大石桥市第三中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大石桥市第三中学2018-2019学年高二上学期第二次月考试卷数学
班级__________
姓名__________ 分数__________
一、选择题
1. 函数(,)的部分图象如图所示,则 f (0)的值为( )
()2cos()f x x ωϕ=+0ω>0ϕ-π<<
A. B. C. D. 32
-
1-
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.2. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )
A .
B .
C .
D .
3. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .
C .
D .
4. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( )
A .
B .
C .
D .
5. ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,
1F 2F 22
221x y a b
-=a 0b >P 120PF PF ⋅=
若 )
12PF F ∆
C. D. 11
+【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
6. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )
A .33%
B .49%
C .62%
D .88%
7. 已知集合,且使中元素和中的元素
{}{}
4
2
1,2,3,,4,7,,3A k B a a a ==+*
,,a N x A y B ∈∈∈B 31y x =+A 对应,则的值分别为( )
x ,a k
A .
B .
C .
D .2,33,43,52,5
8. 利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )
P (K 2>k )0.500.400.250.150.100.050.0250.0100.0050.001k 0.4550.708
1.323
2.072
2.706
3.841
5.024
6.635
7.87910.828
A .25%
B .75%
C .2.5%
D .97.5%
9. 为了得到函数y=cos (2x+1)的图象,只需将函数y=cos2x 的图象上所有的点( )
A .向左平移个单位长度
B .向右平移个单位长度
C .向左平移1个单位长度
D .向右平移1个单位长度
10.已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( )
A .y=x ﹣4
B .y=2x ﹣3
C .y=﹣x ﹣6
D .y=3x ﹣2
11.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为(

A .M ∪N
B .(∁U M )∩N
C .M ∩(∁U N )
D .(∁U M )∩(∁U N )12.(理)已知tan α=2,则=(

A .
B .
C .
D .
二、填空题
13.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示) 
14.函数在区间上递减,则实数的取值范围是 .
2
()2(1)2f x x a x =+-+(,4]-∞15.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).
①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;
②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率;
④双曲线

=1与椭圆
有相同的焦点.
16.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .
17.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 
18.下列四个命题:
①两个相交平面有不在同一直线上的三个公交点
②经过空间任意三点有且只有一个平面
③过两平行直线有且只有一个平面
④在空间两两相交的三条直线必共面
其中正确命题的序号是 .
三、解答题
19.已知函数f(x)=sin2x+(1﹣2sin2x).
(Ⅰ)求f(x)的单调减区间;
(Ⅱ)当x∈[﹣,]时,求f(x)的值域.
20.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1
的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,
(Ⅰ)求C1、C2的方程;
(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.
21.(本小题满分12分)已知向量,,(cos sin ,sin )m x m x x w w w =-a (cos sin ,2cos )x x n x w w w =--b 设函数的图象关于点对称,且.
()()2
n f x x R =×+Îa b (,1)12
p
(1,2)w Î(I )若,求函数的最小值;
1m =)(x f (II )若对一切实数恒成立,求的单调递增区间.
()(4
f x f p
£)(x f y 【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
22.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.
23.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为,求b,c.
24.已知函数f(x)=|x﹣5|+|x﹣3|.
(Ⅰ)求函数f(x)的最小值m;
(Ⅱ)若正实数a,b足+=,求证:+≥m.
大石桥市第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】易知周期,∴.由(),得112(1212T π5π=-=π22T ωπ==52212k ϕπ⨯+=πk ∈Z 526k ϕπ
=-+π
(),可得,所以,则,故选D.
k Z ∈56ϕπ=-5()2cos(2)6f x x π=-5(0)2cos(6
f π
=-=2. 【答案】A
【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k ,则过P 的直线方程为y=kx ﹣2,即kx ﹣y ﹣2=0,
若过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则圆心到直线的距离d ≤1,即≤1,即k 2﹣3≥0,
解得k ≤﹣或k ≥,即
≤α≤
且α≠,综上所述,
≤α≤

故选:A .
3. 【答案】C
【解析】解:由ln (3a ﹣1)<0得<a <,
则用计算机在区间(0,1)上产生随机数a ,不等式ln (3a ﹣1)<0成立的概率是P=,故选:C . 
4. 【答案】B
【解析】【知识点】函数的奇偶性
【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。

故答案为:B 5. 【答案】D
【解析】∵,∴,即为直角三角形,∴,120PF PF ⋅=
12PF PF ⊥12PF F ∆222212124PF PF F F c +==,则,
12||2PF PF a -=222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-.所以内切圆半径
2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-12PF F ∆
,外接圆半径.
,整理,得12122
PF PF F F r c +-=
=
R c =
c -=,∴双曲线的离心率
,故选D.2(4c
a
=+1e =+6. 【答案】B 【



7. 【答案】D 【解析】
试题分析:分析题意可知:对应法则为,则应有(1)或(2),
31y x =+42331331a a a k ⎧=⨯+⎪⎨+=⋅+⎪⎩4231
3331a k a a ⎧=⋅+⎪⎨+=⨯+⎪⎩由于,所以(1)式无解,解(2)式得:。

故选D 。

*
a N ∈25
a k =⎧⎨=⎩考点:映射。

8. 【答案】D
【解析】解:∵k >5、024,
而在观测值表中对应于5.024的是0.025,∴有1﹣0.025=97.5%的把握认为“X 和Y 有关系”,故选D .
【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目. 
9. 【答案】A 【解析】解:∵,故将函数y=cos2x 的图象上所有的点向左平移个单位长
度,
可得函数y=cos (2x+1)的图象,故选:A .
【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,属于基础题.
10.【答案】A
【解析】解:设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=﹣2,x 12=﹣2y 1,x 22=﹣2y 2.两式相减可得,(x 1+x 2)(x 1﹣x 2)=﹣2(y 1﹣y 2)∴直线AB 的斜率k=1,
∴弦AB 所在的直线方程是y+5=x+1,即y=x ﹣4.故选A , 
11.【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},∴∁U M={0,1},∴N ∩(∁U M )={0,1},故选:B .
【点评】本题主要考查集合的子交并补运算,属于基础题. 
12.【答案】D
【解析】解:∵tan α=2,∴ =
=
=

故选D . 
二、填空题
13.【答案】 (1,+∞) 
【解析】解:∵命题p :∃x ∈R ,x 2+2x+a ≤0,当命题p 是假命题时,
命题¬p :∀x ∈R ,x 2+2x+a >0是真命题;即△=4﹣4a <0,∴a >1;
∴实数a 的取值范围是(1,+∞).故答案为:(1,+∞).
【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目. 
14.【答案】3a ≤-【解析】
试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以
()f x 1x a =-(,4]-∞
.
14,3a a -≥≤-考点:二次函数图象与性质.15.【答案】 ②③ .
【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P 不一定是双曲线,这与AB 的距离有关系,所以①错误.
②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P 的轨迹为以A ,B 为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.
③方程2x 2﹣5x+2=0的两个根为x=2或x=,所以方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.
④由双曲线的方程可知,双曲线的焦点在x 轴上,而椭圆的焦点在y 轴上,所以它们的焦点不可能相同,所以④错误.
故正确的命题为②③.故答案为:②③.
【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质. 
16.【答案】 a ≤0或a ≥3 .
【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B ,∴B ⊆A ,
则有a+1≤1或a ≥3,解得:a ≤0或a ≥3,故答案为:a ≤0或a ≥3. 
17.【答案】 (,
) .
【解析】解:设C (a ,b ).则a 2+b 2=1,①∵点A (2,0),点B (0,3),∴直线AB 的解析式为:3x+2y ﹣6=0.
如图,过点C 作CF ⊥AB 于点F ,欲使△ABC 的面积最小,只需线段CF 最短.则CF=≥
,当且仅当2a=3b 时,取“=”,
∴a=
,②
联立①②求得:a=,b=,
故点C的坐标为(,).
故答案是:(,).
【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.
18.【答案】 ③ .
【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;
②经过空间不共线三点有且只有一个平面,故错误;
③过两平行直线有且只有一个平面,正确;
④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,
故正确命题的序号是③,
故答案为:③
三、解答题
19.【答案】
【解析】解:(Ⅰ)f(x)=sin2x+(1﹣2sin2x)=sin2x+cos2x
=2(sin2x+cos2x)=2sin(2x+),
由2kπ+≤2x+≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z),
故f(x)的单调减区间为:[kπ+,kπ+](k∈Z);
(Ⅱ)当x∈[﹣,]时,(2x+)∈[0,],2sin(2x+)∈[0,2],
所以,f(x)的值域为[0,2].
20.【答案】
【解析】解:(Ⅰ)∵椭圆C1:的离心率为,
∴a2=2b2,
令x2﹣b=0可得x=±,
∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,
∴2=2b,
∴b=1,
∴C1、C2的方程分别为,y=x2﹣1;…
(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0∴x=0或x=k1,∴A(k1,k12﹣1)
同理可得B(k2,k22﹣1)…
∴S1=|MA||MB|=•|k1||k2|…
y=k1x﹣1与椭圆方程联立,可得D(),
同理可得E()…
∴S2=|MD||ME|=••…

若则解得或
∴直线AB的方程为或…
【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.
21.【答案】
22.【答案】
【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29.
所以该班在这次数学测试中成绩合格的有29人.
(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2,
设成绩为x、y
成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c,
若m,n∈[50,60)时,只有xy一种情况,
若m,n∈[90,100]时,有ab,bc,ac三种情况,
若m,n分别在[50,60)和[90,100]内时,有
a b c
x xa xb xc
y ya yb yc
共有6种情况,所以基本事件总数为10种,
事件“|m﹣n|>10”所包含的基本事件个数有6种
∴.
【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.
23.【答案】
【解析】解:(1)c=asinC﹣ccosA,由正弦定理有:
sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,
又,sinC≠0,
所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,
所以A=;
(2)S△ABC=bcsinA=,所以bc=4,
a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,
即有,
解得b=c=2.
24.【答案】
【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)
当且仅当x∈[3,5]时取最小值2,…(3分)
∴m=2.…(4分)
(Ⅱ)证明:∵(+)[]≥()2=3,
∴(+)×≥()2,
∴+≥2.…(7分)
【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想. 。

相关文档
最新文档