2019高中物理 第四章 机械能和能源 第二节 动能 势能学案 粤教版必修2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 动能 势能
一、功和能的关系
1.能量:一个物体能够对其他物体做功,说明这个物体具有能量.
2.功和能的关系:功是能量转化的量度,做功的过程是能量转化的过程,做了多少功,就有多少能量发生转化. 二、动能
1.定义:物体由于运动而具有的能量叫做动能. 2.表达式:E k =12
mv 2.
(1)物理意义:物体的动能等于物体的质量与它的速度的平方乘积的一半. (2)表达式中的速度是瞬时速度.
(3)动能是标量(填“标量”或“矢量”),是状态(填“过程”或“状态”)量. 3.单位:动能的国际单位是焦耳,简称焦,用符号J 表示. 三、重力势能
1.概念:由物体所处位置的高度决定的能量. 2.重力做的功:
(1)做功表达式:W G =mgh =mgh 1-mgh 2,式中h 指初位置与末位置的高度差;h 1、h 2分别指初位置、末位置的高度.
(2)做功的正负:物体下降时重力做正功;物体被举高时重力做负功.
(3)做功的特点:只与运动物体的起点和终点的位置有关,而与运动物体所经过的路径无关. 3.重力势能:
(1)定义:物体的重力与所处高度的乘积.
(2)大小:表达式:E p=mgh;单位:焦耳,符号:J.
(3)标矢性:重力势能是标量,只有大小,没有方向.
(4)重力做功与重力势能变化的关系
①表达式:W G=mgh1-mgh2=-ΔE p.
②重力做正功,重力势能减少;重力做负功,重力势能增加.
4.重力势能的相对性:
(1)参考平面:物体的重力势能总是相对于某一水平面来说的,这个水平面叫做参考平面.在参考平面上,物体的重力势能取作0.
(2)重力势能的相对性特点
①选择不同的参考平面,物体重力势能的数值是不同的.
②对选定的参考平面,上方物体的重力势能是正值,下方物体的重力势能是负值,负号表示物体在这个位置具有的重力势能要比在参考平面上具有的重力势能小.
5.重力势能的系统性:重力势能是物体与地球所组成的系统共有的.
四、弹性势能
1.定义:发生形变的物体,在恢复原状时能够对外界做功,因而具有能量.
2.大小:跟形变量的大小有关,形变量越大,弹性势能也越大.对于弹簧来说,弹性势能与拉伸或压缩长度有关;当形变量一定时,劲度系数越大的弹簧弹性势能越大.
3.势能:与相互作用物体的相对位置有关的能量.
1.判断下列说法的正误.
(1)动能不变的物体,一定处于平衡状态.(×)
(2)某物体的速度加倍,它的动能也加倍.(×)
(3)一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化.(√)
(4)同一物体在不同位置的重力势能分别为E p1=3 J,E p2=-10 J,则E p1<E p2.(×)
(5)物体由高处到低处,重力一定做正功,重力势能一定减少.(√)
(6)重力做功一定与路径无关,只与初、末位置的高度差有关.(√)
2.(1)一个质量为0.1 kg的球在光滑水平面上以5 m/s的速度匀速运动,与竖直墙壁碰撞以后以原速率被弹回,若以初速度方向为正方向,则小球碰墙前后速度的变化为________,动能的变化为________.
(2)质量为m的物体从地面上方H高处由静止释放,落在地面后出现一个深度为h的坑,如图1所示,重力加速度为g,在此过程中,重力对物体做功为________,重力势能______(填“减少”或“增加”)了______.
图1
答案 (1)-10 m/s 0 (2)mg (H +h ) 减少 mg (H +h )
一、动能
如图2所示,一个质量为m 、初速度为v 的物体,在水平桌面上运动,因受摩擦阻力f 的作用,运动一段位移s 后静止下来.在这一过程中,物体克服摩擦阻力做了功,根据功和能的关系,这个功在数值上就等于物体初始所具有的动能.请推导这个物体初始所具有的动能.
图2
答案 选初速度的方向为正方向, 由牛顿第二定律得-f =m (-a )
由位移速度关系得s =v 2
2a
摩擦力对物体所做的功是
W =-fs =m (-a )·v 22a =-1
2
mv 2
即物体克服摩擦力做功的大小为W ′=12
mv 2
根据功和能的关系,12
mv 2
就是物体初始所具有的动能.
1.对动能的理解
(1)动能是标量,没有负值,与物体的速度方向无关.
(2)动能是状态量,具有瞬时性,与物体的运动状态(或某一时刻的速度)相对应. (3)动能具有相对性,选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系.
2.动能变化量ΔE k
物体动能的变化量是末动能与初动能之差,即ΔE k=1
2
mv22-
1
2
mv12,若ΔE k>0,则表示物体的
动能增加,若ΔE k<0,则表示物体的动能减少.例1下列关于动能的说法正确的是( ) A.两个物体中,速度大的动能也大
B.某物体的速度加倍,它的动能也加倍
C.做匀速圆周运动的物体动能保持不变
D.某物体的动能保持不变,则速度一定不变
答案 C
解析动能的表达式为E k=1
2
mv2,即物体的动能大小由质量和速度大小共同决定,速度大的
物体的动能不一定大,故A错误;速度加倍,它的动能变为原来的4倍,故B错误;速度只要大小保持不变,动能就不变,故C正确,D错误.
二、重力做功
如图3所示,一个质量为m的物体,从高度为h1的位置A分别按下列三种方式运动到高度为h2的位置B,在这个过程中思考并讨论以下问题:
图3
(1)根据功的公式求出甲、乙两种情况下重力做的功;
(2)求出丙中重力做的功;
(3)重力做功有什么特点?
答案(1)甲中W G=mgh=mgh1-mgh2
乙中W G′=mgs cos θ=mgh=mgh1-mgh2
(2)把整个路径AB分成许多很短的间隔AA1、A1A2…,由于每一段都很小,每一小段都可以近似地看做一段倾斜的直线,设每段小斜线的高度差分别为Δh1、Δh2…,则物体通过每段小斜线时重力做的功分别为mgΔh1、mgΔh2….
物体通过整个路径时重力做的功
W G″=mgΔh1+mgΔh2+…
=mg(Δh1+Δh2+…)=mgh
=mgh1-mgh2
(3)物体运动时,重力对它做的功只跟它的起点和终点的位置有关,而跟物体运动的路径无关.
1.重力做功大小只与重力和物体高度变化有关,与所受的其他力及运动状态均无关.
2.物体下降时重力做正功,物体上升时重力做负功.
3.在一些往复运动或多个运动过程的复杂问题中求重力做功时,利用重力做功的特点,可以省去大量中间过程,一步求解.
例2在同一高度,把三个质量相同的球A、B、C分别以相等的速率竖直上抛、竖直下抛和平抛,它们都落到同一水平地面上.三个球在运动过程中,重力对它们做的功分别为W A、W B、W C,则它们的大小关系为( )
A.W A>W B=W C
B.W A<W B<W C
C.W A=W B=W C
D.W A>W B>W C
答案 C
解析由重力做功特点知:W A=W B=W C,故C对.
三、重力势能
如图4所示,质量为m的物体自高度为h2的A处下落至高度为h1的B处.求下列两种情况下,重力做的功和重力势能的变化量,并分析它们之间的关系.
图4
(1)以地面为零势能参考面;
(2)以B处所在的高度为零势能参考面.
答案(1)重力做的功W G=mgΔh=mg(h2-h1),选地面为零势能参考面,E p A=mgh2,E p B=mgh1,重力势能的变化量ΔE p=mgh1-mgh2=-mgΔh.
(2)选B处所在的高度为零势能参考面,重力做功W G=mgΔh=mg(h2-h1).物体的重力势能
E p A=mg(h2-h1)=mgΔh,E p B=0,重力势能的变化量ΔE p=0-mgΔh=-mgΔh.
综上两次分析可见W G=-ΔE p,即重力做的功等于重力势能的变化量的负值,而且重力势能
的变化与零势能参考面的选取无关.
1.重力做功与重力势能变化的关系:
W G =E p1-E p2=-ΔE p
两种情况:
2.重力势能的相对性
物体的重力势能总是相对于某一水平参考面,选不同的参考面,物体重力势能的数值是不同的.故在计算重力势能时,必须首先选取参考平面. 3.重力势能的变化量与参考平面的选择无关. 例3 下列关于重力势能的说法正确的是( )
A .物体的位置一旦确定,它的重力势能的大小也随之确定
B .物体与零势能面的距离越大,它的重力势能也越大
C .一个物体的重力势能从-5 J 变化到-3 J ,重力势能增加了
D .在地面上的物体具有的重力势能一定等于零 答案 C
解析 物体的重力势能与参考平面的选取有关,同一物体在同一位置相对不同的参考平面的重力势能不同,A 选项错;物体在零势能面以上,距零势能面的距离越大,重力势能越大,物体在零势能面以下,距零势能面的距离越大,重力势能越小,B 选项错;重力势能中的正、负号表示大小,-5 J 的重力势能小于-3 J 的重力势能,C 选项对;只有选地面为零势能面时,地面上的物体的重力势能才为零,否则不为零,D 选项错.
例4 如图5所示,质量为m 的小球,用一长为l 的细线悬于O 点,将悬线拉直成水平状态,并给小球一个向下的速度让小球向下运动,O 点正下方D 处有一光滑小钉子,小球运动到B 处时会以D 为圆心做圆周运动,并经过C 点,若已知OD =2
3l ,则小球由A 点运动到C 点的过
程中,重力做功为多少?重力势能改变了多少?
图5
答案 13mgl 减少1
3
mgl
解析 从A 点运动到C 点,小球下落的高度为h =13l ,
故重力做功W G =mgh =1
3
mgl ,
重力势能的变化量ΔE p =-W G =-1
3mgl
负号表示小球的重力势能减少了.
重力做功与重力势能变化的关系:W G =E p1-E p2=-ΔE p ,即重力势能变化多少是由重力做功的多少唯一量度的,与物体除重力外是否还受其他力作用以及除重力做功外是否还有其他力做功等因素均无关. 四、弹性势能
如图6所示,滑块与墙壁间夹有一轻质弹簧,用力将滑块向左推,使弹簧压缩,松手后,弹簧会将滑块弹出,若压缩量变大,则滑块弹出的距离会怎样变化?若劲度系数不同的弹簧,在压缩量相同的情况下,滑块弹出的距离哪个更大?
图6
答案 压缩量变大,滑块弹出的距离变大;压缩量相同时劲度系数大的弹簧,滑块弹出得远.
1.弹力做功与弹性势能变化的关系
(1)关系:弹力做正功时,弹性势能减少,弹力做负功时,弹性势能增加,并且弹力做多少功,弹性势能就变化多少.
(2)表达式:W 弹=-ΔE p =E p1-E p2. 2.使用范围:在弹簧的弹性限度内.
注意:弹力做功和重力做功一样,也和路径无关,弹性势能的变化只与弹力做功有关. 例5 如图7所示,处于自然长度的轻质弹簧一端与墙接触,另一端与置于光滑地面上的物体接触,现在物体上施加一水平推力F ,使物体缓慢压缩弹簧,当推力F 做功100 J 时,弹簧的弹力做功________J ,以弹簧处于自然长度时的弹性势能为零,则弹簧的弹性势能为________J.
图7
答案 -100 100
解析 在物体缓慢压缩弹簧的过程中,推力F 始终与弹簧弹力等大反向,所以推力F 做的功等于克服弹簧弹力所做的功,即W 弹=-W F =-100 J .由弹力做功与弹性势能的变化关系知,弹性势能增加了100 J.
1.(对动能的理解)(多选)关于动能的理解,下列说法正确的是( ) A .一般情况下,E k =12
mv 2
中的v 是相对于地面的速度
B .动能的大小由物体的质量和速率决定,与物体的运动方向无关
C .物体以相同的速率向东和向西运动,动能的大小相等、方向相反
D .当物体以不变的速率做曲线运动时其动能不断变化 答案 AB
解析 动能是标量,由物体的质量和速率决定,与物体的运动方向无关.动能具有相对性,无特别说明,一般指相对于地面的动能.选A 、B.
2.(重力势能的理解)关于重力势能,下列说法正确的是( ) A .重力势能是地球和物体共同具有的,而不是物体单独具有的 B .处在同一高度的物体,具有的重力势能相同 C .重力势能是标量,不可能有正、负值 D .浮在海面上的小船的重力势能一定为零 答案 A
解析 重力势能具有系统性,重力势能是物体与地球共有的,故A 正确;重力势能等于mgh ,其中h 是相对于参考平面的高度,参考平面不同,h 不同,另外质量也不一定相同,故处在同一高度的物体,其重力势能不一定相同,选项B 错误;重力势能是标量,但有正负,负号表示物体在零势能参考平面的下方,故C 错误;零势能面的选取是任意的,并不一定选择海平面为零势能面,故浮在海面上的小船的重力势能不一定为零,选项D 错误.
3.(弹力做功与弹性势能变化的关系)如图8所示,轻弹簧下端系一重物,O 点为其平衡位置(即重力和弹簧弹力大小相等的位置),今用手向下拉重物,第一次把它直接拉到A 点,弹力做功为W 1,第二次把它拉到B 点后再让其回到A 点,弹力做功为W 2,则这两次弹力做功的关系为( )
图8
A .W 1<W 2
B .W 1=2W 2
C .W 2=2W 1
D .W 1=W 2
答案 D
解析 弹力做功与路径无关,只与初、末位置有关,两次初、末位置相同,故W 1=W 2,D 正确.
4.(重力做功与重力势能变化的关系)在离地80 m 处无初速度释放一小球,小球质量为m =200 g ,不计空气阻力,g 取10 m/s 2
,取最高点所在水平面为零势能参考平面.求: (1)在第2 s 末小球的重力势能;
(2)3 s 内重力所做的功及重力势能的变化. 答案 (1)-40 J (2)90 J 减少了90 J 解析 (1)在第2 s 末小球下落的高度为:
h =12gt 2=12
×10×22 m =20 m
重力势能为:
E p =-mgh =-0.2×10×20 J=-40 J.
(2)在3 s 内小球下落的高度为
h ′=12gt ′2=12
×10×32 m =45 m.
3 s 内重力做功为:W G =mgh ′=0.2×10×45 J=90 J
W G >0,所以小球的重力势能减少,且减少了90 J.
考点一 对动能的理解
1.关于物体的动能,下列说法中正确的是( ) A .一个物体的动能可能小于零 B .一个物体的动能与参考系的选取无关 C .动能相同的物体的速度一定相同
D .两质量相同的物体,若动能相同,其速度不一定相同
答案 D
解析 由E k =12mv 2
知动能不会小于零,A 选项错误;因v 的大小与参考系的选取有关,故动
能的大小也与参考系的选取有关,B 选项错误;由E k =12mv 2
知,动能的大小与物体的质量和
速度的大小都有关系,动能相同,速度不一定相同,C 选项错误;两质量相同的物体,若动能相同,速度的大小一定相同,但速度方向不一定相同,D 选项正确. 2.(多选)关于动能,下列说法正确的是( )
A .动能是普遍存在的机械能的一种基本形式,凡是运动的物体都有动能
B .物体所受合外力不为零,其动能一定变化
C .一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化
D .动能不变的物体,一定处于平衡状态 答案 AC
【考点】对动能的理解 【题点】对动能概念的理解 考点二 重力做功 重力势能
3.一物体以初速度v 竖直向上抛出,做竖直上抛运动,则物体的重力势能E p -路程s 图象应是四个图中的( )
答案 A
解析 以抛出点为零势能点,则上升阶段路程为s 时,克服重力做功mgs ,重力势能E p =mgs ,即重力势能与路程s 成正比;下降阶段,物体距抛出点的高度h =2h 0-s ,其中h 0为上升的最高点,故重力势能E p =mgh =2mgh 0-mgs ,故下降阶段,随着路程s 的增大,重力势能线性减小,选项A 正确. 【考点】重力势能的变化 【题点】定性判断重力势能的变化
4.(多选)物体在运动过程中,克服重力做功100 J ,则以下说法正确的是( ) A .物体的高度一定降低了 B .物体的高度一定升高了 C .物体的重力势能一定是100 J D .物体的重力势能一定增加100 J 答案 BD
解析 克服重力做功,即重力做负功,重力势能增加,高度升高,克服重力做多少功,重力
势能就增加多少,但重力势能是相对的,增加100 J 的重力势能,并不代表现在的重力势能就是100 J ,故B 、D 正确,A 、C 错误.
【考点】重力做功与重力势能变化的关系
【题点】定量计算重力做功与重力势能变化的关系
5.一根长为2 m 、重为200 N 的均匀木杆放在水平地面上,现将它的一端缓慢地从地面抬高0.5 m ,另一端仍放在地面上,则所需做的功为( )
A .50 J
B .100 J
C .200 J
D .400 J
答案 A
解析 由几何关系可知,杆的重心向上运动了h =0.52
m =0.25 m ,故克服重力做功W G =mgh =200×0.25 J=50 J ,外力做的功等于克服重力做的功,即外力做功50 J ,选项A 正确.
【考点】重力做功与重力势能变化的关系
【题点】定量计算重力做功与重力势能变化的关系
6.如图1所示,在水平面上平铺着n 块砖,每块砖的质量为m ,厚度为h ,如果人工将砖一块一块地叠放起来,那么人至少做功( )
图1
A .n (n -1)mgh
B.12n (n -1)mgh C .n (n +1)mgh
D.12n (n +1)mgh 答案 B
解析 取n 块砖的整体为研究对象,叠放起来后整体的重心距地面12nh ,原来的重心距地面12
h ,故有W =ΔE p =nmg ×12nh -nmg ×12h =12
n (n -1)mgh ,B 项正确. 考点三 弹性势能
7.一竖直弹簧下端固定于水平地面上,小球从弹簧的正上方高为h 的地方由静止下落到弹簧上端,如图2所示,经几次反弹以后小球最终在弹簧上静止于某一点A 处,则( )
图2
A.h越大,弹簧在A点的压缩量越大
B.弹簧在A点的压缩量与h无关
C.h越大,最终小球静止在A点时弹簧的弹性势能越大
D.小球第一次到达A点时弹簧的弹性势能比最终小球静止在A点时弹簧的弹性势能大
答案 B
解析最终小球静止在A点时,通过受力分析,小球受自身重力mg与弹簧的弹力kx大小相等,由mg=kx得,弹簧在A点的压缩量x与h无关,弹簧在A点的弹性势能与h无关.【考点】影响弹性势能大小的因素
【题点】弹性势能与形变量关系的应用
8.如图3所示,质量相等的两木块中间连有一弹簧,今用力F缓慢向上提A,直到B恰好离开地面.开始时物体A静止在弹簧上面.设开始时弹簧的弹性势能为E p1,B刚要离开地面时,弹簧的弹性势能为E p2,则关于E p1、E p2的大小关系及弹性势能的变化ΔE p,下列说法中正确的是( )
图3
A.E p1=E p2B.E p1>E p2
C.ΔE p>0 D.ΔE p<0
答案 A
解析开始时弹簧形变量为x1,有kx1=mg,设B刚要离开地面时弹簧形变量为x2,有kx2=mg,由于x1=x2所以E p1=E p2,ΔE p=0,A对.
【考点】影响弹性势能大小的因素
【题点】弹性势能与形变量关系的应用
9.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度,小孩从高处开始下落到弹回的整个过程中,他运动的速度v随时间t变化的图象如图4所示,图中Oa段为直线,则根据该图象可知,蹦床的弹性势能增大的过程所对应的时间间隔为( )
图4
A.仅在t1到t2的时间内
B.仅在t2到t3的时间内
C.在t1到t3的时间内
D.在t1到t4的时间内
答案 C
解析小孩从高处落下,在0~t1时间内小孩只受重力作用;在t1~t2时间内加速度减小,说明小孩又受到了弹力作用,蹦床受到压力;t3时刻,小孩的速度为零,蹦床受到的压力最大,弹性势能也最大;t3时刻后小孩反弹,蹦床的弹性势能减小,故选项C正确.
【考点】弹力做功与弹性势能的关系
【题点】弹力做功与弹性势能关系的应用。