,OA=R,由R2=(R-2)2+42,得R=5,所以球的体积为34500π5π33=(cm3),故选A.AC B1A1C1BNMP(2013·新课标Ⅰ,8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【答案】 A 解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A.(2013·新课标Ⅱ,4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A.α // β且l // αB.αβ⊥且l β⊥C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】 D 解析:因为m ⊥α,l ⊥m ,l ⊄α,所以l ∥α. 同理可得l ∥β. 又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D.(2013·新课标Ⅱ,7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )【答案】A 解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为右图,则它在平面zOx 上的投影即正视图为右图,故选A.(2012·新课标Ⅰ,7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )B.C. D.A.6 B.9 C.12 D.15 【答案】 B 解析:由三视图可知,该几何体为三棱锥A-BCD,底面△BCD为底边为6,高为3的等腰三角形,侧面ABD⊥底面BCD,AO⊥底面BCD,因此此几何体的体积为11(63)3932V=⨯⨯⨯⨯=,故选择B.(2012·新课标Ⅰ,11)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.6B C.3D.2【答案】A 解析:如图所示,根据球的性质,知⊥1OO平面ABC,则COOO11⊥.在直角COO1∆中,1=OC,331=CO,所以36)33(122121=-=-=COOCOO.因此三棱锥S-ABC的体积6236433122=⨯⨯⨯==-ABCOVV,故选择A(2011·新课标Ⅰ,6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()【答案】D 解析:条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的.故选D二、填空题(2018·新课标Ⅱ,理16)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45︒.若SAB△的面积为_________.【答案】解析:由面积的关系可知:SA SB==由几何关系可知:SO AO==侧面积S SA l =⋅,2l OA π==,侧面积S SA l =⋅=(2017·新课标Ⅲ,)16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60角时,AB 与b 成30角; ②当直线AB 与a 成60角时,AB 与b 成60角; ③直线AB 与a 所称角的最小值为45; ④直线AB 与a 所称角的最小值为60;其中正确的是________.(填写所有正确结论的编号)【答案】② ③ 解析:由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1,故1AC =,AB =边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴正方向,CB 为y 轴正方向,CA 为z 轴正方向建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)=a ,1=a .B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)=b ,1=b .设B 点在运动过程中的坐标()cos ,sin ,0B θθ', 其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--,2AB '=设AB '与a 所成夹角为π0,2α⎡⎤∈⎢⎥⎣⎦,则(cos ,sin ,1)(0,1,0)cos AB θθαθ⎡--⋅==∈⎢'⎣⎦a .故ππ,42α⎡⎤∈⎢⎥⎣⎦,所以③正确,④错误.设AB '与b 所成夹角为π[0,]2β∈,(cos ,sin ,1)(1,0,0)cos AB AB AB θθβθ'⋅-⋅===''b b b . 当AB '与a 夹角为60︒时,即π3α=,sin 32πθα===.因为22cos sin 1θθ+=,所以cos θ1cos 2βθ=. 因为π0,2β⎡⎤∈⎢⎥⎣⎦.所以π=3β,此时AB '与b 夹角为60︒.所以②正确,①错误.故填② ③.(2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.) 【答案】②③④ 解析:略.(2011·新课标Ⅰ,15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O ABCD -的体积为 .【答案】解析:设ABCD 所在的截面圆的圆心为M,则=,22=,1623O ABCD V -=⨯⨯=三、解答题(2018·新课标I ,理18)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.解析:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF 由BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD(2)【解法1】作PH ⊥EF ,垂足为H ,由(1)得,PH ⊥平面ABFD ,以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H xyz -由(1)可得DE ⊥PE ,又DP=2,DE=1,所以PE ,又PF=1,EF=2,故PE ⊥PF ,可得32PH EH ==,则333(0,0,0),(1,,0),(1,,),22H P D DP HP --== 为平面ABFD 的法向量,设DP 与平面ABFD 所成的角θ,则3sin HP DP HP DPθ⋅==⋅.所以DP 与平面ABFD 。
2011—2018年新课标全国卷1理科数学分类汇编——4.三角函数、解三角形

B.
二、填空题
【2018,16】已知函数 f(x)=2sinx+sin2x,则 f(x)的最小值是
.
【解答】解:由题意可得 T=2π是 f(x)=2sinx+sin【解答】解:方法一:直接法,1 女 2 男,有 C21C42=12,
2 女 1 男,有 C22C41=4
根据分类计数原理可得,共有 12+4=16 种,
sin cos
1 sin cos
,∴ sin cos
cos
cos sin
sin
cos
sin
2
, 2
2
,0
2
2
∴ ,即 2 ,选 B
2
2
【2012,9】已知 0 ,函数 f (x) sin( x ) 在( , )上单调递减,则 的取值范围是( )
射线 OP ,过点 P 作直线 OA 的垂线,垂足为 M ,将点 M 到直线 OP 的距离表示为 x 的函数 f (x) ,则
y = f (x) 在[0, ]上的图像大致为( )
【2014,8】设
(0, ) , 2
(0, ) ,且 tan 2
1 sin cos
,则(
)
A . 3 2
4
2
A.[ 1 , 5 ] 24
B.[ 1 , 3 ] 24
C.(0, 1 ] 2
D.(0,2]
【解析】因为
0
,
x
,所以
x
,因为函数
f (x) sin( x ) 在
2
24
4
4
4
(
2
,
)上单调递减,所以
2
4
高考数学试题分类汇编 专题平面向量 理

2011年高考试题数学(理科)平面向量一、选择题1. (2011年高考山东卷理科12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是(A)C 可能是线段AB 的中点 (B)D 可能是线段AB 的中点 (C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=, 故选D. 2. (2011年高考全国新课标卷理科10)若a ,b ,c 均为单位向量,且0=⋅b a ,0)()(≤-⋅-c b c a ,则||c b a -+的最大值为(A )12-(B )1(C )2(D )23. (2011年高考全国新课标卷理科10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦4. (2011年高考四川卷理科3)若向量=+⋅⊥)2(,,//,,则且满足 A .4 B .3 C .2 D .0 答案:D.,00022)2(:D 故选解析=+=⋅+⋅=⋅+⋅=+⋅5. (2011年高考四川卷理科4)如图,正六边形ABCDEF 中,BA CD EF ++=( )(A)0 (B)BE (C)AD (D)CF 答案:D解析:BA CD EF DE CD EF CD DE EF CF ++=++=++=. 6. (2011年高考全国卷理科12)设向量a b c 、、满足|a |=|b |=1, a b ⋅1=2-,,,a c b c <-->=060,则c 的最大值等于【答案】A【解析】如图,构造AB =a , AD =b , AC = c ,120,60BAD BCD ∠=∠=,所以,,,A B C D 四点共圆,可知当线段AC 为直径时,c 最大,最大值为2.7.(2011年高考上海卷理科17)设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=成立的点M 的个数为( )A .0B .1C .5D .10【答案】B 二、填空题:1. (2011年高考浙江卷理科14)若平面向量α,β满足1α=,1β≤,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 。
2011—2018年新课标全国卷1理科数学分类汇编——10.统计、概率分布列、计数原理

10.统计、概率分布列、计数原理(含解析)一、选择题【2018,3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【2018,10】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则 A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【2017,2】如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14 B .π8 C .12 D .π4【2017,6】621(1)(1)x x++展开式中2x 的系数为( )A .15B .20C .30D .35【2016,4】某公司的班车在30:7,00:8,30:8发车,小明在50:7至30:8之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是( ) A .31 B .21 C .32 D .43 【2015,10】25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .60【2015,4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312【2014,5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )A .18B .38C .58D .78【2013,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样 【2013,9】设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8【2012,2】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种B .10种C .9种D .8种【2011,8】512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )A .40-B .20-C .20D .40【2011,4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A .13 B .12 C .23 D .34二、填空题【2018,15】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案) 【2016,14】5)2(x x +的展开式中,3x 的系数是 .(用数字填写答案)【2014,13】8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案) 【2012,15】某一部件由三个电子元件按下图方式连接而成, 元件1或元件2正常工作,且元件3正常工作,则部件正常 工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为_________. 三、解答题【2018,20】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?元件2元件3元件1【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求 P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,其中x i 为抽取的第i个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ–3σ<Z <μ+3σ)=0.9974,0.997416≈0.95920.09≈.【2016,19】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X 的分布列;(Ⅱ)若要求5.0)(≥≤n X P ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在19=n 与20=n 之中选其一,应选用哪个?【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (1,2,,8i =)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =8118i i w w ==∑(Ⅰ)根据散点图判断,y a bx =+与y c =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =-,根据(Ⅱ)的结果回答下列问题: (i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大? 附:对于一组数据1122(,),(,),,(,)n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()()()nii i nii uu v v uu β==-=--∑∑错误!未找到引用源。
2011—2020年新课标全国卷高考数学试卷分类汇编—平面向量(含解析)

2011—2020年新课标全国卷高考数学试卷分类汇编—平面向量(含全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷、新高考Ⅱ卷,共 8 套全国卷)一、选择题1、( 20 20 ·全国卷Ⅱ,文 5 ) 已知单位向量 a , b 的夹角为 60°,则在下列向量中,与 b 垂直的是()A . a +2 bB . 2 a + bC . a –2 bD . 2 a – b2、(20 20 ·新高考Ⅰ, 7 ) 已知 P 是边长为 2 的正六边形 ABCDEF 内的一点,则的取值范用是()A .B .C .D .3、 (20 20 ·全国卷Ⅲ,理 5 ) 已知向量 a , b 满足,,,则()A .B .C .D .4、(2019·全国卷Ⅰ,理 7 ) 已知非零向量 a , b 满足,且b ,则 a 与 b 的夹角为()A .B .C .D .5、( 2019 ·全国卷Ⅰ,文 8 ) 已知非零向量 a , b 满足 = 2 ,且( a - b ) b ,则 a 与 b 的夹角为()A .B .C .D .6、 (2019·全国卷Ⅱ,理 3 ) 已知,,,则 = ()A .B .C . 2D . 37、( 2019 ·全国卷Ⅱ,文3 ) 已知向量,则()A .B . 2C . 5D . 508、 (2018·新课标Ⅰ,理 6) 在中,为边上的中线,为的中点,则()A .B .C .D .9、(2018·新课标Ⅰ,文 7 ) 在中,为边上的中线,为的中点,则()A .B .C .D .10、( 201 8 ·新课标Ⅱ,理 4 )已知向量,满足,,,则()A . 4B . 3C . 2D . 011、(2018·新课标Ⅱ,文 4 ) 已知向量,满足,,则()A . 4B . 3C . 2D . 012、( 2017 ·新课标Ⅱ, 1 2 理)已知是边长为 2 的等边三角形, P 为平面 ABC 内一点,则的最小值是()A. B. C. D.13、( 201 7 ·新课标Ⅱ,文 4 )设非零向量,满足则()A .⊥ B. C. ∥ D.14、( 2017 ·新课标Ⅲ, 12 )在矩形中,,,动点在以点为圆心且与相切的圆上.若,则的最大值为()A . 3B .C .D . 215、( 2016·新课标Ⅱ, 3 )已知向量,且,则 m = ()A . -8B . -6C . 6D . 816、( 2016·新课标Ⅲ, 3 理,文 3 )已知向量,,则()A .B .C .D .17、( 201 5 ·新课标Ⅰ, 7 理)设为所在平面内一点,则()A .B .C .D .18、(201 5 ·新课标Ⅰ,文 2 ) 已知点 A (0,1) , B (3,2) ,向量,则向量 ( )A . (-7,-4)B . (7,4)C . (-1,4)D . (1,4)19、( 201 5 ·新课标Ⅱ,文 4 )向量 a = (1 , - 1) , b = ( - 1 , 2) ,则 ( 2a +b ) · a = ()A. - 1B. 0C. 1D. 220、(201 4 ·新课标Ⅰ,文 6 ) 设 D , E , F 分别为Δ ABC 的三边 BC , CA , AB 的中点,则( )A .B .C .D .21、( 2014·新课标Ⅱ, 3 理)设向量满足,,则 = ()A . 1B . 2C . 3D . 522、( 201 4 ·新课标Ⅱ,文 4 )设向量满足,,则()A . 1B . 2C . 3D . 5。
全国Ⅰ卷理科数学2011-2018年高考分类汇编及2019年高考预测word版

年份 2018 年
1.设 z
题目
1 i 2i ,则 z 1 i
B.
答案 C
A. 0
1 2
C.
1
D.
2
解析:z
1 i (1 i ) 2 2i = 2i i 2i i, 选C 1 i 2
2017 年
p1 : 若复数 z 满足 R , 则 z R ; p2 : 若复数 z 满足 z R , 则 zR ; z p3 :若复数 z1 , z2 满足 z1 z2 R ,则 z1 z2 ; p4 :若复数 z R ,则 z R .
-2
解析:应当立即由已知看出a b =0
2015 年
uuu r uuu r (7)设 D 为 ABC 所在平面内一点, BC 3CD ,则 4 1 (A) AD AB AC 3 3 4 1 (C) AD AB AC 3 3 1 4 B) AD AB AC 3 3 4 1 (D) AD AB AC 3 3
A .1 i
B .1 i
C . 1 i
D . 1 i
D
(1 i) 3 2i(1 i) 解析:熟记(1 i) 2i, (1 i) 2i, = 1 i (1 i) 2 2i
2 2
2013 年
2、若复数 z 满足 (3-4i)z=|4+3i |,则 z 的虚部为 A、-4 (B)
A
解析:最好的解法 不要作图,直接利用向量减法法则
uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r BC 3CD AC AB 3( AD AC) 3 AD = AB +4 AC
2011-高考新课标全国卷理科数学分类汇编

2011—2017年新课标全国卷理科数学【2018年】数学(2011—2017)真题分类汇编班级:姓名:砚山县第二高级中学王永富目录1、集合与常用逻辑用语 (1)2、函数及其性质 (2)3、导数及其应用 (4)4、三角函数、解三角形 (11)5、平面向量 (16)6、数列 (17)7、不等式、线性规划、推理与证明……………………………………………………208、立体几何 (22)9、解析几何 (30)10、统计、概率分布、计数原理 (40)11、复数及其运算 (55)12、程序框图 (57)13、坐标系与参数方程.................................................................................60 14、不等式选讲 (66)1.集合与常用逻辑用语一、选择题【2017,1】已知集合{}1A x x =<,{}31xB x =<,则( )A .{|0}AB x x =<I B .A B =R UC .{|1}A B x x =>UD .A B =∅I 【2016,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I ( )A .)23,3(--B .)23,3(-C .)23,1(D .)3,23(【2015,3】设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n =【2014,1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A ={x |x 2-2x >0},B ={x |x ,则( )A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .10(2017·2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5(2016·2)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =U ( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2015·1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}(2014·1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则M N I =( )A .{1}B .{2}C .{0,1}D .{1,2}(2013·1)已知集合M ={x|(x-1)2< 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A.{0, 1, 2}B.{-1, 0, 1, 2}C.{-1, 0, 2, 3}D.{0, 1, 2, 3}(2012·1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10(2011·10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈⎥⎝⎦a b3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a bA . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 42.函数及其性质一、选择题【2017,5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( )A .[2,2]-B . [1,1]-C . [0,4]D . [1,3]【2017,11】设,,x y z 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z 【2016,7】函数xe x y -=22在]2,2[-的图像大致为( )A .B .C .D .【2016,8】若1>>b a ,10<<c ,则( )A .c c b a <B .cc ba ab < C .c b c a a b log log <D .c c b a log log <【2014,3】设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【2013,11】已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 【2012,10】已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为( )【2011,12】函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于()A .2B .4C .6D .8【2011,2】下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .1y x =+ C .21y x =-+ D .2xy -=【2015,13】若函数f (x )=x ln (x )为偶函数,则a = (2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m(2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A.c b a >>B.b c a >>C.a c b >>D.a b c >>(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A.00,()0x f x ∃∈=RB.函数()y f x =的图像是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减A .B .D .D.若0x 是()f x 的极值点,则0()0f x '=(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.3.导数及其应用一、选择题【2014,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 【2012,12】设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( )A .1ln2-B ln 2)-C .1ln2+D ln 2)+【2011,9】由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103 B .4 C .163D .6 二、填空题【2017,16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC .的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【2013,16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________.(2017·11)若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e -- C.35e - (2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A .3B .6C .9D .12(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U(2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3(2014·12)设函数()x f x m π=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( ) A .(,6)(6,+)-∞-∞UB .(,4)(4,+)-∞-∞UC .(,2)(2,+)-∞-∞UD .(,1)(4,+)-∞-∞U (2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A.c b a >>B.b c a >>C.a c b >>D.a b c >>(2012·12)设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1-B. )2ln 1(2-C. 2ln 1+D. )2ln 1(2+(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=(2011·9)由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .6(2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.(2016·16)若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = .三、解答题【2017,12】已知函数()()22xx f x aea e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【2016,12】已知函数2)1()2()(-+-=x a e x x f x有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x .【2015,12】已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.【2014,21】设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.【2013,21】设函数f (x )=x 2+ax +b ,g (x )=e x(cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.【2012,21】已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-.(1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值.【2011,21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.三、解答题(2017·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.(2016·21)(Ⅰ)讨论函数2()2xx f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>;(Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x -->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.14.(2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.15.(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到).16.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.17.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值.18.(2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.6.二项式定理一、选择题(2013·5)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )A.4-B.3-C.2-D.1-(2011·8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( )A .- 40B .- 20C .20D .40(2015·15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =_______. (2014·13)10()x a +的展开式中,7x 的系数为15,则a =________.4.三角函数、解三角形一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z【2015,2】sin 20cos10cos160sin10-=o o o o( )A . C .12- D .12【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点到直线的距离表示为的函数,则=在[0,]上的图像大致为( )【2014,8】设,,且,则( ). . . .【2012,9】已知,函数在(,)上单调递减,则的取值范围是( )A .[,]B .[,]C .(0,]D .(0,2]【2011,5】已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=A .B .C .D . 【2011,11】设函数的最小正周期为,且,则( )A .在单调递减B .在单调递减C .在单调递增D .在单调递增(2016·7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈(2016·9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-(2014·4)钝角三角形ABC 的面积是12,AB =1,BC ,则AC =( )A .5BC .2D .1二、填空题【2015,16】在平面四边形中,,,则的取值范围是 . 【2014,16】已知分别为的三个内角的对边,=2,且,则面积的最大值为 .【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________. 【2011,16】在中,,则的最大值为 .(2017·14)函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = .(2014·14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________. (2013·15)设为第二象限角,若,则_________. 三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为 (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2016,17】的内角的对边分别为,已知.(Ⅰ)求;(Ⅱ)若,的面积为,求的周长.【2013,17】如图,在△ABC 中,∠ABC =90°,AB =,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =,求PA ;(2)若∠APB =150°,求tan ∠PBA .【2012,17】已知,,分别为△ABC 三个内角A ,B ,C 的对边,.(1)求A ;(2)若,△ABC 的面积为,求,.(2017·17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cosB ;(2)若6a c += , ABC ∆面积为2,求.b .(2015·17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC∠∠;(Ⅱ) 若AD =1,DC =2 ,求BD 和AC 的长.(2013·17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.(2012·17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ)求A ;(Ⅱ)若a=2,△ABC的面积为3,求b,c.5.平面向量一、选择题【2015,7】设为所在平面内一点,则( )A .B .C .D .【2011,10】已知a 与b 均为单位向量,其夹角为,有下列四个命题其中的真命题是( )A .B .C .D .【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= . 【2016,13】设向量a ,b ,且abab ,则 .【2014,15】已知A ,B ,C 是圆O 上的三点,若,则与的夹角为 .【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t=__________.【2012,13】已知向量a r ,b r 夹角为45°,且||1a =r ,|2|a b -=r r ||b =r_________.(2017·12)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r 的最小值是( )A.2-B.32-C. 43- D.1- (2016·3)已知向量(1)(32),,=,m =-a b ,且()⊥a +b b ,则m =( )A .-8B .-6C .6D .8(2014·3)设向量a ,b rr 满足|a b |+=r r |a b |-r r a b ⋅r r =( )A .1B .2C .3D .5(2015·13)设向量a ,b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ____________. (2013·13)已知正方形的边长为2,为的中点,则_______.(2012·13)已知向量a ,b 夹角为45º,且1=||a ,102=-||b a ,则=||b .6.数列一、选择题【2017,4】记为等差数列的前项和.若,,则的公差为( )A .1B .2C .4D .8【2017,12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110【2016,3】已知等差数列前项的和为,,则( )A .B .C .D .【2013,7】设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .6【2013,12】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=,c n +1=,则( ).A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【2013,14】若数列{a n }的前n 项和,则{a n }的通项公式是a n =__________. 【2012,5】已知{}为等比数列,,,则( ) A .7 B .5 C .-5 D .-7 (2017·3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 (2015·4)已知等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =( )A .21B .42C .63D .84(2013·3)等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =( )A.13B.13-C.19D.19-(2012·5)已知{a n }为等比数列,a 4 + a 7 = 2,a 5 a 6 = 8,则a 1 + a 10 =( )A. 7B. 5C. -5D. -7(2017·15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . (2015·16)设S n 是数列{a n }的前项和,且11a =-,11n n n a S S ++=,则S n =________________. (2013·16)等差数列的前项和为,已知,,则的最小值为____.(2012·16)数列}{n a 满足12)1(1-=-++n a a n nn ,则}{n a 的前60项和为 .二、填空题【2016,15】设等比数列满足,,则的最大值为 .【2012,16】数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为__________.三、解答题【2015,17】为数列的前项和.已知>0,2243nn n a a S +=+.(Ⅰ)求的通项公式;(Ⅱ)设,求数列的前项和.【2014,17】已知数列{}的前项和为,=1,,,其中为常数.(Ⅰ)证明:;(Ⅱ)是否存在,使得{}为等差数列并说明理由.【2011,17】等比数列的各项均为正数,且(Ⅰ)求数列的通项公式;(Ⅱ)设 求数列的前n 项和.(2016·17)(满分12分)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28. 记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[]=0,[lg99]=1. (Ⅰ)求b 1,b 11,b 101;(Ⅱ)求数列{b n }的前1 000项和.(2014·17)已知数列{a n }满足a 1 =1,a n +1 =3 a n +1. (Ⅰ)证明1{}2n a +是等比数列,并求{a n }的通项公式;(Ⅱ)证明:123111…2n a a a +++<.(2011·17)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设31323log log log n n b a a a =+++L L ,求数列1{}nb 的前n 项和.7.不等式、线性规划、推理与证明一、选择题【2014,9)】不等式组的解集记为.有下面四个命题: :;:;:; 4p :(,),21x y D x y ∃∈+≤-. 其中真命题是( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,【2017,14】设x ,y 满足约束条件,则的最小值为 .【2016,16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【2015,15】若x ,y 满足约束条件,则的最大值为 .【2014,14】甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .【2012,14】设x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的取值范围为___________.【2011,13】若变量满足约束条件则的最小值为 .(2017·5)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9(2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2(2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( ) A.14B.12二、填空题(2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.(2014·14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 . (2011·13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .8.立体几何(含解析)一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16 【2016,11】平面过正方体的顶点,平面, 平面 ,平面,则所成角的正弦值为A .B .C .D .【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )A .B .C .D .【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛 B.22斛C.36斛 D.66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为,则()A.1 B.2 C.4 D.8【2015年,11题】【2014年,12题】【2013年,6题】【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()...6 .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( )A.cm3 B.cm3 C.cm3 D.cm3【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8π B.8+8π C.16+16π D.8+16π【2013年,8】【2012年,7】【2011年,6】【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.15【2012,11】已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()【2011,15】已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 . (2017·4)如图,网格纸上小正方形的边长为1,学 科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π (2017·10)已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )ACD(2016·6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π(2015·6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81B .71C .61D .51 (2015·9)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π(2014·6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .13(2014·11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( ) A .110B .25CD(2013·4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,2016,62015,62014,6l β⊄,则( )A.α αβ⊥l β⊥C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l(2013·7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(2012·7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) A. 6B. 9C. 12D. 18(2012·11)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.62B. 63C. 32D. 22 (2011·6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )A. B. C. D.(2016·14)α、β是两个平面,m 、n 是两条直线,有下列四个命题: (1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n . (3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号.)(2011·15)已知矩形ABCD 的顶点都在半径为4的球O的球面上,且6,AB BC ==则棱锥O -ABCD 的体积为 .三、解答题【2017,18】如图,在四棱锥P-ABCD 中,AB 1C 1C 1C 1C 1C 12AB BC AD ==o 90BAD ABC ∠=∠=(1)证明:直线//CE 平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为o45 ,求二面角M -AB -D 的B. C. D.余弦值(2016·19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H . 将△DEF 沿EF 折到△D ´EF 的位置,OD '(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.(2015·19)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.(2014·18)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.OBAFDH E D '11(2012·19)如图,直三棱柱ABC -A 1B 1C 1中,121AA BC AC ==,D 是棱AA 1的中点,DC 1⊥BD .(Ⅰ)证明:DC 1⊥BC ;(Ⅱ)求二面角A 1-BD -C 1的大小.(2011·18)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.9.解析几何一、选择题【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10【2016,10】以抛物线的顶点为圆心的圆交于两点,交的准线于两点,已知,,则的焦点到准线的距离为( ) A .2B .4C .6D .8【2016,5】已知方程表示双曲线,且该双曲线两焦点间的距离为,则的取值范围是( ) A .B .C .D .【2015,5】已知是双曲线:上的一点,是的两个焦点,若,则的取值范围是( )C B AD C 1 A 1 B 1A .B .C .D .【2014,4】已知是双曲线:的一个焦点,则点到的一条渐近线的距离为. .3 . .【2014,10】已知抛物线:的焦点为,准线为,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =u u u r u u u r,则||QF =( )A .72 B .52C .3D .2 【2013,4】已知双曲线C :(a >0,b >0)的离心率为,则C 的渐近线方程为( ). A .y = B .y = C .y = D .y =±x 【2013,10】已知椭圆E :(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .B .C .D .【2012,4】设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .45【2012,8】等轴双曲线C 的中心在原点,焦点在轴上,C 与抛物线的准线交于A ,B 两点,,则C 的实轴长为( )A .B .C .4D .8【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,为C 的实轴长的2倍,则C 的离心率为( )A .B .C .2D .3(2017·9)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B D (2016·4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34-C D .2(2016·11)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )A B .32C D .2(2015·7)过三点A (1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N 两点,则MN =( )A .B .8C .D .10(2015·11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2CD (2014·10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( )A BC .6332D .94(2013·11)设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( )A.24y x =或28y x =B.22y x =或28y x =C.24y x =或216y x =D.22y x =或216y x =(2013·12)已知点(1,0)A -,,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A.(0,1)B.1(1)2C. D.(2012·4)设F 1,F 2是椭圆E : 12222=+b y a x )0(>>b a 的左右焦点,P 为直线23ax =上的一点,12PF F △是底角为30º的等腰三角形,则E 的离心率为( ) A.21B.32 C.43 D.54 (2012·8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=34,则C 的实轴长为( )A.2B. 22C. 4D. 8(2011·7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A , B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )ABC .2D .3二、填空题【2017,15】已知双曲线C :(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【2015,14】一个圆经过椭圆的三个顶点,且圆心在轴的正半轴上,则该圆的标准方程为 . 【2011,14】在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为.过的直线L 交C 于两点,且的周长为16,那么的方程为 .(2017·16)已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .(2014·6)设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________.(2011·14)在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为 .三、解答题【2017,20】已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1, ),P 4(1,)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【2016,20】设圆的圆心为,直线过点且与轴不重合,交圆于两点,过作的平行线交于点. (Ⅰ)证明为定值,并写出点的轨迹方程;(Ⅱ)设点的轨迹为曲线,直线交于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.【2015,20】在直角坐标系中,曲线:与直线:()交于两点.(Ⅰ)当时,分别求在点和处的切线方程;(Ⅱ)在轴上是否存在点,使得当变动时,总有说明理由.【2014,20】已知点(0,-2),椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点.(Ⅰ)求的方程;(Ⅱ)设过点的直线与相交于两点,当的面积最大时,求的方程.【2013,20】已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【2012,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足, ,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量()数据作了初步处理,得到下面的散点图及一些统计量的值.表中,(Ⅰ)根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及数据,建立关于的回归方程;(III)已知这种产品的年利润与,的关系为,根据(Ⅱ)的结果回答下列问题:(i)年宣传费=49时,年销售量及年利润的预报值是多少(ii)年宣传费为何值时,年利润的预报值最大附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.(2017·20)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C的左焦点F .(2016·20)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当t =4,|AM|=|AN|时,求△AMN 的面积; (Ⅱ)当2|AM|=|AN|时,求k 的取值范围.(2015·20)已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形若能,求此时l 的斜率;若不能,说明理由.(2014·20)设F 1,F 2分别是椭圆()222210y x a b ab +=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b .(2013·20)平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F 的直线0x y +-=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.(2012·20)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上的一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若∠BFD =90º,△ABD 面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.(2011·20)在平面直角坐标系xOy 中,已知点A (0, -1),B 点在直线y =-3上,M 点满足 //MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值 .10.统计、概率分布列、计数原理(含解析)一、选择题【2017,2】如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .B .C .D . 【2017,6】展开式中的系数为( )A .15B .20C .30D .35 【2016,4】某公司的班车在,,发车,小明在至之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是( ) A .B .C .D .【2015,10】的展开式中,的系数为( )A .10B .20C .30D .60【2015,4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312【2014,5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ). . . .【2013,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样【2013,9】设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若13a =7b ,则m =( )。
2011-2018年全国一卷三角函数和平面向量汇编(文理) 无答案

2011-2017全国一卷三角函数和平面向量专题汇编(理科学生版)5.(5分)(2011•新课标理)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣ B.﹣ C.D.11.(5分)(2011•新课标文)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称10.(5分)(2011•新课标理)已知与均为单位向量,其夹角为θ,有下列四个命题P1:|+|>1⇔θ∈[0,);P2:|+|>1⇔θ∈(,π];P3:|﹣|>1⇔θ∈[0,);P4:|﹣|>1⇔θ∈(,π];其中的真命题是()A.P1,P4B.P1,P3C.P2,P3D.P2,P411.(5分)(2011•新课标理)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增13.(5分)(2011•新课标)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k=.15.(5分)(2011•新课标文)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.16.(5分)(2011•新课标理)在△ABC中,B=60°,AC=,则AB+2BC的最大值为.9.(5分)(2012•新课标理)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]13.(5分)(2012•新课标)已知向量夹角为45°,且,则=.17.(12分)(2012•新课标理)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.9.(5分)(2012•新课标)已知ω>0,0<φ<π,直线x=和x=是函数f (x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)(2013•新课标Ⅰ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10 B.9 C.8 D.513.(5分)(2013•新课标Ⅰ)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.13.(5分)(2013•新课标Ⅰ)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.15.(5分)(2013•新课标Ⅰ理)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.17.(12分)(2013•新课标Ⅰ理)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.2.(5分)(2014•新课标Ⅰ)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>06.(5分)(2014•新课标Ⅰ)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.8.(5分)(2014•新课标Ⅰ理)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=15.(5分)(2014•新课标Ⅰ)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)(2014•新课标Ⅰ)如图,为测量山高MN,选择A和另一座的山顶C 为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=1000m,则山高MN=m.16.(5分)(2014•新课标Ⅰ理)已知a,b,c分别为△ABC的三个内角A,B,C 的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.2.(5分)(2015•新课标Ⅰ)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4) C.(﹣1,4)D.(1,4)2.(5分)(2015•新课标Ⅰ理)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.8.(5分)(2015•新课标Ⅰ理)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z17.(12分)(2015•新课标Ⅰ理)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.4.(5分)(2016•新课标Ⅰ理)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.36.(5分)(2016•新课标Ⅰ理)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)12.(5分)(2016•新课标Ⅰ理)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]13.(5分)(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.13.(5分)(2016•新课标Ⅰ)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)(2016•新课标Ⅰ)已知θ是第四象限角,且sin(θ+)=,则tan (θ﹣)= .17.(12分)(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.8.(5分)(2017•新课标Ⅰ)函数y=的部分图象大致为()A.B.C.D.9.(5分)(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C211.(5分)(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.13.(5分)(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.15.(5分)(2017•新课标Ⅰ)已知α∈(0,),tanα=2,则cos(α﹣)=.13.(5分)(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|=.17.(12分)(2017•新课标Ⅰ理)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.平面向量
一、选择题
【2018,6】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )
A .3144A
B A
C - B .1344AB AC - C .3144AB AC +
D .1344AB AC +
【2015,7】设D 为ABC ∆所在平面内一点3BC CD =,则( )
A .1433AD A
B A
C =-+ B .1433
AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【2011,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题
12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦ 3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦
其中的真命题是( )
A .14,P P
B .13,P P
C .23,P P
D .24,P P
二、填空题
【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= .
【2016,13】设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .
【2014,15】已知A ,B ,C 是圆O 上的三点,若1()2
AO AB AC =+,则AB 与AC 的夹角为 . 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.
【2012,13】已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________.
4.平面向量(解析版)
一、选择题
【2018,6】 在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )
A .3144A
B A
C - B .1344AB AC - C .3144AB AC +
D .1344AB AC +
【答案】A 解析:如图所示EB ED DB =+,11()24ED AD AC AB ==+,11()22
DB CB AB AC ==- 111131442244
EB AC AB AB AC AB AC ∴=++-=-. 选A 。
【2015,7】设D 为ABC ∆所在平面内一点3BC CD =,则( )
A .1433AD A
B A
C =-+ B .1433
AD AB AC =- C .4133AD AB AC =+ D .4133
AD AB AC =- 解析:11()33AD AC CD AC BC AC AC AB =+=+=+-=1433AB AC -+,选A .. 【2011,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题
12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦ 3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦
其中的真命题是( )
A .14,P P
B .13,P P
C .23,P P
D .24,P P
解析:1a b +==得, 1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭
.由
1a b -==>得1cos 2θ<,,3πθπ⎛⎤⇒∈ ⎥⎝⎦
. 选A . 二、填空题 【2017,13】已知向量a ,b 的夹角为60°,|a |=2, | b |=1,则| a +2 b |= . 【解析】()22222(2)22cos602a b a b a a b b
+=+=+⋅⋅⋅︒+221222222=+⨯⨯⨯+444=++12=,
∴212a b +==;
【法二】令2,c b =由题意得,2a c ==,且夹角为60,所以2a b a c +=+的几何意义为以,a c 夹角为60的平行四边形的对角线所在的向量,易得223a b a c +=+=;
【2016,13】设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .
【解析】由已知得:()1,3a b m +=+r r ,
∴()22222222213112a b a b m m +=+⇔++=+++r r r r ,解得2m =-. 【2014,15】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =
+,则AB 与AC 的夹角为 . 【解析】∵1()2
AO AB AC =+,∴O 为线段BC 中点,故BC 为O 的直径,∴090BAC ∠=,∴AB 与AC 的夹角为090.
【2013,13】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.
解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2,又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12
t +1-t ,∴ t =2. 【2012,13】已知向量a ,b 夹角为45°,且||1a =,|2|10a b -=,则||b =_________.
【解析】由已知||2
245cos ||||b b a b a =︒⋅⋅=⋅,因为|2|10a b -=,所以10||4||422=+⋅-, 即06||22||2=--, 解得23||=.。