八年级数学全册全套试卷专题练习(word版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学全册全套试卷专题练习(word版
一、八年级数学三角形填空题(难)
1.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.
【答案】720°.
【解析】
【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.
【详解】这个正多边形的边数为360
60
︒
︒
=6,
所以这个正多边形的内角和=(6﹣2)×180°=720°,
故答案为720°.
【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.
2.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.
【答案】160.
【解析】
试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.
试题解析:360÷45=8,
则所走的路程是:6×8=48m,
则所用时间是:48÷0.3=160s.
考点:多边形内角与外角.
3.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.
【答案】115°.
【解析】
【分析】
根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出
∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】
解;∵∠A=50°,
∴∠ABC+∠ACB=180°﹣50°=130°,
∵∠B和∠C的平分线交于点O,
∴∠OBC=1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=1
2
×(∠ABC+∠ACB)=
1
2
×130°=65°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,
故答案为:115°.
【点睛】
本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.
4.如图是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD=__________.
【答案】119°
【解析】
【分析】
连接BD,构△BCD根据对顶角相等和三角形内角和定理即可求出∠BCD的度数.
【详解】
如图所示,连接BD,
∵∠4=∠1=38°,∠3=∠2=23°,
∴∠BCD=180°-∠4-∠3=180°-38°-23°=119°.
故答案为:119°.
【点睛】
本题考查了对顶角的性质与三角形内角和定理. 连接BD,构△BCD是解题的关键.
5.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.
【答案】45
【解析】
【分析】
根据三角形全等的判定和性质,先证△ADC ≌△BDF ,可得BD=AD ,可求
∠ABC=∠BAD=45°.
【详解】
∵AD ⊥BC 于D ,BE ⊥AC 于E
∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,
又∵∠BFD=∠AFE (对顶角相等)
∴∠EAF=∠DBF ,
在Rt △ADC 和Rt △BDF 中,
CAD FBD BDF ADC BF AC ∠∠⎧⎪∠∠⎨⎪⎩
===, ∴△ADC ≌△BDF (AAS ),
∴BD=AD ,
即∠ABC=∠BAD=45°.
故答案为45.
【点睛】
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
6.如图所示,请将1
2A ∠∠∠、、
用“>”排列__________________.
【答案】21A ∠∠∠>>
【解析】
【分析】
根据三角形的外角的性质判断即可.
【详解】
解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A
∴∠2>∠1>∠A,
故答案为:∠2>∠1>∠A.
【点睛】
本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.
二、八年级数学三角形选择题(难)
7.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()
A.40°B.50°C.60°D.70°
【答案】A
【解析】
【分析】
由等腰三角形的性质得到∠B=∠C,由角平分线的定义得到
∠BDM=∠EDM,∠CEN=∠DEN,根据外角的性质得
∠B=∠DMN-∠BDM,∠C=∠ENM-∠CEN,整理可得∠DMN+∠DEN=∠EDM+∠ENM,再根据四边形的内角和可得∠DMN+∠DEN=∠EDM+∠ENM=180°,则∠DEN=70°,故
∠DEA=40°.
【详解】
解:∵AB=AC,
∴∠B=∠C,
又∵DM平分∠BDE,EN平分∠DEC,
∴∠BDM=∠EDM,∠CEN=∠DEN,
∵∠B=∠DMN-∠BDM=∠DMN-∠EDM,
∠C=∠ENM-∠CEN=∠ENM-∠DEN,
∴∠DMN-∠EDM=∠ENM-∠DEN,即∠DMN+∠DEN=∠EDM+∠ENM,
∵四边形DMNE内角和为360°,
∴∠DMN+∠DEN=∠EDM+∠ENM=180°,
∴∠DEN=70°,
则∠DEA=180°-2∠DEN=40°.
故选A.
8.如图,在长方形网格中,每个小长方形的长为2,宽为1,
A、B两点在网格格点上,若点C也在网格格点上,以A、
B、C为顶点的三角形面积为2,则满足条件的点C个数是()
A.2 B.4 C.3 D.5
【答案】B
【解析】如图,满足条件的点C共有4个.故选B.
9.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()
A.65°B.70°C.75°D.80°
【答案】D
【解析】
【分析】
由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.
【详解】
解:∵AB∥CD,
∴∠C=∠1=45°,
∵∠3是△CDE的一个外角,
∴∠3=∠C+∠2=45°+35°=80°,
故选:D.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,
b∥c⇒a∥c.
的度数10.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3
等于()
A.50°B.30°C.20°D.15°
【答案】C
【解析】
【分析】
根据平行和三角形外角性质可得∠2=∠4=∠1+∠3,代入数据即可求∠3.
【详解】
如图所示,
∵AB∥CD
∴∠2=∠4=∠1+∠3=50°,
∴∠3=∠4-30°=20°,
故选C.
11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:
①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG;其中正确的个数是
()
A.1B.2C.3D.4
【答案】C
【解析】
【分析】
根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.
【详解】
①∵EG∥BC,
∴∠CEG=∠ACB.
又∵CD是△ABC的角平分线,
∴∠CEG =∠ACB =2∠DCB ,故正确;
④无法证明CA 平分∠BCG ,故错误;
③∵∠A =90°,
∴∠ADC +∠ACD =90°.
∵CD 平分∠ACB , ∴∠ACD =∠BCD ,
∴∠ADC +∠BCD =90°.
∵EG ∥BC ,且CG ⊥EG ,
∴∠GCB =90°,即∠GCD +∠BCD =90°,
∴∠ADC =∠GCD ,故正确;
②∵∠EBC +∠ACB =∠AEB ,∠DCB +∠ABC =∠ADC ,
∴∠AEB +∠ADC =90°+(∠ABC +∠ACB )=135°,
∴∠DFE =360°﹣135°﹣90°=135°,
∴∠DFB =45°=∠CGE ,
∴∠CGE =2∠DFB ,
∴∠DFB =∠CGE ,故正确.
故选C .
点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.
12.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )
A .180︒
B .210︒
C .360︒
D .270︒
【答案】B
【解析】
【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.
【详解】
如图所示,利用三角形外角性质可知:
∠α=∠1+∠D,∠β=∠4+∠F,
∴∠α+∠β=∠1+∠D+∠4+∠F,
∵∠1=∠2,∠3=∠4,
∴∠α+∠β=∠2+∠D+∠3+∠F
=90°+30°+90°
=210°,
故选:B.
【点睛】
本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.
三、八年级数学全等三角形填空题(难)
13.在Rt△ABC中,∠BAC=90°AB=AC,分别过点B、C做经过点A的直线的垂线BD、CE,若BD=14cm,CE=3cm,则DE=_____
【答案】11cm或17cm
【解析】
【分析】
分两种情形画出图形,利用全等三角形的性质分别求解即可.
【详解】
解:如图,当D,E在BC的同侧时,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵BD⊥DE,
∴∠BDA=90°,
∴∠BAD+∠DBA=90°,
∴∠DBA=∠CAE,
∵CE⊥DE,
∴∠E=90°,
在△BDA和△AEC中,
ABD CAE
D E
AB AC
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BDA≌△AEC(AAS),
∴DA=CE=3,AE=DB=14,
∴ED=DA
+AE=17cm.
如图,当D,E在BC的两侧时,
同法可证:BD=CE+DE,可得DE=11cm,
故答案为:11cm或17cm.
【点睛】
此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理与性质定理.
14.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和36,求△EDF的面积________.
【答案】6
【解析】
【分析】
作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.
【详解】
作DM=DE交AC于M,作DN⊥AC,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DN,
∵DE=DG,
∴DG=DM,
∴Rt△DEF≌Rt△DMN(HL),
∵DG=DM, DN⊥AC,
∴MN=NG,
∴△DMN≌△DNG,
∵△ADG 和△AED 的面积分别为48和36,
∴S △MDG =S △ADG -S △ADM =48-36=12,
∴S △DEF =12S △MDG =12
⨯12=6,
故答案为:6
【点睛】
本题考查了角平分线的性质及全等三角形的判定及性质,正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求是解题关键.
15.如图,已知点(,0)A a 在x 轴正半轴上,点(0,)B b 在y 轴的正半轴上,ABC ∆为等腰直角三角形,D 为斜边BC 上的中点.若2OD =,则a b +=________.
【答案】2
【解析】
【分析】
根据等腰直角三角形的性质,可得AP 与BC 的关系,根据垂线的性质,可得答案
【详解】
如图:作CP ⊥x 轴于点P ,由余角的性质,得∠OBA=∠PAC ,
在Rt △OBA 和Rt △PAC 中,
OBA PAC AOB CPA BA AC
∠∠⎧⎪∠∠⎨⎪⎩
===,
Rt △OBA ≌Rt △PAC (AAS ),
∴AP=OB=b ,PC=OA=a .
由线段的和差,得OP=OA+AP=a+b ,即C 点坐标是(a+b ,a ),
由B (0,b ),C (a+b ,a ),D 是BC 的中点,得D (
2a b +,2a b +), ∴OD=22
a b +() ∴22
a b +()=2, ∴a+b=2.
故答案为2.
【点睛】
本题解题主要①利用了等腰直角三角形的性质;②利用了全等三角形的判定与性质;③利用了线段中点的性质.
16.如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF ,结论:①EM =FN ;②AF
∥EB ;③∠FAN =∠EAM ;④△ACN ≌△ABM 其中正确的有 .
【答案】①③④
【解析】
【分析】
由∠E=∠F=90°,∠B=∠C ,AE=AF ,利用“AAS”得到△ABE 与△ACF 全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB 与∠FAC 相等,AE 与AF 相等,AB 与AC 相等,然后在等式∠EAB=∠FAC 两边都减去∠MAN ,得到∠EAM 与∠FAN 相等,然后再由
∠E=∠F=90°,AE=AF ,∠EAM=∠FAN ,利用“ASA”得到△AEM 与△AFN 全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B ,AC=AB ,
∠CAN=∠BAM ,利用“ASA”得到△ACN 与△ABM 全等,故选项④正确;若选项②正确,得到∠F 与∠BDN 相等,且都为90°,而∠BDN 不一定为90°,故②错误.
【详解】
解:在△ABE 和△ACF 中,
∠E=∠F=90°,AE=AF ,∠B=∠C ,
∴△ABE ≌△ACF ,
∴∠EAB=∠FAC ,AE=AF ,AB=AC ,
∴∠EAB-∠MAN=∠FAC-∠NAM ,即∠EAM=∠FAN ,
在△AEM 和△AFN 中,
∠E=∠F=90°,AE=AF ,∠EAM=∠FAN ,
∴△AEM ≌△AFN ,
∴EM=FN ,∠FAN=∠EAM ,故选项①和③正确;
在△ACN 和△ABM 中,
∠C=∠B ,AC=AB ,∠CAN=∠BAM (公共角),
∴△ACN ≌△ABM ,故选项④正确;
若AF ∥EB ,∠F=∠BDN=90°,而∠BDN 不一定为90°,故②错误,
则正确的选项有:①③④.
故答案为①③④
17.在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,∠C <90°,若∠B 满足条件:______________,则△ABC ≌△DEF .
【答案】∠B≥∠A .
【解析】
【分析】
虽然题目中∠B 为锐角,但是需要对∠B 进行分类探究会理解更深入:可按“∠B 是直角、钝角、锐角”三种情况进行,最后得出∠B 、∠E 都是锐角时两三角形全等的条件.
【详解】
解:需分三种情况讨论:
第一种情况:当∠B 是直角时:
如图①,在△ABC 和△DEF ,AC=DF ,BC=EF ,∠B=∠E=90°,可知:△ABC 与△DEF 一定全等,依据的判定方法是HL ;
第二种情况:当∠B 是钝角时:如图②,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作DH ⊥DE 交DE 的延长线于H .
∵∠B=∠E ,且∠B 、∠E 都是钝角.
∴180°-∠B=180°-∠E ,
即∠CBG=∠FEH .
在△CBG 和△FEH 中,
CBG FEH G H
BC EF ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△CBG ≌△FEH (AAS ),
∴CG=FH ,
在Rt △ACG 和Rt △DFH 中,
AC DF CG FH
⎧⎨⎩=,= ∴Rt △ACG ≌Rt △DFH (HL ),
∴∠A=∠D , 在△ABC 和△DEF 中,
A D
B E
AC DF ∠∠
⎧⎪∠∠⎨⎪⎩==,=
∴△ABC ≌△DEF (AAS );
第三种情况:当∠B 是锐角时:
在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D ,假设E 与B 重合,F 与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等,
所以有两边和其中一边的对角对应相等的两个三角形不一定全等;
由图③可知,∠A=∠CDA=∠B+∠BCD ,
∴∠A >∠B ,
∴当∠B≥∠A 时,△ABC 就唯一确定了,
则△ABC ≌△DEF .
故答案为:∠B≥∠A .
【点
睛】
本题是三角形综合题,考查全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键.
18.如图:△ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD ,CE ⊥CD ,且CE=CD ,连接BD ,DE ,BE ,则下列结论:①∠ECA=165°,②BE=BC ;③AD ⊥BE ;其中正确的是_________
【答案】①②③
【解析】
如图,(1)∵AC=AD ,∠CAD=30°,
∴∠ACD=∠ADC=1803075
2
-
=,
∵CE⊥DC,∴∠DCE=90°,∴∠ACE=∠ACD+∠DCE=165°.故①正确;
(2)由(1)可知:∠
ACB=∠DCE=90°,
∴∠ACE-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,
在△ACD和△BCE中,
AC BC
ACD BCE
CD CE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ACD≌△BCE,∴BE=AD=BC.故②正确;
(3)延长AD交BE于点F,∵△ACD≌△BCE,∴∠2=∠CAD=30°,
∵AC=BC,∠ACB=90°,∴∠CAB=∠3=45°,∴∠1=∠CAB-∠CAD=15°,
∴∠AFB=180°-∠1-∠2-∠3=90°,∴AD⊥BE.故③正确;
综上所述:正确的结论是①②③.
四、八年级数学全等三角形选择题(难)
19.如图所示,设甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则叙述正确的是()
A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等
C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等
【答案】B
【解析】
【分析】
根据题意即是判断甲、乙是否全等,丙丁是否全等.运用判定定理解答.
【详解】
解:∵∠ACB=CAD=70°,∠BAC=∠ACD=50°,AC为公共边,
∴△ABC≌△ACD,即甲、乙全等;
△EHG中,∠EGH=70°≠∠EHG=50°,即EH≠EG,
虽∠EFG=∠EGH=70°,∠EGF=∠EHG=50°,
∴△EFG不全等于△EGH,即丙、丁不全等.
综上所述甲、乙全等,丙、丁不全等,B正确,
故选:B.
【点睛】
本题考查的是全等三角形的判定,但考生需要有空间想象能力.判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.找着∠EGH=70°≠∠EHG=50°,即EH≠EG是正确解决本题的关键.
20.如图,在△ABC中,∠ABC=45°, BC=4,以AC为直角边,点A为直角顶点向△ABC
的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .
A.8 B.10 C.42D.82
【答案】A
【解析】
【分析】
将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.
【详解】
解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,
根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,
∴△ABE是等腰直角三角形,
∴∠ABE=45°,
又∵∠ABC=45°,
∴∠EBC=90°,
∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,
∴∠BDF=∠ECB
在△EBC 和△BFD 中
EBC=BFD=90ECB=BDF
EC=BD ⎧∠∠⎪∠∠⎨⎪⎩
∴△EBC ≌△BFD (AAS )
∴DF=BC=4
∴△DBC 的面积=
11BC DF=44=822
⋅⨯⨯ 故选A.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.
21.在
和中,,高,则和的关系是( )
A .相等
B .互补
C .相等或互补
D .以上都不对 【答案】C
【解析】
试题解析:当∠C ′为锐角时,如图1所示,
∵AC=A′C′,AD=A′D′,AD ⊥BC ,A′D′⊥B′C′,
∴Rt △ADC ≌Rt △A′D′C′,
∴∠C=∠C′;
当∠C 为钝角时,如图3所示,
∵AC=A′C′,AD=A′D′,AD ⊥BC ,A′D′⊥B′C′,
∴Rt △ACD ≌Rt △A′C′D′,
∴∠C=∠A′C′D′,
∴∠C+∠A′C′B′=180°.
故选C.
22.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握
23.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()
A.2 B.3 C.4 D.5
【答案】C
【解析】
【分析】
可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.
【详解】
延长DE至F,使EF=BC,连AC,AD,AF,
在△ABC与△AEF中,
=90
AB AE
ABC AEF
BC EF
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABC≌△AEF(SAS),
∴AC=AF,
∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,
∴CD=EF+DE=DF,
在△ACD与△AFD中,
AC AF
CD DF
AD AD
⎧
⎪
⎨
⎪
⎩
=
=
=
,
∴△ACD≌△AFD(SSS),
∴五边形ABCDE的面积是:S=2S△ADF=2×
1
2
•DF•AE=2×
1
2
×2×2=4.
故选C.
【点睛】
本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.
24.在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,根据图中标示的各点位置,与△ABC全等的是()
A.△ACF B.△ACE
C.△ABD D.△CEF
【答案】C
【解析】
【分析】
利用勾股定理先分别求得△ABC的各边长以及各选项中三角形的各边长,再根据三角形全等的判定方法进行判定即可得.
【详解】
在△ABC中,AB=22
+=10,BC=22
31
+=2,AC=22,
11
A、在△ACF中,AF=22
+=5≠10,5≠2,5≠22,则△ACF与△ABC不全
21
等,故不符合题意;
B、在△ACE中,AE=3≠10,3≠2,3≠22,则△ACE与△ABC不全等,故不符合题意;
C、在△ABD中,AB=AB,AD=2=BC,BD=22=AC,则由SSS可证明△ACE与△ABC全等,故符合题意;
D、在△CEF中,CF=3≠10,3≠2,3≠22,则△CEF与△ABC不全等,故不符合题意,故选C.
【点睛】
本题考查了勾股定理以及全等三角形的判定,熟练掌握勾股定理以及全等三角形的判定方法是解题的关键.
五、八年级数学轴对称三角形填空题(难)
25.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.
【答案】AD的中点
【解析】
【分析】
【详解】
分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出
AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.
详解:如图,过AD作C点的对称点C′,
根据轴对称的性质可得:PC=PC′,CD=C′D
∵四边形ABCD 是矩形
∴AB=CD
∴△ABP ≌△DC′P
∴AP=PD
即P 为AD 的中点.
故答案为P 为AB 的中点.
点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.
26.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.
【答案】①③④
【解析】
【分析】
①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则
∠C=12
∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于
∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.
【详解】
∵∠BAC=90°,AD ⊥BC ,
∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,
∴∠ABC=∠DAC ,∠BAD=∠C ,
故①正确;
若∠EBC=∠C ,则∠C=
12
∠ABC , ∵∠BAC=90°,
那么∠C=30°,但∠C 不一定等于30°,
故②错误;
∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,
∴∠ABF=∠EBD ,
∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,
又∵∠BAD=∠C ,
∴∠AFE=∠AEF ,
∴AF=AE ,
故③正确;
∵AG 是∠DAC 的平分线,AF=AE ,
∴AN ⊥BE ,FN=EN ,
在△ABN 与△GBN 中, ∵90ABN GBN BN BN ANB GNB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩
,
∴△ABN ≌△GBN (ASA ),
∴AN=GN ,
又∵FN=EN ,∠ANE=∠GNF ,
∴△ANE ≌△GNF (SAS ),
∴∠NAE=∠NGF ,
∴GF ∥AE ,即GF ∥AC ,
故④正确;
∵AE=AF ,AE=FG ,
而△AEF 不一定是等边三角形,
∴EF 不一定等于AE ,
∴EF 不一定等于FG ,
故⑤错误.
故答案为:①③④.
【点睛】
本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.
27.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).
【答案】①②③
【解析】
【分析】
只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.
【详解】
解:∵CD ⊥AB ,BE ⊥AC ,
∴∠BDC=∠ADC=∠AEB=90°,
∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,
∴∠A=∠DFB ,
∵∠ABC=45°,∠BDC=90°,
∴∠DCB=90°−45°=45°=∠DBC ,
∴BD=DC ,
在△BDF 和△CDA 中,
∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,
∴△BDF ≌△CDA (AAS ),
∴BF=AC ,故①正确.
∵∠ABE=∠EBC=22.5°,BE ⊥AC ,
∴∠A=∠BCA=67.5°,故②正确,
∵BE 平分∠ABC ,∠ABC=45°,
∴∠ABE=∠CBE=22.5°,
∵∠BDF=∠BHG=90°,
∴∠BGH=∠BFD=67.5°,
∴∠DGF=∠DFG=67.5°,
∴DG=DF ,故③正确.
作GM ⊥AB 于M .如图所示:
∵∠GBM=∠GBH ,GH ⊥BC ,
∴GH=GM <DG ,
∴S △DGB >S △GHB ,
∵S△ABE=S△BCE,
∴S四边形ADGE<S四边形GHCE.故④错误,
故答案为:①②③.
【点睛】
此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.
28.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个
【答案】5
【解析】
【分析】
分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可
【详解】
解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个
故答案为:5
【点睛】
本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键
29.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.
【答案】1 2
【解析】
过点Q作AD的延长线的垂线于点F.
因为△ABC是等边三角形,所以∠A=∠ACB=60°.
因为∠ACB=∠QCF,所以∠QCF=60°.
因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,
又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.
同理可证,△DEP≌△DFQ,所以DE=DF.
所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=1
2
AC=
1
2
.
故答案为1 2 .
30.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_____cm.
【答案】8cm.
【解析】
【详解】
解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM 为等边三角形,
∴△EFD 为等边三角形,
∵BE=6cm ,DE=2cm ,
∴DM=4,
∵△BEM 为等边三角形,
∴∠EMB=60°,
∵AN ⊥BC ,
∴∠DNM=90°,
∴∠NDM=36°,
∴NM=2,
∴BN=4,
∴BC=8.
六、八年级数学轴对称三角形选择题(难)
31.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )
A .1个
B .2个
C .3个
D .无数个
【答案】D
【解析】
【分析】 根据题意在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°,只要证明△PEM ≌△PON 即可反推出△PMN 是等边三角形满足条件,以此进行分析即可得出结论.
【详解】
解:如图在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°.
∵OP 平分∠AOB ,120AOB ∠=︒,
∴∠EOP=∠POF=60°,
∵OE=OF=OP,
∴△OPE,△OPF是等边三角形,
∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,
∴∠EPM=∠OPN,
在△PEM和△PON中,
PEM PON
PE PO
EPM OPN
∠
⎪∠
⎧
⎩
∠
⎪
∠
⎨
=
=
=
∴△PEM≌△PON(ASA).
∴PM=PN,
∵∠MPN=60°,
∴△PNM是等边三角形,
∴只要∠MPN=60°,△PMN就是等边三角形,
故这样的三角形有无数个.
故选:D.
【点睛】
本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.
32.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;
②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是
()
A.2 B.3 C.4 D.5
【答案】D
【解析】
【分析】
由题意易证:△ACE≅△DCB,进而可得AE=BD;由△ACE≅△DCB,可得∠CAE=∠CDB,从而△ACM ≅△DCN,可得:CM=CN;易证△MCN是等边三角形,可得∠MNC=∠BCE,
即MN∥AB;由∠CAE=∠CDB,∠AMC=∠DMO,得∠ACM=∠DOM=60°,即∠AOB=120º;作CG⊥AE,CH⊥BD,易证CG=CH,即:OC 平分∠AOB.
【详解】
∵△ACD 和△BCE 都是等边三角形,
∴AC=DC ,CE=CB ,∠ACE=∠DCB=120°,
∴△ACE ≅△DCB(SAS)
∴AE =BD ,
∴①正确;
∵△ACE ≅△DCB ,
∴∠CAE=∠CDB ,
∵△ACD 和△BCE 都是等边三角形,
∴∠ACD=∠BCE=∠DCE=60°,AC=DC ,
在△ACM 和△DCN 中,
∵60CAE CDB AC DC
ACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩
∴△ACM ≅△DCN (ASA ),
∴CM =CN ,
∴②正确;
∵CM =CN ,∠DCE=60°,
∴△MCN 是等边三角形,
∴∠MNC=60°,
∴∠MNC=∠BCE ,
∴MN ∥AB ,
∴③正确;
∵△ACE ≅△DCB ,
∴∠CAE=∠CDB ,
∵∠AMC=∠DMO ,
∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO ,
即:∠ACM=∠DOM=60°,
∴∠AOB =120º,
∴④正确;
作CG ⊥AE ,CH ⊥BD ,垂足分别为点G ,点H ,如图,
在△ACG 和△DCH 中,
∵90?AMC DHC CAE CDB AC DC ∠=∠=⎧⎪∠=∠⎨⎪=⎩
∴△ACG ≅△DCH (AAS ),
∴CG =CH ,
∴OC 平分∠AOB ,
∴⑤正确.
故选D.
【点睛】
本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.
33.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()
A.12 B.16 C.24 D.32
【答案】A
【解析】
【分析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.
【详解】
连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∵△CDM周长的最小值为8,
∴AD=8-1
2
BC=8-2=6
∴S△ABC=1
2
BC•AD=
1
2
×4×6=12,
故选A.
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
34.如图,已知等边△ABC的面积为43, P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()
A.3B.23C.15D.4
【答案】B
【解析】
如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,
当点E,R,P在同一直线上,且PE⊥AB时,PE的长就是PR+QR的最小值,
设等边△ABC的边长为x 3
,
∵等边△ABC的面积为3,
∴1
2
x×
3
2
3
解得x=4,
∴等边△ABC 3
3
即3PR+QR的最小值是3,
故选B.
【点睛】本题考查了轴对称的性质,最短路径问题等,解题的关键是正确添加辅助线构造出最短路径.
35.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()
A
.PD=DQ B.DE=
1
2
AC C.AE=
1
2
CQ D.PQ⊥AB
【答案】D
【解析】
过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,
∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ 中,
FPD Q
PDE CDQ
PF CQ
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,
∵AE=EF,∴DE=
1
2
AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=
1
2
AP=
1
2
CQ,∴C选项正确,故选D.
36.如图,将△AB C沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=108°,则∠C的度数为()
A.40°B.41°C.32°D.36°
【答案】D
【解析】
分析:如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,
∠CFO =2∠FBO ,由∠CDO +∠CFO =108°,推出2∠DAO +2∠FBO =98°,推出
∠DAO +∠FBO =49°,由此即可解决问题.
详解:如图,连接AO 、BO .
由题意得:EA =EB =EO ,∴∠AOB =90°,∠OAB +∠OBA =90°.∵DO =DA ,FO =FB ,∴∠DAO =∠DOA ,∠FOB =∠FBO ,∴∠CDO =2∠DAO ,
∠CFO =2∠FBO .∵∠CDO +∠CFO =108°,∴2∠DAO +2∠FBO =108°,∴∠DAO +∠FBO =54°,∴∠CAB +∠CBA =∠DAO +∠OAB +∠OBA +∠FBO =144°,∴∠C =180°﹣(∠CAB +∠CBA )=180°﹣144°=36°.
故选D .
点睛:本题考查了三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.
七、八年级数学整式的乘法与因式分解选择题压轴题(难)
37.()()()()242212121......21n ++++=( )
A .421n -
B .421n +
C .441n -
D .441n + 【答案】A
【解析】
【分析】 先乘以(2-1)值不变,再利用平方差公式进行化简即可.
【详解】
()()()()242n 212121......21++++
=(2-1)()()()()
242n 212121......21++++ =24n -1.
故选A.
【点睛】
本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.
38.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )
A .(x -2)(x +3)
B .(x +2)(x -3)
C .(x -2)(x -3)
D .(x +2)(x +3)
【答案】B
【解析】
【分析】
【详解】
因为(x+6)(x-1)=x2+5x-6,所以b=-6;
因为(x-2)(x+1)=x2-x-2,所以a=1.
所以x2-ax+b=x2-x-6=(x-3)(x+2).
故选B.
点睛:本题主要考查了多项式的乘法和因式分解,看错了a,说明b是正确的,所以将看错了a的式子展开后,可得到b的值,同理得到a的值,再把a,b的值代入到x2+ax+b 中分解因式.
39.下列各式中,从左到右的变形是因式分解的是()
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x
【答案】C
【解析】
【分析】
根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】
A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;
B、(x+y)(x-y)=x2-y2,这是整式的乘法,故此选项不符合题意;
C、x2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;
D、x2+y2=(x-y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;
故选C.
【点睛】
此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.
40.下列等式由左边向右边的变形中,属于因式分解的是 ( )
A.x2+5x-1=x(x+5)-1 B.x2-4+3x=(x+2)(x-2)+3x
C.(x+2)(x-2)=x2-4 D.x2-9=(x+3)(x-3)
【答案】D
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.
【详解】
解:A、右边不是积的形式,故A错误;
B、右边不是积的形式,故B错误;
C 、是整式的乘法,故C 错误;
D 、x 2-9=(x+3)(x -3),属于因式分解.
故选D .
【点睛】
此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.
41.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )
A .b>0,b 2-ac ≤0
B .b <0,b 2-ac ≤0
C .b>0,b 2-ac ≥0
D .b <0,b 2-ac ≥0
【答案】D
【解析】
【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24
a c -,可根据平
方的非负性求得b 2-ac≥0.
【详解】
解:∵a-2b+c=0,
∴a+c=2b ,
∴a+2b+c=4b <0,
∴b <0, ∴a 2+2ac+c 2=4b 2,即22
2
24a ac c b ++= ∴b 2-ac=()2
2222220444
a c a ac c a ac c ac -++-+-==≥, 故选:D.
【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.
42.下列从左到右的变形中,属于因式分解的是( )
A .()()2224x x x +-=-
B .2222()a ab b a b -+=-
C .()11am bm m a b +-=+-
D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭
【答案】B
【解析】
【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.。