椭圆的标准方程和几何性质练习题
椭圆的定义及几何性质试题 精选精练
椭圆的定义及几何性质题型一:椭圆的定义及其应用1、判断轨迹:例:已知12,F F 是定点,动点M 满足12||||8MF MF +=,且12||8F F =则点M 的轨迹为( )A .椭圆 B.直线 C.圆 D.线段变式:1 已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于,A B 两点.若1222=+B F A F ,则AB = .2、利用定义例:已知椭圆x 26+y 22=1与双曲线x 23-y 2=1的公共焦点F 1,F 2,点P 是两曲线的一个公共点,则cos ∠F 1PF 2的值为( ).A.14 B.13 C.19 D.35变式:1、(·青岛模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.2、 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ).A .2 3 B .6C .4 3 D .123、已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )A .6 B .5 C .4 D .3 4、已知F 1,F 2是椭圆2212516x y +=的两焦点,过点F 2的直线交椭圆于1122(,)(,)A x y B x y 两点,△AF 1B 的内切圆的周长为π,则12||y y -为( ) 5.3A 10.3B 20.3C 5.3D 3、转化定义例:设椭圆x 22+y 2m =1和双曲线y 23-x 2=1的公共焦点分别为F 1、F 2,P 为这两条曲线的一个交点,则|PF 1|·|PF 2|的值等于________.变式练习:1.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15题型二:椭圆的标准方程和性质例:[例1] (1)(2017·广东高考)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1(2)(2016·岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.变式练习1.已知椭圆的长轴是短轴的3倍,且过A (3,0),并且以坐标轴为对称轴,求椭圆的标准方程_____2.(2018·山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为 ( ) A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 题型三:椭圆的重要性质------离心率示例:如图A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22 C.2-1 D.22变式 1.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°“改为“F 1、F 2分别为椭圆22221(0)x y a b a b+=>>,的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另 一点B .若∠F 1AB =90°”求椭圆的离心率;2.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°”改为“椭圆通过A ,B 两点,它的一个焦点为点C ,且AB =AC =1,090BAC ∠=,椭圆的另一个焦点在AB 上”,求椭圆的离心率为________. 3.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°“改为“F 1、F 2分别为圆锥曲线的左、右焦点,曲线上存在点P 使|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A.12或32B.23或2C.12或2D.23或324. 椭圆2222(0)x y a b a b+>>的左、右顶点分别是A ,B 左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 。
椭圆的简单几何性质典型例题
25 x22
∴
y12
y22
9 25
x1
x2 x1
x2 .
将此式代入①,并利用 x1 x2 8 的结论得
x0
4
36 25
∴
k BT
9 5
0
4 x0
5 4
.
典型例题五
例5
已知椭圆
x2 4
y2 3
1 , F1 、 F2 为两焦点,问能否在椭圆上找一点 M
典型例题七
例 7 求适合条件的椭圆的标准方程.
(1)长轴长是短轴长的 2 倍,且过点 2, 6 ;
(2)在 x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为 6.
分析:当方程有两种形式时,应分别求解,如(1)题中由
x2 a2
y2 b2
1求出 a2
148 ,
b2
37
x2
,在得方程
,∴ a2
4,
∴
x2 4
y2
1为所求.
说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要 借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.
典型例题四
例
4
椭圆
x2 25
y 9
2
1上不同三点
Ax1,y1
,
B
4,9 5
,
Cx2,y2
1.
②
由①、②,得 a2 148 , b2 37 或 a2 52 , b2 13 .故所求的方程为
高中数学考点09-椭圆的标准方程与几何性质(1月)(期末复习热点题型)(人教A版2019)(原
考点09 椭圆的标准方程与几何性质一、单选题1.椭圆22154y x +=的长轴长为A .2B .4CD .2.已知椭圆1C :22221(0)x y a b a b +=>>和椭圆2C :22221(0)x y c d c d+=>>的离心率相同,则A .ab cd =B .ac bd =C .ad bc =D .2222a b c d -=-3.椭圆2212516x y +=的短轴长为A .B .10C .8D .64.椭圆223412x y +=的焦点坐标为 A .()1,0±B .()0,1±C .()D .(0,5.椭圆22259225x y +=的长轴长、短轴长分别为 A .5,3 B .3,5 C .10.6D .6,106.若点M 到两定点()10,1-F ,()20,1F 的距离之和为2,则点M 的轨迹是 A .椭圆 B .直线C .线段D .线段的中垂线.7.已知ABC 的周长是20,且顶点B 的坐标为(0,4)-,C 的坐标为(0,4),则顶点A 的轨迹方程是A .221(0)2036x y x -=≠B .221(0)3620x y x +=≠C .221(0)2036x y x +=≠D .221(0)3620x y x -=≠8.若方程222x ky +=表示焦点在y 轴上的椭圆,则实数k 的取值范围是A .(0)1,B .()(011)+∞,,C .(0)+∞,D .(1)+∞, 9.椭圆22221(0)y x a b a b +=>>的上、下焦点分别为1F 、2F ,过椭圆上的点M 作向量MN使得12MN F F =,且12 F F N 为正三角形,则该椭圆的离心率为A BC .2D .1210.已知椭圆22:196x y C +=的左、右焦点分别为1F 、2F ,点P 椭圆C 上,且12=PF ,则2PF = A .16 B .7 C .4D .111.椭圆2214924x y +=的焦点为1F 、2F ,点P 在椭圆上,若16PF =,则12PF F △的面积为 A .24 B .28 C .40D .4812.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为2F ,O 为坐标原点,M 为y 轴上一点,点A 是直线2MF 与椭圆C 的一个交点,且2||||2||OA OF OM ==,则椭圆C 的离心率为 A .13B .25C D 13.若椭圆222125x y m+=的左焦点为()14,0F -,则m =A .2B .3C .3±D .914.椭圆22195x y +=上任一点P 到点()1,0Q 的距离的最小值为A BC .2D15.已知1F ,2F 分别是椭圆22221(0)9x y a a a +=>-的左、右两焦点,过点2F 的直线交椭圆于点A ,B ,若1ABF 为等边三角形,则a 的值为A .3B .C .D 16.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,上顶点为B ,若12BF F 为等边三角形,则该椭圆的离心率为A .12B .3C .2D1710=的化简结果是A .2212521x y +=B .2212521y x +=C .221254x y +=D .221254y x +=18.设M 是圆P :()22236x y ++=上的一动点,定点()0,2Q ,线段MQ 的垂直平分线交线段PM 于N 点,则N 点的轨迹方程为A .22195x y +=B .22159x y +=C .2213632x y +=D .2213236x y +=19.已知椭圆的短轴长是焦距的2倍,则椭圆的离心率为A .12BC .15D20.设椭圆C :22221(0)x y a b a b+=>>的两个焦点分别为12,F F ,12||F F =P 是C 上一点,若12PF PF a -=,且121sin 3PF F ∠=,则椭圆C 的方程为 A .22143x y +=B .22163x y +=C .22164x y +=D .22142x y +=21.已知椭圆2222:1(0)x y C a b a b+=>>,倾斜角为45︒的直线l 与椭圆相交于A ,B 两点,AB 的中点是(4,1)M -则椭圆的离心率是A BC .2D .1222.椭圆C :2221(0)3x y a a +=>的焦点在x 轴上,其离心率为12,则A .椭圆CB .椭圆C 的长轴长为4 C .椭圆C 的焦距为4D .4a =23.椭圆22143x y +=的右焦点到直线0x y -=的距离是A .12BC .1D24.已知椭圆C 的短轴长为6,离心率为45,则椭圆C 的焦点F 到长轴的一个端点的距离为 A .9 B .1C .1或9D .以上都不对25.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于A .3B .5C .7D .826.已知椭圆C :22221x y a b+=(0a b >>),M 为椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹是 A .圆 B .椭圆 C .双曲线D .抛物线27.已知A 、B 是椭圆C :22221x y a b+=(0a b >>)长轴的两个端点,P 、Q 是椭圆上关于x 轴对称的两点,直线AP 、BQ 的斜率分别为1k 、2k ,若1211k k +的最小值为4,则椭圆的离心率为 A .12B.3 CD28.已知1F ,2F 分别是椭圆22:143x y C +=的左、右焦点,点P 、Q 是椭圆上位于x 轴上方的两点,且12//PF QF ,则12PF QF +的取值范围为 A .[)2,4B .[)3,4C .[)1,4D .[)1.5,429.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,直线y =与椭圆C 相交于A ,B 两点,且AF BF ⊥,则椭圆C 的离心率为A .12 B 1C .12D 130.已知椭圆()222210x y a b a b+=>>,点M 在椭圆上,以M 为圆心的圆与x 轴相切与椭圆的焦点,与y 轴相交于P ,Q ,若MPQ 为正三角形,则椭圆的离心率为 A .12B .13C .2D .331.已知椭圆()2222:10x y C a b a b+=>>的焦距为2,右顶点为A ,过原点与x 轴不重合的直线交C 于M ,N 两点,线段AM 的中点为B ,若直线BN 经过C 的右焦点,则C 的方程为A .22143x y +=B .22165x y +=C .22198x yD .2213632x y +=32.已知直线:210l kx y k --+=与椭圆22122:1(0)x yC a b a b+=>>交于A 、B 两点,与圆222:(2)(1)1C x y -+-=交于C 、D 两点.若存在[2,1]k ∈--,使得AC DB =,则椭圆1C 的离心率的取值范围是 A .10,2⎛⎤ ⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛ ⎝⎦D .2⎫⎪⎪⎣⎭33.已知椭圆2222:1(0)x y G a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,1-),则G 的方程为A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=34.焦点在x 轴上的椭圆的方程为222141x ya a +=+(0a >),则它的离心率e 的取值范围为A .104⎛⎤ ⎥⎝⎦,B .102⎛⎤ ⎥⎝⎦,C .⎛ ⎝⎦D .1142⎡⎤⎢⎥⎣⎦,35.若1F 、2F 分别是椭圆2212516x y +=的左、右焦点,M 是椭圆上的任意一点,且12MF F △的内切圆的周长为3π,则满足条件的点M 的个数为 A .2 B .4 C .6 D .不确定二、多选题1.已知椭圆C :221641x y +=,则下列结论正确的是A .长轴长为12BC .焦点坐标为04⎛⎫± ⎪ ⎪⎝⎭, D .离心率为22.椭圆的焦距,短轴长和长轴长构成等差数列,其中长轴长等于10,则椭圆的标准方程为A .2212516x y +=B .22110064x y +=C .22164100x y +=D .2251162x y +=3.已知椭圆22221x y a b +=的焦距为6,直线l 与椭圆交于A ,B 两点,弦AB 的中点为(2,1)M ,则直线l 的方程为 A .78220x y +-= B .7860x y --= C .3271030x y --=D .327710x y +-=4.如图所示,某探月卫星沿地月转移轨道飞向月球,在月球附近一点P 处变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点处第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅰ绕月飞行,且轨道Ⅰ的右顶点为轨道Ⅰ的中心.设椭圆Ⅰ与Ⅰ的长半轴长分别为1a 和2a ,半焦距分别为1c 和2c ,离心率分别为1e ,2e ,则下列结论正确的是A .()11222a c a c +>+B .1122a c a c -=-C .2112e e +=D .椭圆Ⅰ比椭圆Ⅰ更扁5.已知椭圆C :221625400x y +=,关于椭圆C 下述正确的是 A .椭圆C 的长轴长为10B .椭圆C 的两个焦点分别为(0,3)-和(0,3) C .椭圆C 的离心率等于35D .若过椭圆C 的焦点且与长轴垂直的直线l 与椭圆C 交于,P Q ,则32||5PQ = 6.已知曲线22:1C mx ny +=A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上 C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线7.关于x 、y 的方程22221232x y m m +=+-,(其中223m ≠)对应的曲线可能是 A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线D .圆8.为使椭圆2212x y m+=的离心率为12,正数m 的值可以是A .1BC .83D .329.下列说法正确的有A .方程2x xy x +=表示两条直线B .椭圆221102x y m m +=--的焦距为4,则4m =C .曲线22259x y xy +=关于坐标原点对称D .椭圆C :2215y x +=的焦距是210.已知椭圆C :()222210x y a b a b+=>>,P 是该椭圆在第一象限内的点,1F ,2F 分别为椭圆的左右焦点,12F PF ∠的角平分线交x 轴于点M ,且满足24MF OM =,则该椭圆的离心率可能是 A .18B .14 C .12D .34三、填空题1.椭圆22221(0)x y a b a b +=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为__________.2.已知椭圆2211612x y +=的左、右焦点分别为12,,F F AB 是椭圆过焦点1F 的弦,则2ABF 的周长是__________.3.已知椭圆C :2214x y +=的两个焦点分别为1F ,2F ,过点1F 且与坐标轴不平行的直线与椭圆交于点M ,N ,则2MNF 的周长是__________.4.椭圆2216x y m+=的一个焦点是(0,2),则m =__________.5.已知方程22112x y m m +=--表示焦点在y 轴上的椭圆,则m 的取值范围是__________. 6.椭圆221916x y +=的离心率为__________.7.已知椭圆22221(0)x y a b a b+=>>,左焦点(,0)F c -,右顶点(,0)A a ,上顶点(0,)B b ,满足0FB AB =,则椭圆的离心率为__________.8.已知椭圆2219x y m +=的离心率等于13,则实数m =__________. 9.已知1F 、2F 是椭圆22110064x y +=上的两个焦点,P 是椭圆上一点,且12PF PF ⊥,则12F PF △的面积为__________.10.若A 、B 为椭圆C :22221x y a b+=(0a b >>)长轴的两个端点,垂直于x 轴的直线与椭圆交于点M 、N ,且14AM BN k k ⋅=,则椭圆C 的离心率为__________. 11.如图所示,椭圆C :22221x y a b+=(0a b >>)的左右焦点分别为1F 、2F ,上顶点为A ,离心率为12,点P 为第一象限内椭圆上的一点,若1122:1PF APF F S S=:,则直线1PF 的斜率为__________.12.已知椭圆2222:1(0)x y C a b a b+=>>经过函数31x y x =-图象的对称中心,若椭圆C 的离心率,23e ∈ ⎝⎭,则C 的长轴长的取值范围是__________.13.已知椭圆22195y x +=的上焦点为F ,M 是椭圆上一点,点()A ,当点M 在椭圆上运动时,MA MF +的最大值为__________.14.已知1F 、2F 为椭圆C :222116x y a +=的左、右焦点,M 为椭圆上一点,且12MF F △内切圆的周长等于3π,若满足条件的点M 恰好有两个,则a =__________.15.已知椭圆C :22221x y a b +=(0a b >>)的离心率为3,若以原点为圆心、椭圆短半轴长为半径的圆与直线2y x =+相切,则椭圆的标准方程为__________. 四、双空题1.已知1F ,2F 是椭圆22:195x y C +=的左、右焦点,点P 在C 上,则12PF PF ⋅的最大值为__________;若(0,A ,则2PA PF -的最小值为__________.2.椭圆22149x y +=的焦距是__________,离心率是__________.3.在平面直角坐标系xOy 中,点M 的坐标为()1,2-,且0OM ON +=,动点P 与,M N 连线的斜率之积为12-,则动点P 的轨迹方程为__________,PMN 面积的取值范围是__________.4.椭圆221mx ny +=与直线10x y +-=相交于,A B 两点,C 是线段AB 的中点,若AB =,OC 的斜率为2,则m n -=__________,离心率e =__________.5.已知椭圆C 的焦点在x 轴上,它的长轴长为4,焦距为2,则椭圆C 的短轴长为__________,标准方程为__________.6.已知椭圆22195x y +=的左右焦点分别为1F 、2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF F ∠=__________,12PF PF -=__________.7.椭圆:194C +=的离心率为__________,长轴长__________.8.椭圆22142x y +=的左、右焦点分别为1F ,2F ,过焦点1F 的直线交椭圆于A ,B 两点,则2ABF 的周长为__________;若A ,B 两点的坐标分别为()11,x y 和()22,x y ,且212y y -=,则2ABF 的内切圆半径为__________.9.椭圆22194x y +=的长轴长是__________,离心率是__________.10.(1)方程2244kx y k +=表示焦点在x 轴上的椭圆,则实数k 的取值范围是__________;(2)设点A ,B 的坐标为()20-,,()20,,点P 是曲线C 上任意一点,且直线P A 与PB 的斜率之积为14-,则曲线C 的方程是__________. 五、解答题1.已知圆2219:24E x y ⎛⎫+-= ⎪⎝⎭,经过椭圆2222:1(0)x y C a b a b +=>>的左、右焦点12,F F ,且与椭圆C 在第一象限的交点为A ,且1F ,E ,A 三点共线,直线l 交椭圆C 于两点M ,N ,且(0)MN OA λλ=≠. (1)求椭圆C 的方程;(2)当AMN 的面积取到最大值时,求直线l 的方程.2.已知椭圆()2222:10x y C a b a b+=>>的四个顶点围成的四边形的面积为原点到直线1x y a b += (1)求椭圆C 的方程;(2)已知定点()0,2P ,是否存在过P 的直线l ,使l 与椭圆C 交于,A B 两点,且以AB 为直径的圆过椭圆C 的左顶点?若存在,求出l 的方程;若不存在,请说明理由.3.已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为2,离心率为,直线:(0)=+≠l y kx m k 与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)若线段AB 的垂直平分线通过点10,2⎛⎫-⎪⎝⎭,证明:2212k m +=. 4.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为P ,右顶点为Q ,直线PQ 与圆2245x y +=相切于点24,55M ⎛⎫⎪⎝⎭. (1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且PA PB ⋅=0,求证:直线l 过定点.5.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,,F F ,离心率12e =,点P 是椭圆上一个动点,1PF F 面积的最大值是(1)求椭圆的方程; (2)A ,B ,C ,D 是椭圆上不同的四点,AC 与BD 相交于点1F ,0AC BD ⋅=,||||AC BD +的最小值.6.已知椭圆C :22221x y a b +=(0a b >>)的离心率为3,过右焦点F 的直线l 与C 相交于A 、B 两点. 当l 的斜率为1时,坐标原点O 到l 的距离为2. (1)求a 、b 的值;(2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP OA OB =+成立?若存在,求出所有点P 的坐标与l 的方程;若不存在,说明理由. 7.平面内动点M 到点()2,0F 的距离与M 到直线92x =的距离之比为23. (1)求动点M 的轨迹C 的方程; (2)过点F 的直线l 交轨迹C 于不同两点A 、B ,交y 轴于点N ,已知1NA AF λ=,2NB BF λ=,试问12λλ+是否等于定值,并说明理由.8.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()11,0F -、()21,0F ,点P 为椭圆C 上一点,使得1260F PF ∠=,12PF F △ (1)求椭圆C 的标准方程;(2)直线1l 与椭圆C 相交于A 、B 两点,直线2l 与椭圆C 相交于D 、E 两点,且A 、B 、D 、E 四点的横坐标均不相同,若直线1l 与直线2l 的斜率互为相反数,求证:直线AD 和直线BE 的斜率互为相反数.9.已知椭圆C :()222210x y a b a b+=>>过点31,2⎛⎫ ⎪⎝⎭,且长轴长等于4.(1)求椭圆C 的方程;(2)1F ,2F 是椭圆C 的两个焦点,圆O 是以12F F 为直径的圆,直线l :y kx m =+与圆O相切,并与椭圆C 交于不同的两点A ,B ,若32OA OB ⋅=-,求k 的值.10.已知椭圆C :()222210x y a b a b+=>>,右焦点)F,且离心率2e =.(1)求椭圆C 的方程;(2)过F 且倾斜角为45︒的直线l 与椭圆交于不同的两点M ,N ,求OMN (O 为坐标原点)的面积.11.已知椭圆2222:1(0)x y C a b a b +=>>经过点P ⎛ ⎝⎭,且离心率2e =. (1)求椭圆C 的标准方程;(2)若斜率为k 且不过点P 的直线l 交C 于,A B 两点,记直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,求直线l 的斜率k .12.设椭圆中心在坐标原点,焦点在x 轴上,一个顶点坐标为(2,0) (1)求这个椭圆的方程;(2)若这个椭圆左焦点为1F,右焦点为F,过1F且斜率为1的直线交椭圆于A、B 2两点,求AB的长及2ABF的面积.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高考数学一轮复习课时过关检测五十椭圆的定义标准方程及简单几何性质含解析
课时过关检测(五十) 椭圆的定义、标准方程及简单几何性质A 级——基础达标1.与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是( ) A .x 225+y 220=1 B .x 220+y 225=1 C .x 220+y 245=1 D .x 280+y 285=1 解析:B 由9x 2+4y 2=36可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b =25,a 2=25,所以所求椭圆方程为x 220+y 225=1.2.“(log a 2)x 2+(log b 2)y 2=1表示焦点在y 轴上的椭圆”的一个充分不必要条件是( )A .0<a <bB .1<a <bC .2<a <bD .1<b <a解析:C 若(log a 2)x 2+(log b 2)y 2=1表示焦点在y 轴上的椭圆,则需⎩⎪⎨⎪⎧ log a 2>0,log b 2>0,log a 2>log b 2,即⎩⎪⎨⎪⎧a >1,b >1,a <b ,所以1<a <b ,所以“(log a 2)x 2+(log b 2)y 2=1表示焦点在y 轴上的椭圆”的一个充分不必要条件是2<a <b ,故选C .3.如图,P 是椭圆x 29+y 24=1上的一点,F 是椭圆的左焦点且PQ ―→=-FQ ―→,|OQ ―→|=2,则|PF |=( )A .2B . 5C .3D .4解析:A 由x 29+y 24=1可得a =3.因为PQ ―→=-FQ ―→,所以点Q 是线段PF 的中点,设椭圆的右焦点为F ′,则O 是FF ′的中点,所以|PF ′|=2|OQ |=4,由椭圆的定义可知:|PF |+|PF ′|=2a =6,所以|PF |=2,故选A .4.已知椭圆C :x 225+y 29=1的左、右焦点分别为F 1,F 2,点M 在椭圆C 上,当△MF 1F 2的面积最大时,△MF 1F 2内切圆半径为( )A .3B .2C .53D .43解析:D 因为椭圆为x 225+y 29=1,所以a =5,b =3,c =a 2-b 2=4.当△MF 1F 2的面积最大时,点M 为椭圆C 短轴的顶点,不妨设点M 为椭圆C 的上顶点,点O 为坐标原点,△MF 1F 2内切圆半径为r ,则|MF 1|=|MF 2|=a =5,|F 1F 2|=2c =8,|OM |=b =3,S △MF 1F 2=12(|MF 1|+|MF 2|+|F 1F 2|)·r =12|F 1F 2|·|OM |,所以r =43,故选D .5.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点作x 轴的垂线,交C 于A ,B 两点,直线l 过C的左焦点和上顶点.若以AB 为直径的圆与l 存在公共点,则C 的离心率的取值范围是( )A .⎝ ⎛⎦⎥⎤0,55 B .⎣⎢⎡⎭⎪⎫55,1 C .⎝⎛⎦⎥⎤0,22 D .⎣⎢⎡⎭⎪⎫22,1 解析:A 由题设知,直线l :x -c +yb=1,即bx -cy +bc =0,以AB 为直径的圆的圆心为(c,0),根据题意,将x =c 代入椭圆C 的方程,得y =±b 2a ,即圆的半径r =b 2a .又圆与直线l 有公共点,所以2bcb 2+c 2≤b 2a,化简得2c ≤b ,平方整理得a 2≥5c 2,所以e =c a ≤55.又0<e <1,所以0<e ≤55.故选A . 6.(多选)对于曲线C :x 24-k +y 2k -1=1,下面四个说法正确的是( )A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件解析:CD 对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,所以A 错误;对于B ,当k =2.5时,4-k =k -1,此时曲线C 是圆,所以B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,则⎩⎪⎨⎪⎧4-k >0,k -1>0,k -1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,所以C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,则⎩⎪⎨⎪⎧k -1>0,4-k >0,4-k >k -1,解得1<k <2.5,所以D 正确.7.(多选)如图,两个椭圆x 225+y 29=1,y 225+x 29=1内部重叠区域的边界记为曲线C ,P 是曲线C 上的任意一点,下列四个说法正确的为( )A .P 到F 1(-4,0),F 2(4,0),E 1(0,-4),E 2(0,4)四点的距离之和为定值B .曲线C 关于直线y =x ,y =-x 均对称 C .曲线C 所围区域面积必小于36D .曲线C 总长度不大于6π解析:BC 易知F 1(-4,0),F 2(4,0)分别为椭圆x 225+y 29=1的两个焦点,E 1(0,-4),E 2(0,4)分别为椭圆y 225+x 29=1的两个焦点.若点P 仅在椭圆x 225+y 29=1上,则P 到F 1(-4,0),F 2(4,0)两点的距离之和为定值,到E 1(0,-4),E 2(0,4)两点的距离之和不为定值,故A 错误;两个椭圆关于直线y =x ,y =-x 均对称,则曲线C 关于直线y =x ,y =-x 均对称,故B 正确;曲线C 所围区域在边长为6的正方形内部,所以面积必小于36,故C 正确;曲线C 所围区域在半径为3的圆外部,所以曲线的总长度大于圆的周长6π,故D 错误.故选B 、C .8.若椭圆x 2m +y 22=1的离心率为22,则该椭圆的长轴长为________.解析:由椭圆x 2m +y 22=1的离心率为22,当m >2时,椭圆焦点在x 轴上,c a =22=m -2m,解得m =4,所以椭圆的长轴长为4,当0<m <2时,椭圆焦点在y 轴上,ca=22=2-m 2,得m =1,所以椭圆的长轴长为22.答案:4或2 29.设F 1,F 2分别为椭圆C :x 2a 2+y 2a 2-1=1(a >1)的左、右焦点,P (1,1)为C 内一点,Q为C 上任意一点.现有四个结论:①C 的焦距为2;②C 的长轴长可能为10; ③|QF 2|的最大值为a +1;④若|PQ |+|QF 1|的最小值为3,则a =2. 其中所有正确结论的编号是________.解析:对于①:因为c 2=a 2-(a 2-1)=1,所以椭圆C 的焦距为2c =2,故①正确;对于②:若椭圆C 的长轴长为10,则a 2=52,所以椭圆C 的方程为x 252+y 232=1,则152+132>1,从而点P 在C 的外部,这与P 在C 内矛盾,所以②不正确;对于③:因为c =1,Q 为C 上任意一点,由椭圆的几何性质可知,|QF 2|的最大值为a +c =a +1,故③正确;对于④:由椭圆定义可知,|PQ |+|QF 1|=|PQ |-|QF 2|+2a ,因为||PQ |-|QF 2||≤|PF 2|=1,所以|PQ |-|QF 2|≥-1,所以|PQ |-|QF 2|+2a ≥2a -1=3,此时a =2,故④正确.答案:①③④10.(2019·全国Ⅱ卷)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围. 解:(1)连接PF 1(图略).由△POF 2为等边三角形可知在△F 1PF 2中,∠F 1PF 2=90°,|PF 2|=c ,|PF 1|=3c ,于是2a =|PF 1|+|PF 2|=(3+1)c ,故C 的离心率为e =ca=3-1.(2)由题意可知,满足条件的点P (x ,y )存在当且仅当 12|y |·2c =16,y x +c ·y x -c =-1,x 2a 2+y 2b 2=1, 即c |y |=16,①x 2+y 2=c 2,② x 2a 2+y 2b 2=1.③ 由②③及a 2=b 2+c 2得y 2=b 4c2.又由①知y 2=162c2,故b =4.由②③及a 2=b 2+c 2得x 2=a 2c2(c 2-b 2),所以c 2≥b 2,从而a 2=b 2+c 2≥2b 2=32,故a ≥42. 当b =4,a ≥42时,存在满足条件的点P .所以b =4,a 的取值范围为[42,+∞).B 级——综合应用11.如图是5号篮球在太阳光照射下的影子,已知篮球的直径为22 cm ,现太阳光与地面的夹角为60°,则此椭圆形影子的离心率为( )A .13B .12C .22D .32解析:B 由图可得,椭圆的短轴长2b =22⇒b =11,长轴长2a =22sin 60°=2232⇒a =223,∴e =ca =⎝ ⎛⎭⎪⎫2232-112223=1-34=12.故选B .12.明朝的一个葡萄纹椭圆盘如图①所示,清朝的一个青花山水楼阁纹饰椭圆盘如图②所示,北宋的一个汝窑椭圆盘如图③所示,这三个椭圆盘的外轮廊均为椭圆.已知图①、②、③中椭圆的长轴长与短轴长的比值分别为139,5645,107,设图①、②、③中椭圆的离心率分别为e 1,e 2,e 3,则( )A .e 1>e 3>e 2B .e 2>e 3>e 1C .e 1>e 2>e 3D .e 2>e 1>e 3解析:A 因为椭圆的离心率e =ca =c 2a 2=a 2-b 2a 2=1-b 2a2= 1-⎝ ⎛⎭⎪⎫2b 2a 2,所以椭圆的长轴长与短轴长的比值越大,离心率越大.因为139≈1.44,5645≈1.24,107≈1.43,则139>107>5645,所以e 1>e 3>e 2.故选A .13.(多选)数学家称5-12为黄金比,记为ω,定义:若椭圆的短轴与长轴之比为黄金比ω,则称该椭圆为“黄金椭圆”,以椭圆中心为圆心,半焦距长为半径的圆称为焦点圆.若黄金椭圆x 2a 2+y 2b2=1(a >b >0)与它的焦点圆在第一象限的交点为Q ,则下列结论正确的有( )A .ω2+ω=1B .黄金椭圆的离心率e =ωC .设直线OQ 的倾斜角为θ,则sin θ=ωD .交点Q 的坐标为(b ,ωb )解析:AC 方程ω2+ω-1=0的根为ω=-1±52,故A 正确;由题意可知,b a =5-12=ω,则e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-ω2=ω≠ω,故B 错误;易知QF 1⊥QF 2,且∠QF 1F 2=θ2,则|QF 2|=2c ·sin θ2,|QF 1|=2c ·cos θ2,所以|QF 1|+|QF 2|=2c ⎝⎛⎭⎪⎫sin θ2+cos θ2=2a ,即sin θ2+cos θ2=a c =1ω,两边平方,可得sin θ+1=1ω=25-1=5+12,即sin θ=5+12-1=5-12=ω,故C 正确;由C 知,sin θ=ω,所以tan θ≠ω,即D 错误.故选A 、C .14.(2021·浙江高考)已知椭圆x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0)(c >0).若过F 1的直线和圆⎝ ⎛⎭⎪⎫x -12c 2+y 2=c 2相切,与椭圆的第一象限交于点P ,且PF 2⊥x 轴,则该直线的斜率是________,椭圆的离心率是________.解析:设过F 1的直线与圆的切点为M ,圆心A ⎝ ⎛⎭⎪⎫12c ,0,则|AM |=c ,|AF 1|=32c ,所以|MF 1|=52c ,所以该直线的斜率k =|AM ||MF 1|=c 52c =255.因为PF 2⊥x 轴,所以|PF 2|=b2a ,又|F 1F 2|=2c ,所以k =255=b 2a 2c =a 2-c 22ac =1-e 22e ,得e =55.答案:255 5515.已知直线x -3y +3=0经过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点和上顶点.(1)求椭圆C 的方程;(2)若A ,B 为椭圆上除上下顶点之外的关于原点对称的两个点,已知直线y =3-x 上存在一点P ,使得三角形PAB 为正三角形,求AB 所在直线的方程.解:(1)因为直线x -3y +3=0与x 轴交于点(-3,0),与y 轴交于点(0,1),又直线x -3y +3=0经过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点和上顶点,可得a =3,b =1,所以椭圆C 的方程为x 23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1), 由题意知直线AB 的斜率存在,当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),因为|AB |=23,PO =3可得∠PAO =60°,以△PAB 为等边三角形,故得直线AB 的方程为y =0.当直线AB 的斜率不为0时, 设AB 的方程为y =kx ,代入椭圆方程消去y ,得(3k 2+1)x 2=3, 所以|x 1|=33k 2+1,则|AO |=1+k 2·33k 2+1=3k 2+33k 2+1, 设AB 的垂直平分线为y =-1kx ,设它与直线l :x +y -3=0的交点为P (x 0,y 0),则x 0=3k k -1,y 0=-3k -1,所以|PO |=9k 2+9k -12,因为△PAB 为正角形,所以应有|PO |=3|AO |, 可得9k 2+9k -12=3·3k 2+33k 2+1,解得k =0(舍)或k =-1, 故直线AB 的方程为y =0或x +y =0.。
椭圆标准方程及几何性质题型训练
根据椭圆的几何性质,可以判断一个点是否在椭圆上。
点与椭圆的位置关系
根据点与椭圆的位置关系,可以判断该点是否在椭圆上。如果点在椭圆内部,则代入椭圆方程后结果小于 1;如果点在椭圆上,则代入椭圆方程后结果等于1;如果点在椭圆外部,则代入椭圆方程后结技巧
答案3
椭圆上的点到原点的距离的最大值为 $5$。
THANKS
感谢观看
椭圆的标准方程
椭圆的标准方程是$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中$a$是椭圆的长 轴半径,$b$是椭圆的短轴半径。
当焦点在$x$轴上时,椭圆的标准方程为$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$; 当焦点在$y$轴上时,椭圆的标准方程为$frac{y^2}{a^2} + frac{x^2}{b^2} = 1$。
常见错误分析
坐标系选择不当
选择不合适的坐标系会导致计算复杂化,甚至得出错误的结果。
混淆标准方程
将椭圆的标准方程与其他形式的椭圆方程混淆,导致解题思路错误。
忽视几何性质
在解题过程中忽视椭圆的几何性质,导致无法利用这些性质简化计算。
计算错误
由于计算失误,导致最终结果错误。
注意事项
理解题目要求
在开始解题之前,确保完全理解题目的要求和条 件。
椭圆标准方程及几何性质 题型训练
• 椭圆的标准方程 • 椭圆的几何性质 • 椭圆标准方程题型训练 • 解题技巧与注意事项 • 练习题与答案
01
椭圆的标准方程
椭圆的定义
椭圆是平面内与两个定点$F_1$和 $F_2$的距离之和等于常数(大于 $F_1F_2$)的点的轨迹。
(整理)椭圆及其简单几何性质
精品文档椭圆及其标准方程1。
平面内 ,叫做椭圆。
叫做椭圆的焦点, 叫做椭圆的焦距。
2。
根据椭圆的定义可知:集合{}A MF MF M P 221=+=,0,0,221>>=c a c F F ,且c a ,为常数。
当 时,集合P 为椭圆;当 时,集合P 为线段;当 时,集合P 为空集。
3。
焦点在x 轴上的椭圆的标准方程为 。
焦点在y 轴上的椭圆的标准方程为 。
其中c b a ,,满足关系为 。
练习1判定下列椭圆的焦点在?轴,并指明a 2、b 2,写出焦点坐标练习2将下列方程化为标准方程,并判定焦点在哪个轴上,写出焦点坐标练习3 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a b ==y 轴上;⑶10,a b c +==例1 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程.1162522=+y x 116914422=+y x 112222=++m y m x 022525922=-+y x 13222-=--y x 0,,22<=+C B A C By Ax精品文档例2 在圆x 2+y 2=4上任取一点P ,向x 轴作垂线段PD ,D 为垂足。
当点P 在圆上运动时,求线段PD 中点M 的轨迹方程。
轨迹是什么图形?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.例3 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程..知识小结: 1、椭圆的定义(强调2a>|F 1F 2|)和椭圆的标准方程 2、椭圆的标准方程有两种,注意区分 3、根据椭圆标准方程判断焦点位置的方法 4、求椭圆标准方程的方法写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=.精品文档椭圆的简单几何性质1.范围方程中x 、y 的取值范围是什么? 由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式22a x ≤1, 22by ≤1 即 x 2≤a 2, y 2≤b 2所以 |x|≤a , |y|≤b即 -a ≤x ≤a, -b ≤y ≤b这说明椭圆位于直线x =±a, y =±b 所围成的矩形里。
椭圆的几何性质测试题
椭圆的几何性质 2017/9/221.椭圆x 2+4y 2=1的离心率为 ( )A.32B.34C.22D.232.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是 ( )A.x 23+y 24=1B.x 24+y 23=1C.x 24+y 22=1D.x 24+y 23=1 3.若椭圆经过原点,且焦点分别为1(1,0)F ,2(3,0)F ,则其离心率为 ( ) A .34 B .23 C .12 D .144.已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为 ( )A .x 2144+y 2128=1或x 2128+y 2144=1B .x 26+y 24=1C .x 236+y 232=1或x 232+y 236=1D .x 24+y 26=1或x 26+y 24=15.椭圆+=1与+=1(0<k<9)的关系为 ( )A.有相等的长、短轴B.有相等的焦距C.有相同的焦点D.有相等的离心率 6.已知F 1,F 2为椭圆+=1(a>b>0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率e=,则椭圆的方程是 ( )A.+=1B.+=1C.+=1D.+=17.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为 ( )A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1D .x 212+y 24=18.过椭圆+=1(a>b>0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.B.C.D.9.设F 1,F 2是椭圆E :+=1(a>b>0)的左、右焦点,P 为直线x=上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为 ( )A. B. C. D.10.设e 是椭圆+=1的离心率,且e ∈,则实数k 的取值范围是 ( )A.(0,3)B.C.(0,3)∪D.(0,2)二、填空题:11.求适合下列条件的椭圆的标准方程:(1)长轴长是10,离心率是45的椭圆的标准方程: .(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6的椭圆的标准方程: .(3)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为3的椭圆的标准方程: . 12.已知椭圆+=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的 面积是 .13.若直线022=+-y x 过椭圆)0(12222>>=+b a by a x 的左焦点F 和一个顶点B ,则该椭圆的离心率为_______。
高中数学-椭圆常考题型汇总及练习
高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。
两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。
椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。
这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。
该性质主要用于求最值、轨迹检验等问题。
椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。
长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。
椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。
当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。
椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。
二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。
1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。
2019-2020年高中数学选修1作业:第2章 椭圆的几何性质(苏教版)
[基础达标]1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为________.解析:把椭圆的方程化为标准形式y 21m+x 21=1⎝⎛⎭⎫1m >1,故a 2=1m ,b 2=1,所以a =1m ,b =1,21m =4,解得,m =14,符合题意.答案:142.已知椭圆的短半轴长为1,离心率e 满足0<e ≤32,则长轴的最大值是________.解析:由e 2=c 2a 2=a 2-b 2a 2=a 2-1a2,得0<a 2-1a 2≤34,解得1<a 2≤4.故1<a ≤2,2<2a ≤4.即长轴的最大值是4. 答案:43.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________.解析:由题意知2b =a +c ,又b 2=a 2-c 2, ∴4(a 2-c 2)=a 2+c 2+2ac . ∴3a 2-2ac -5c 2=0, ∴5c 2+2ac -3a 2=0. ∴5e 2+2e -3=0,∴e =35或e =-1(舍去).答案:354.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.解析:结合图形(图略),转化为c <b .答案:⎝⎛⎭⎫0,225.设P 为椭圆x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2是椭圆的两个焦点,如果∠PF 1F 2=75°,∠PF 2F 1=15°,则椭圆的离心率是________.解析:在Rt △PF 1F 2中,由正弦定理,得PF 1sin 15°=PF 2sin 75°=F 1F 2sin 90°=2c , ∴PF 1+PF 2sin 15°+sin 75°=2c . 由椭圆的定义,知PF 1+PF 2=2a .代入上式,有e =c a =1sin 75°+sin 15°=63.答案:636.在平面直角坐标系xOy 中,以椭圆x 2a 2+y 2b2=1(a >b >0)上的一点A 为圆心的圆与x 轴相切于椭圆的一个焦点,与y 轴相交于B 、C 两点,若△ABC 是锐角三角形,则该椭圆的离心率的取值范围是________.解析:由题意得,圆半径r =b 2a ,因为△ABC 是锐角三角形,所以cos 0>cos A 2=c r >cos π4,即22<c r <1,所以22<ac a 2-c 2<1,即22<e 1-e 2<1,解得e ∈⎝ ⎛⎭⎪⎫6-22,5-12. 答案:⎝ ⎛⎭⎪⎫6-22,5-12 7.已知椭圆的中心在原点,对称轴为坐标轴,焦点在x 轴上,短轴的一个顶点B 与两个焦点F 1,F 2组成的三角形的周长为4+23,且∠F 1BF 2=2π3,求椭圆的标准方程.解:设长轴长为2a ,焦距为2c ,则在△F 2OB 中,由∠F 2BO =π3得:c =32a ,所以△F 2BF 1的周长为2a +2c =2a +3a =4+23,∴a =2,c =3,∴b 2=1;故所求椭圆的标准方程为x 24+y 2=1. 8.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上, OB →=2OA →,求直线AB 的方程.解:(1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x24=1.(2)A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2, 将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k 2, 又由OB →=2OA →,得x 2B =4x 2A ,即164+k 2=161+4k 2, 解得k =±1,故直线AB 的方程为y =x 或y =-x .[能力提升]1.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.解析:椭圆x 25+y 24=1的右焦点F 2(1,0),故直线AB 的方程y =2(x -1),由⎩⎪⎨⎪⎧x 25+y 24=1y =2(x -1),消去y ,整理得3x 2-5x =0,设A (x 1,y 1),B (x 2,y 2),x 1<x 2,则x 1,x 2是方程3x 2-5x =0的两个实根,解得x 1=0,x 2=53,故A (0,-2),B ⎝⎛⎭⎫53,43, 故S △OAB =S △OFA +S △OFB =12×⎝⎛⎭⎫|-2|+43×1=53. 答案:532.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________.解析:由题意,知∠F 2F 1P =∠F 2PF 1=30°, ∴∠PF 2x =60°.∴PF 2=2×⎝⎛⎭⎫32a -c =3a -2c . ∵F 1F 2=2c ,F 1F 2=PF 2,∴3a -2c =2c ,∴e =c a =34.答案:343.椭圆x 29+y 24=1的焦点为F 1,F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,求点P的横坐标的取值范围.解:设点P 的坐标为(x ,y ),F 1(-5,0),F 2(5,0), 在三角形PF 1F 2中, 由余弦定理得:cos ∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2,因为PF 1+PF 2=6,F 1F 2=25,故cos ∠F 1PF 2=36-2PF 1·PF 2-202PF 1·PF 2=162PF 1·PF 2-1≥162⎝⎛⎭⎫PF 1+PF 222-1=-19,当且仅当PF 1=PF 2时取等号,即-19≤cos ∠F 1PF 2≤1. 所以当-19≤cos ∠F 1PF 2<0时,∠F 1PF 2为钝角.令PF 1→·PF 2→=0,因为PF 1→=(-5-x ,-y ), PF 2→=(5-x ,-y ),则x 2-5+y 2=0, y 2=-x 2+5,代入椭圆方程得:x 2=95,x =±355,所以点P 的横坐标的取值范围是-355<x <355.4.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0).已知点(1,e )和⎝⎛⎭⎫e ,32都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线AF 1与直线BF 2平行,AF 2与BF 1交于点P .(ⅰ)若AF 1-BF 2=62,求直线AF 1的斜率;(ⅱ)求证:PF 1+PF 2是定值.解:(1)由题设知a 2=b 2+c 2,e =ca .由点(1,e )在椭圆上,得1a 2+c2a 2b2=1,解得b 2=1,于是c 2=a 2-1.又点⎝⎛⎭⎫e ,32在椭圆上,所以e 2a 2+34b 2=1, 即a 2-1a 4+34=1,解得a 2=2.因此,所求椭圆的方程是x 22+y 2=1.(2)由(1)知F 1(-1,0),F 2(1,0),又直线AF 1与BF 2平行,所以可设直线AF 1的方程为x +1=my ,直线BF 2的方程为x -1=my .设A (x 1,y 1),B (x 2,y 2),y 1>0,y 2>0.由⎩⎪⎨⎪⎧x 212+y 21=1,x 1+1=my 1,得(m 2+2)y 21-2my 1-1=0,解得y 1=m +2m 2+2m 2+2,故AF 1=(x 1+1)2+(y 1-0)2=(my 1)2+y 21=2(m 2+1)+m m 2+1m 2+2.①同理,BF 2=2(m 2+1)-m m 2+1m 2+2.②(ⅰ)由①②得AF 1-BF 2=2m m 2+1m 2+2,解2m m 2+1m 2+2=62得m 2=2,注意到m >0,故m = 2. 所以直线AF 1的斜率为1m =22.(ⅱ)证明:因为直线AF 1与BF 2平行,所以PB PF 1=BF 2AF 1,于是PB +PF 1PF 1=BF 2+AF 1AF 1,故PF 1=AF 1AF 1+BF 2BF 1.由B 点在椭圆上知BF 1+BF 2=22,从而PF 1=AF 1AF 1+BF 2(22-BF 2).同理,PF 2=BF 2AF 1+BF 2(22-AF 1).因此PF 1+PF 2=AF 1AF 1+BF 2(22-BF 2)+BF 2AF 1+BF 2·()22-AF 1=22-2AF 1·BF 2AF 1+BF 2. 由①②得,AF 1+BF 2=22(m 2+1)m 2+2,AF 1·BF 2=m 2+1m 2+2,∴PF 1+PF 2=22-22=322,∴PF 1+PF 2是定值.。
椭圆的几何性质知识点归纳及典型例题及练习(付答案)
(一)椭圆的定义:1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。
这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。
对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面);(2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。
若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。
这两种特殊情况,同学们必须注意。
(4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。
同学们想一想其中的道理。
(5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为:22222222x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,222a cb =+。
不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。
椭圆的焦点在 x 轴上⇔标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上⇔标准方程中y 2项的分母较大。
(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222y x 1(a b 0)a b +=>>的有关性质。
椭圆的标准方程与性质(有答案)
椭圆的标准方程与性质1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:2.2第1课时 椭圆及其标准方程一、选择题1.平面上到点A (-5,0)、B (5,0)距离之和为10的点的轨迹是( ) A .椭圆 B .圆 C .线段 D .轨迹不存在 2.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( )A .(±a -b ,0)B .(±b -a ,0)C .(0,±a -b )D .(0,±b -a )3.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95 B .3 C.977 D.944.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点P 的纵坐标是( )A .±34B .±22C .±32D .±345.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=( )A.32 B.3 C.72D .4 6.(09·陕西理)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.椭圆x 2m +y 24=1的焦距是2,则m 的值是( )A .5B .3或8C .3或5D .208.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一个焦点F 2构成△ABF 2的周长是( )A .2B .4 C.2 D .2 29.已知椭圆的方程为x 216+y 2m 2=1,焦点在x 轴上,则m 的取值范围是( )A .-4≤m ≤4B .-4<m <4且m ≠0C .m >4或m <-4D .0<m <410.若△ABC 的两个顶点坐标为A (-4,0),B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 二、填空题11.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=______.12.已知A (-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为____________.13.(08·浙江)已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.14.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.三、解答题15.求适合下列条件的椭圆的标准方程: (1)焦点在y 轴上,且经过两个点(0,2)和(1,0). (2)坐标轴为对称轴,并且经过两点A (0,2),B (12,3)16.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.17.已知m 为常数且m >0,求证:不论b 为怎样的正实数,椭圆x 2b 2+m +y 2b 2=1的焦点不变.18.在面积为1的△PMN 中,tan M =12,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点P (x 0,y 0)(y 0>0)的椭圆方程.2.2第2课时 椭圆的简单几何性质一、选择题1.将椭圆C 1∶2x 2+y 2=4上的每一点的纵坐标变为原来的一半,而横坐标不变,得一新椭圆C 2,则C 2与C 1有( )A .相等的短轴长B .相等的焦距C .相等的离心率D .相等的长轴长2.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是( ) A.14 B.12 C.22 D.323.(2010·广东文,7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.154.已知椭圆2x 2+y 2=2的两个焦点为F 1,F 2,且B 为短轴的一个端点,则△F 1BF 2的外接圆方程为( )A .x 2+y 2=1B .(x -1)2+y 2=4C .x 2+y 2=4D .x 2+(y -1)2=45.已知椭圆的长轴长为20,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是( ) A .[6,10]B .[6,8]C .[8,10]D .[16,20]6.椭圆C 1:x 225+y 29=1和椭圆C 2:x 29-k +y 225-k =1 (0<k <9)有( )A .等长的长轴B .相等的焦距C .相等的离心率D .等长的短轴7.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆离心率为( ) A.22 B.32 C.53 D.638.已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为( )A.x 24+y 26=1B.x 26+y 24=1C.x 236+y 232=1或x 232+y 236=1D.x 236+y 232=1 9.已知点(3,2)在椭圆x 2a 2+y 2b2=1上,则( )A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 10.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b2=k (k >0)具有( )A .相同的长轴B .相同的焦点C .相同的顶点D .相同的离心率 二、填空题11.(2009·广东理)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.12.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.13.椭圆x 2a 2+y 2b 2=1上一点到两焦点的距离分别为d 1、d 2,焦距为2c ,若d 1、2c 、d 2成等差数列,则椭圆的离心率为________.14.经过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为________.三、解答题15.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.16.已知椭圆的中心在原点,它在x 轴上的一个焦点F 与短轴的两个端点B 1,B 2的连线互相垂直,且这个焦点与较近的长轴的端点A 的距离为10-5,求这个椭圆的方程.17.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.求椭圆的方程.2.2第1课时 椭圆及其标准方程一、选择题 1.[答案] C[解析] 两定点距离等于定常数10,所以轨迹为线段. 2.[答案] D[解析] ax 2+by 2+ab =0可化为x 2-b +y 2-a=1∵a <b <0∴-a >-b >0,∴y 2-a +x 2-b =1,焦点在y 轴上,c =-a +b =b -a∴焦点坐标为(0,±b -a ) 3.[答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7. ∵△PF 1F 2为直角三角形.∴P 是横坐标为±7的椭圆上的点.(P 点不可能是直角顶点)设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.4.[答案] C[解析] 设F 1(-3,0)∴P 点横坐标为3代入x 212+y 23=1得y 23=1-34=14,y 2=34,∴y =±325.[答案] C[解析] 如图所示,由x 24+y 2=1知,F 1、F 2的坐标分别为(-3,0)、(3,0),即P 点的横坐标为x p=-3,代入椭圆方程得y p =12,∴|PF 1|=12,∵|PF 1|+|PF 2|=4.∴|PF 2|=4-|PF 1|=4-12=72.6. [答案] C[解析] 方程mx 2+ny 2=1表示焦点在y 轴上的椭圆⇔1n >1m>0⇔m >n >0.故选C. 7.[答案] C[解析] 2c =2,c =1,故有m -4=12或4-m =12,∴m =5或m =3且同时都大于0,故答案为C. 8.[答案] B[解析] ∵|AF 1|+|AF 2|=2,|BF 1|+|BF 2|=2,∴|AF 1|+|BF 1|+|AF 2|+|BF 2|=4, 即|AB |+|AF 2|+|BF 2|=4. 9.[答案] B[解析] 因为焦点在x 轴上,故m 2<16且m 2≠0,解得-4<m <4且m ≠0. 10.[答案] D[解析] 顶点C 满足|CA |+|CB |=10>|AB |,由椭圆定义知2a =10,2c =8 所以b 2=a 2-c 2=25-16=9, 故椭圆方程为x 225+y 29=1(y ≠0).二、填空题 11.[答案] 2 3[解析] 由题意S △POF 2=34c 2=3,则c 2=4⇒c =2 ∴P =(1,3)代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,求出b 2=2 3. 12. [答案] x 2+43y 2=1[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2,∴|P A |+|PF |=2,且|P A |+|PF |>|AF |,即动点P 的轨迹是以A 、F 为焦点的椭圆,a =1,c =12,b 2=34.∴动点P 的轨迹方程为x 2+y 234=1,即x 2+43y 2=1.13. [答案] 8[解析] (|AF 1|+|AF 2|)+(|BF 1|+|BF 2|) =|AB |+|AF 2|+|BF 2|=4a =20,∴|AB |=8. 14.[答案] 35[解析] 设椭圆右焦点为F ′,由椭圆的对称性知, |P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+12(|P 4F |+|P 4F ′|)=7a =35.三、解答题15.[解析] (1)由于椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0)由于椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1.⇒⎩⎪⎨⎪⎧a 2=4,b 2=1故所求椭圆的方程为y 24+x 2=1.(2)设所求椭圆的方程为x 2m +y 2n =1(m >0,n >0).∵椭圆过A (0,2),B (12,3),∴⎩⎨⎧0m +4n =1,14m +3n =1,解得⎩⎪⎨⎪⎧m =1,n =4.∴所求椭圆方程为x 2+y 24=1.16. [解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b 2=1,又a =3b ,代入得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1.当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0).由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1.故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1.17. [解析] ∵m >0,b 2+m >b 2,∴焦点在x 轴上,由(b 2+m )-b 2=m ,得椭圆的焦点坐标为(±m ,0),由m 为常数,得椭圆的焦点不变.18. [解析] 以线段MN 的中点为原点,MN 所在直线为x 轴,建立坐标系. 设M (-c,0),N (c,0),c >0, 又P (x 0,y 0),y 0>0.由⎩⎪⎨⎪⎧y 0x 0-c=-2,y 0x 0+c =12,cy 0=1⇒⎩⎨⎧x 0=53c ,y 0=43c ,⇒P (523,23).设椭圆方程为x 2b 2+34+y 2b 2=1,又P 在椭圆上,故b 2(523)2+(b 2+34)(23)2=b 2(b 2+34),整理得3b 4-8b 2-3=0⇒b 2=3. 所以所求椭圆方程为x 2154+y 23=1.2.2第2课时 椭圆的简单几何性质一、选择题 1. [答案] C[解析] 把C 1的方程化为标准方程,即 C 1:x 22+y 24=1,从而得C 2:x 22+y 2=1.因此C 1的长轴在y 轴上,C 2的长轴在x 轴上.e 1=22=e 2,故离心率相等,选C. 2.[答案] D[解析] △ABF 1为等边三角形, ∴2b =a ,∴c 2=a 2-b 2=3b 2 ∴e =c a=c 2a 2=3b 24b 2=32. 3. [答案] B[解析] 本题考查了离心率的求法,这种题目主要是设法把条件转化为含a ,b ,c 的方程式,消去b 得到关于e 的方程,由题意得:4b =2(a +c )⇒4b 2=(a +c )2⇒3a 2-2ac -5c 2=0⇒5e 2+2e -3=0(两边都除以a 2)⇒e =35或e =-1(舍),故选B.4.[答案] A[解析] 椭圆的焦点为F 1(0,1),F 2(0,-1),短轴的一个端点为(1,0),于是△F 1BF 2的外接圆是以原点为圆心,以1为半径的圆,其方程为x 2+y 2=1.5.[答案] C[解析] 由题意知a =10,b =8,设椭圆上的点M (x 0,y 0),由椭圆的范围知,|x 0|≤a =10,|y 0|≤b =8,点M 到椭圆中心的距离d =x 20+y 20.又因为x 20100+y 2064=1,所以y 20=64(1-x 20100)=64-1624x 20,则d =x 20+64-1625x 20=925x 2+64,因为0≤x 20≤100,所以64≤925x 20+64≤100,所以8≤d ≤10. 6. [答案] B[解析] 依题意知椭圆C 2的焦点在y 轴上,对于椭圆C 1:焦距=225-9=8,对于椭圆C 2:焦距=2(25-k )-(9-k )=8,故答案为B. 7.[答案] A[解析] 由题意知b =c ,∴a =2c ,∴e =c a =22.8.[答案] C[解析] ∵长轴长2a =12,∴a =6,又e =13∴c =2,∴b 2=a 2-c 2=32,∵焦点不定,∴方程为x236+y232=1或x232+y236=1.9. [答案] C[解析]∵点(3,2)在椭圆x2a2+y2b2=1上,∴由椭圆的对称性知,点(-3,2)、(3,-2)、(-3,-2)都在椭圆上,故选C.10. [答案] D[解析]椭圆x2a2+y2b2=1和x2a2+y2b2=k(k>0)中,不妨设a>b,椭圆x2a2+y2b2=1的离心率e1=a2-b2a,椭圆x2 a2k +y2b2k=1(k>0)的离心率e2=k a2-b2ka=a2-b2a.二、填空题11. [答案]x236+y29=1[解析]设椭圆G的标准方程为x2a2+y2b2=1(a>b>0),半焦距为c,则⎩⎪⎨⎪⎧2a=12ca=32,∴⎩⎪⎨⎪⎧a=6c=33,∴b2=a2-c2=36-27=9,∴椭圆G的方程为x236+y29=1.12. [答案]2120°[解析]依题知a=3,b=2,c=7,由椭圆定义得|PF1|+|PF2|=6,∵|PF1|=4,∴|PF2|=2. 又|PF1|=4,|PF2|=2,|F1F2|=27.在△F1PF2中,由余弦定理可得cos∠F1PF2=-12,∴∠F1PF2=120°.13. [答案]12[解析]由题意得4c=d1+d2=2a,∴e=ca=12.14. [答案]2b2a[解析]∵垂直于椭圆长轴的弦所在直线为x=±c,由⎩⎪⎨⎪⎧x=±cx2a2+y2b2=1,得y2=b4a2,∴|y|=b2a,故弦长为2b2a.三、解答题15. [解析] 椭圆方程可化为x 2m +y 2mm +3=1, ∵m -m m +3=m (m +2)m +3>0, ∴m >m m +3. 即a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32得,m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1, ∴a =1,b =12,c =32. ∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1(-32,0),F 2(32,0);四个顶点分别为A 1(-1,0),A 2(1,0),B 1(0,-12),B 2(0,12). 16. [解析] 由于椭圆中心在原点,焦点在x 轴上,可设其方程为x 2a 2+y 2b 2=1(a >b >0). 由椭圆的对称性知,|B 1F |=|B 2F |,又B 1F ⊥B 2F ,因此△B 1FB 2为等腰直角三角形,于是|OB 2|=|OF |,即b =c .又|F A |=10-5即a -c =10-5,且a 2+b 2=c 2.将以上三式联立,得方程组,⎩⎪⎨⎪⎧b =c a -c =10-5a 2=b 2+c 2解得⎩⎪⎨⎪⎧ a =10b =5 所求椭圆方程是x 210+y 25=1. 17. [解析] 由e =c a =32,得3a 2=4c 2,再由c 2=a 2-b 2,得a =2b . 由题意可知12×2a ×2b =4,即ab =2. 解方程组⎩⎪⎨⎪⎧ a =2b ,ab =2,得a =2,b =1, 所以椭圆的方程为x 24+y 2=1.。
完整版)椭圆基础练习题
完整版)椭圆基础练习题椭圆的定义与标准方程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a(a>0)的点P的轨迹。
F1和F2称为椭圆的焦点,线段F1F2的长度为2c(c<a),称为椭圆的长轴,线段AB的长度为2b(b<a),称为椭圆的短轴。
椭圆的离心率为e=c/a,离心率小于1.椭圆的标准方程是x^2/a^2)+(y^2/b^2)=1其中,a和b分别为椭圆的长轴和短轴的一半。
选择题1.若F1(3.0),F2(-3.0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A。
(x^2/16)+(y^2/9)=1B。
(x^2/9)+(y^2/16)=1C。
(x^2/25)+(y^2/16)=1答案:B2.一动圆与圆x^2+y^2+6x+5=0及圆x^2+y^2-6x-91=0都内切,则动圆圆心的轨迹是()A。
椭圆B。
双曲线C。
抛物线D。
圆答案:A3.椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为()A。
4B。
5C。
6D。
1答案:B4.已知坐标平面上的两点A(-1.0)和B(1.0),动点P 到A、B两点距离之和为常数2,则动点P的轨迹是()A。
椭圆B。
双曲线C。
抛物线D。
线段答案:D5.椭圆上一动点P到两焦点距离之和为()A。
1B。
8C。
6D。
不确定答案:C6.已知两点F1(-1.0)、F2(1.0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A。
(x^2/4)+(y^2/3)=1B。
(x^2/3)+(y^2/4)=1C。
(x^2/5)+(y^2/4)=1D。
(x^2/4)+(y^2/5)=1答案:A7.已知F1、F2是椭圆(x^2/16)+(y^2/9)=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()A。
16B。
11C。
8D。
3答案:B8.设集合A={1,2,3,4,5},a,b∈A,则方程(x-a)^2/16+(y-b)^2/9=1表示焦点位于y轴上的椭圆的个数是()A。
椭圆 知识点+例题+练习
教学内容椭圆教学目标掌握椭圆的定义,几何图形、标准方程及其简单几何性质.重点椭圆的定义,几何图形、标准方程及其简单几何性质难点椭圆的定义,几何图形、标准方程及其简单几何性质教学准备教学过程椭圆知识梳理1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(0<e<1)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b教学效果分析教学过程考点二椭圆的几何性质【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.规律方法(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.(2)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=ca;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【训练2】(1)(2013·四川卷改编)从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是________.(2)(2012·安徽卷)如图,F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A教学效果分析教学过程设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.【训练3】(2014·山东省实验中学诊断)设F1,F2分别是椭圆:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=43a.(1)求该椭圆的离心率;(2)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.1.椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,教学效果分析|BF |=8,cos ∠ABF =45,则C 的离心率为________.6.(2014·无锡模拟)设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为________. 7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 8.(2013·福建卷)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.二、解答题9.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆的方程;(2)若点P 在第二象限,∠F 2F 1P =120°,求△PF 1F 2的面积.10.(2014·绍兴模拟)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0).已知点M ⎝ ⎛⎭⎪⎫3,22在椭圆上,且点M 到两焦点距离之和为4. (1)求椭圆的方程;。
高二数学椭圆专项练习题及参考答案
高二数学椭圆专项练习题及参考答案训练指要熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题1.椭圆中心在坐标原点,对称轴为坐标轴,离心率为0.6,长、短轴之和为36,则椭圆方程为A.16410022=+y xB.11006422=+y x C.1100641641002222=+=+y x y x 或 D.110818102222=+=+y x y x 或 2.若方程x 2+ky 2=2,表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1)3.已知圆x 2+y 2=4,又Q (3,0),P 为圆上任一点,则PQ 的中垂线与OP 之交点M 轨迹为(O 为原点) A.直线 B.圆 C.椭圆 D.双曲线二、填空题4.设椭圆1204522=+y x 的两个焦点为F 1、F 2,P 为椭圆上一点,且PF 1⊥PF 2,则||PF 1|-|PF 2||=_________.5.(2002年全国高考题)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k =_________. 三、解答题6.椭圆2222by a x +=1(a >b >0),B (0,b )、B ′(0,-b ),A (a ,0),F 为椭圆的右焦点,若直线AB ⊥B ′F ,求椭圆的离心率.7.在面积为1的△PMN 中,tan M =21,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点P 的椭圆方程.8.如图,从椭圆2222by a x +=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM .(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,F 2是右焦点,求∠F 1QF 2的取值范围;(3)设Q 是椭圆上一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203,求此时椭圆的方程.参考答案一、1.C 2.D 3.C 二、4.25,40||||100)2(||||562|||:|212222121=⋅⇒⎪⎭⎪⎬⎫==+==+PF PF c PF PF a PF PF 提示 ∴(|PF 1|-|PF 2|)2=100-2×40=20. ||PF 1|-|PF 2||=25. 5.1 三、6.215- 7.以MN 所在直线为x 轴,线段MN 的中垂线为y 轴建立坐标系,可得椭圆方程为.1315422=+y x 8.(1)22 (2)[0,2π] (3)1255022=+y x 提示:(1)∵MF 1⊥x 轴,∴x M =-c ,代入椭圆方程求得y M =ab 2,∴k OM =-,,2ab k ac b AB -= ∵OM ∥AB ,∴-c b abac b =⇒-=2 从而e =22. (2)设|QF 1|=r 1,|QF 2|=r 2,∠F 1QF 2=θ,则r 1+r 2=2a ,|F 1F 2|=2c.由余弦定理,得cos θ=212222124r r c r r -+1242)(21221221221-=--+=r r a r r c r r r r≥,01)2(2212=-+r r a 当且仅当r 1=r 2时,上式取等号. ∴0≤cos θ≤1,θ∈[0,2π]. (3)椭圆方程可化为122222=+cy c x ,又PQ ⊥AB ,∴k PQ =-.21==bak ABPQ :y =2(x -c )代入椭圆方程,得5x 2-8cx +2c 2=0.求得|PQ |=,526c F 1到PQ 的距离为d =,362c ∴.25320||2121=⇒=⋅=∆c d PQ S PQ F ∴椭圆方程为.1255022=+y x椭圆训练题:1. 椭圆19822=++y m x 的离心率21=e ,则m=__________ 2. 椭圆4x 2+2y 2=1的准线方程是_______________3. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,A 、B 为过F 1的直线与椭圆的两个交点,则△ABF 2的周长是____________4. 椭圆12222=+by a x ()0>>b a 上有一点P 到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,则P 点的坐标是_______________5. 椭圆12222=+by a x 焦点为F 1、F 2,P 是椭圆上的任一点,M 为P F 1的中点,若P F 1的长为s ,那么OM 的长等于____________6. 过椭圆1273622=+y x 的一个焦点F 作与椭圆轴不垂直的弦AB ,AB 的垂直平分线交AB 于M ,交x 轴于N ,则FN :AB =___________ 7. 已知椭圆的对称轴是坐标轴,离心率32=e ,长轴长是6,则椭圆的方程是____________ 8. 方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的值是______________ 9. 椭圆的两焦点把准线间的距离三等分,则这椭圆的离心率是______________10. 椭圆142222=+by b x 上一点P 到右焦点F 2的距离为b ,则P 点到左准线的距离是_______11. 椭圆⎪⎭⎫⎝⎛∈=+2,4,1csc sec 2222ππt t y t x ,这个椭圆的焦点坐标是__________ 12. 曲线()023122=+--+m my y m x 表示椭圆,那么m 的取值是______________13. 椭圆13422=+y x 上的一点()11,y x A ,A 点到左焦点的距离为25,则x 1=___________ 14. 椭圆()()19216122=-+-y x 的两个焦点坐标是______________15. 椭圆中心在原点,焦点在x 轴上,两准线的距离是5518,焦距为52,其方程为______ 16. 椭圆上一点P 与两个焦点F 1、F 2所成的PF 1F 2中,βα=∠=∠1221,F PF F PF ,则它的离心率e=__________17. 方程142sin 322=⎪⎭⎫ ⎝⎛+-παy x 表示椭圆,则的取值是______________18. 若()()065562222=--+-λλλλy x 表示焦点在x 轴上的椭圆,则的值是________19. 椭圆192522=+y x 上不同的三点()()2211,,59,4,,y x C B y x A ⎪⎭⎫⎝⎛与焦点()0,4F 的距离成等差数列,则=+21x x ____________20. P 是椭圆192522=+y x 上一点,它到左焦点的距离是它到右焦点的距离的4倍,则P 点的坐标是_______________21. 中心在原点,对称轴在坐标轴上,长轴为短轴的2倍,且过()6,2-的椭圆方程是______ 22. 在面积为1的△PMN 中,2tan ,21tan -==N M ,那么以M 、N 为焦点且过P 的椭圆方程是_____________23. 已知△ABC ,()()0,3,0,3-B A 且三边AC 、AB 、BC 的长成等差数列,则顶点C 的轨迹方程是_________24. 椭圆1422=+y m x 的焦距为2,则m 的值是__________ 25. 椭圆14922=+y x 的焦点到准线的距离是____________ 26. 椭圆()112222=-+m y m x 的准线平行于x 轴,则m 的值是__________ 27. 中心在原点,准线方程为4±=x ,离心率为21的椭圆方程是_______ 28. 椭圆的焦距等于长轴长与短轴长的比例中顶,则离心率等于___________29. 中心在原点,一焦点为()50,01F 的椭圆被直线23-=x y 截得的弦的中点横坐标为21,则此椭圆方程是_________ 30. 椭圆的中心为()0,0,对称轴是坐标轴,短轴的一个端点与两个焦点构成面积为12的三角形,两准线间的距离是225,则此椭圆方程是_____________ 31. 过点()2,3-且与椭圆369422=+y x 有相同焦点的椭圆方程是____________32. 将椭圆192522=+y x 绕其左焦点逆时针方向旋转90︒,所得椭圆方程是_______ 33. 椭圆192522=+y x 上一点M 到右准线的距离是7.5,那么M 点右焦半径是______ 34. AB 是椭圆14322=+y x 的长轴,F 1是一个焦点,过AB 的每一个十等分点作AB 的垂线,交椭圆同一侧于点P 1,P 2,P 3,,P 9,则11912111BF F P F P F P AF ++⋅⋅⋅+++的值是________35. 中心在原点,一焦点为F (0,1),长短轴长度比为t ,则此椭圆方程是__________ 36. 若方程222x ky +=表示焦点在y 轴的椭圆,则k 的取值是__________37. 椭圆221123x y +=的焦点为F 1、F 2,点P 为椭圆上一点,若线段PF 1的中点在y 轴上,那么1PF :2PF =___________ 38. 经过()()123,2,23,1M M --两点的椭圆方程是_____________39. 以椭圆的右焦点F 2(F 1为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于M 、N ,若直线MF 1是圆F 2的切线,则椭圆的离心率是___________40. 椭圆的两个焦点F 1、F 2及中心O 将两准线间的距离四等分,则一焦点与短轴两个端点连线的夹角是__________41. 点A (),0a 到椭圆2212x y +=上的点之间的最短距离是___________ 42. 椭圆2214x y +=与圆()2221x y r -+=有公共点,则r 的取值是________ 43. 若k R ∈,直线1y kx =+与椭圆2215x y m+=总有公共点,则m 的值是___________ 44. 设P 是椭圆上一点,两个焦点F 1、F 2,如果00211275,15PF F PF F ∠=∠=,则离心率等于__________45. P 是椭圆22143x y +=上任一点,两个焦点F 1、F 2,那么12F PF ∠的最大值是_______ 46. 椭圆2244x y +=长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,则此直角三角形的面积是__________47. 椭圆长轴长为6,焦距42,过焦点F 1作一倾角为的直线交椭圆于M 、N 两点,当MN 等于短轴长时,的值是_______48. 设椭圆22143x y +=的长轴两端点A 、B ,点P 在椭圆上,那么直线PA 与PB 的斜率之积是__________49. 倾斜角为4π的直线与椭圆2214x y +=交于A 、B 两点,则线段AB 的中点M 的轨迹方程是______________50. 已知点A (0,1)是椭圆上的一点,P 是椭圆上任一点,当弦长AP 取最大值时,点P的坐标是_____________1. 544-或 2. 1y =± 3. 20 4. ()()0,0,b b -或 5. 2sa - 6. 1:4 7. 2222119559x y x y +=+=或 8.9252m <<9.10.11. (0, 12. ()1,+∞ 13. 114. ()()1,115.22194x y+= 16. cos2cos2αβαβ+- 17.()37,,88k k k Z ππππ⎛⎫++∈⎪⎝⎭18.)19. 820. 1515,44⎛⎛ ⎝⎭⎝⎭或21.222211148371352x y x y +=+=或 22. 2241153x y += 23. 2213627x y += 24. 53或25. 26. 102m m <≠且 27. 22143x y +=28. 29.2212575x y += 30. 222211259925x y x y +=+=或 31.2211510x y += 32. ()()22441925x y +-+= 33. 634. 2035.222221111x y t t t +=-- 36. ()0,1 37. 7 38. 221155x y +=39.1 40.2π41. a a +42. 3⎤⎥⎣⎦ 43. m ≥1且m ≠544.3 45. 60︒ 46. 162547. 566ππ或 48. 34-49. 1,4y x x ⎛⎫⎛=-∈ ⎪⎝⎝⎭50. 133⎛⎫±- ⎪ ⎪⎝⎭一、选择题:本大题共12小题,每小题5分,共60分.请将唯一正确结论的代号填入题后的括号内.1.椭圆3m 2y mx 222++=1的准线平行于x 轴,则实数m 的取值范围是 ( )A .-1<m <3B .-23<m <3且m ≠0C .-1<m <3且m ≠0D .m <-1且m ≠02. a 、b 、c 、p 分别表示椭圆的半长轴、半短轴、半焦距、焦点到相应准线的距离,则它们的关系是 ( )A .p=22a bB .p=ba 2C .p=ca 2D .p=cb 23.短轴长为5,离心率为32的椭圆的两个焦点分别为F 1、F 2,过F 1作直线交椭圆于A 、B两点,则ΔABF 2的周长为 ( )A .24B .12C .6D .34.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线x=ca 2和定F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线x=-ca 2的距离之比为ac(a>c>0)的点的轨迹 是左半个椭圆D .到定直线x=ca 2和定点F(c ,0)的距离之比为ca (a>c>0)的点的轨迹是椭圆5.P 是椭圆4x 2+3y 2=1上任意一点,F 1、F 2是焦点,那么∠F 1PF 2的最大值是( )A .600B .300C .1200D .906.椭圆22b 4x +22b y =1上一点P 到右准线的距离是23b ,则该点到椭圆左焦点的距离是( )A .bB .23b C .3b D .2b 7.椭圆12x 2+3y 2=1的焦点为F 1和F 2,点P 在椭圆上,如果线段F 1P 的中点在y 轴上,那么|PF 1|是|PF 2|的 ( )A .7倍B .5倍C .4倍D .3倍8.设椭圆22a x +22b y =1(a>b>0)的两个焦点是F 1和F 2,长轴是A 1A 2,P 是椭圆上异于A 1、A 2的点,考虑如下四个命题:①|PF 1|-|A 1F 1|=|A 1F 2|-|PF 2|; ②a-c<|PF 1|<a+c ; ③若b 越接近于a ,则离心率越接近于1; ④直线PA 1与PA 2的斜率之积等于-22a b .其中正确的命题是 ( )A .①②④B .①②③C .②③④D .①④9.过点M(-2,0)的直线l 与椭圆x 2+2y 2=2交于P1、P2两点,线段P1P2的中点为P,设直线l 的斜率为k 1(k 1≠0),直线OP的斜率为k 2,则k 1k 2的值为 ( ) A .2B .-2C .21D .-2110.已知椭圆22a x +22by =1(a>b>0)的两顶点A(a ,0)、B(0,b),右焦点为F ,且F 到直线AB的距离等于F 到原点的距离,则椭圆的离心率e 满足 ( )A .0<e<22B .22<e<1C . 0<e<2-1D .2-1<e<111.设F1、F2是椭圆2222b y ax +=1(a >b >0)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是( )A .2-3B .3-1C .23 D .2212.在椭圆4x 2+3y 2=1内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是` ( )A .25B .27 C .3D .4二、填空题:本大题共4小题,每小题4分,共16分.请将最简结果填入题中的横线上. 13.椭圆3x 2+ky 2=1的离心率是2x 2-11x+5=0的根,则k= .14.如图,∠OFB=6π,SΔABF=2-3,则以OA为长半轴,OB 为短半轴,F为一个焦点的椭圆的标准方程为 .15.过椭圆3y 2x 22+=1的下焦点,且与圆x 2+y 2-3x +y +23=0相切的直线的斜率是 . 16.过椭圆9x 2+5y 2=1的左焦点作一条长为12的弦AB ,将椭圆绕其左准线旋转一周,则弦AB 扫过的面积为 .三、解答题:本大题共6小题,共74分.解答题应写出必要的计算步骤或推理过程. 17.(本小题满分12分)已知A 、B 为椭圆22a x +22a 9y 25=1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.18.(本小题满分12分)设中心在原点,焦点在x 轴上的椭圆的离心率为23,并且椭圆与圆x 2+y 2-4x-2y+25=0交于A 、B 两点,若线段AB 的长等于圆的直径. (1) 求直线AB 的方程; (2) 求椭圆的方程. 19.(本小题满分12分)已知9x 2+5y 2=1的焦点F 1、F 2,在直线l :x+y-6=0上找一点M ,求以F 1、F 2为焦点,通过点M 且长轴最短的椭圆方程.20.(本小题满分12分)一条变动的直线l 与椭圆4x 2+2y 2=1交于P 、Q 两点,M 是l 上的动点,满足关系|MP|·|MQ|=2.若直线l 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.21.(本小题满分12分)设椭圆22a x +22by =1的两焦点为F 1、F 2,长轴两端点为A 1、A 2.(1) P 是椭圆上一点,且∠F 1PF 2=600,求ΔF 1PF 2的面积;(2) 若椭圆上存在一点Q ,使∠A 1QA 2=1200,求椭圆离心率e 的取值范围.22.(本小题满分14分)已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M、N,当|AM|=|AN|时,求m 的取值范围.椭圆训练试卷参考答案一、B D C D A A A A DC B C 二、13.4或4914.12y 8x 22=+15.5623±16.18π三、17.解:设A(x 1,y 1),B(x 2,y 2),由焦点半径公式有a-ex 1+a-ex 2=58a ,∴x 1+x 2=21a(∵e=54),即AB中点横坐标为41a ,又左准线方程为x=-45a ,∴41a+45a=23,即a=1,∴椭圆方程为x 2+925y 2=1.18.解:(1)直线AB 的方程为y=-21x+2; (2)所求椭圆的方程为12x 2+3y 2=1. 19.解:由9x2+5y 2=1,得F 1(2,0),F 2(-2,0),F 1关于直线l 的对称点F 1/(6,4),连F 1/F 2交l 于一点,即为所求的点M ,∴2a=|MF 1|+|MF 2|=|F 1/F 2|=45,∴a=25,又c=2,∴b 2=16,故所求椭圆方程为20x 2+16y 2=1.20.解:设动点M(x ,y),动直线l :y=x+m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=04y 2x ,m x y 22的解,消去y ,得3x 2+4mx+2m 2-4=0,其Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,x 1+x 2=-3m4, x 1x 2=34m 22-,故|MP|=2|x-x 1|,|MQ|=2|x-x 2|.由|MP||MQ|=2,得|x-x 1||x-x 2|=1,也即|x 2-(x 1+x 2)x+x 1x 2|=1,于是有|x 2+3mx 4+34m 22-|=1.∵m=y -x ,∴|x 2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆7x 2+7y 22=1夹在直线y=x ±6间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1.21.解:(1)设|PF 1|=r 1,|PF 2|=r 2,则S 21F PF ∆=21r 1r 2sin∠F 1PF 2,由r 1+r 2=2a , 4c 2=r 12+r 22-2cos∠F 1PF 2,得r 1r 2=212PF F cos 1b 2∠+.代入面积公式,得 S 21F PF ∆=2121PF F cos 1PF F sin ∠+∠b 2=b 2tg∠2PF F 21=33b 2.(2)设∠A 1QB=α,∠A 2QB=β,点Q(x 0,y 0)(0<y 0<b).tgθ=tg(α+β)=βα-β+αtg tg 1tg tg =22020000y x a 1y x a y x a --++-=220200a y x ay 2-+.∵220a x +220b y =1,∴x 02=a 2-22ba -y 02.∴tgθ=202220y b b a ay 2-- =022y c ab 2-=-3.∴2ab 2≤3c 2y 0≤3c 2b ,即3c 4+4a 2c 2-4a 4≥0,∴3e 4+4e 2-4≥0,解之得e 2≥32,∴36≤e<1为所求.22.解:(1)用待定系数法.椭圆方程为22y 3x +=1.(2)设P为弦MN的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(3k 2+1)x 2+6kmx +3(m 2-1)=0.由Δ>0,得m 2<3k2+1 ①,∴x P =1k 3mk 32x x 2N M +-=+,从而,y P =kx p +m =1k 3m 2+.∴k AP =km 31k 3m 2++-.由MN⊥AP,得 km 31k 3m 2++-=-k 1,即2m =3k 2+1 ②.将②代入①,得2m >m 2,解得0<m <2.由②得k 2=31m 2->0.解得m >21.故所求m 的取值范围为(21,2).。
椭圆练习题(经典归纳)
初步圆锥曲线感受:已知圆O 以坐标原点为圆心且过点1,22⎛ ⎝⎭,,M N 为平面上关于原点对称的两点,已知N 的坐标为0,3⎛- ⎝⎭,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ∆面积的取值范围二. 曲线方程和方程曲线(1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上。
三. 轨迹方程例题:教材P 。
37 A 组.T3 T4 B 组 T2练习1。
设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3,则动点P 的轨迹方程是____练习 2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围四. 设直线方程设直线方程:若直线方程未给出,应先假设。
(1)若已知直线过点00(,)x y ,则假设方程为00()yy k x x ;(2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y +=【注】以上三种假设方式都要注意斜率是否存在的讨论;(4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设直线为x my t 。
【反斜截式,1m k】不含垂直于y 轴的情况(水平线) 例题:圆C 的方程为:.0222=-+y x(1)若直线过点)(4,0且与圆C 相交于A ,B 两点,且2=AB ,求直线方程. (2)若直线过点)(3,1且与圆C 相切,求直线方程.(3)若直线过点)(0,4且与圆C 相切,求直线方程. 附加:4)4(3:22=-+-y x C )(。
习题-椭圆及其性质
9.2 椭圆及其性质基础篇 固本夯基考点一 椭圆的定义及标准方程1.(2022届黑龙江大庆月考,4)与双曲线y 22-x 2=1共焦点,且离心率为√32的椭圆的标准方程为 ( )A.y 22+x 2=1 B.x 22+y 2=1 C.y 24+x 2=1 D.x 24+y 2=1 答案 C2.(2021新高考Ⅰ,5,5分)已知F 1,F 2是椭圆C:x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A.13B.12C.9D.6 答案 C3.(2021合肥一模,5)已知F 是椭圆E:x 2a 2+y 2b2=1(a>b>0)的左焦点,椭圆E 上一点P(2,1)关于原点的对称点为Q,若△PQF 的周长为4√2+2√5,则a-b=( ) A.√2 B.√22 C.√3 D.√32答案 A4.(2022届云南师大附中月考,8)已知椭圆x 24+y 23=1,F 是椭圆的左焦点,P 是椭圆上一点,若椭圆内一点A(1,1),则|PA|+|PF|的最小值为 ( )A.3B.√10C.√5+12 D.√5+1答案 A5.(2022届贵阳一中月考,15)已知m,n ∈{0,1,2,3,4,5,6,7,8,9},则方程C 9m x 2+C 9ny 2=1表示不同的椭圆的个数为 . 答案 206.(2022届四川树德中学开学考,15)已知椭圆C:x 24+y 23=1的左、右焦点分别为F 1、F 2,M 为椭圆C 上任意一点,N 为圆E:(x-3)2+(y-2)2=1上任意一点,则|MN|-|MF 1|的最小值为 .答案 2√2-57.(2019课标Ⅲ,15,5分)设F 1,F 2为椭圆C:x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为 . 答案 (3,√15)8.(2020哈尔滨三中二模,14)已知圆C:(x+1)2+y 2=36与定点M(1,0),动圆N 过点M 且与圆C 相切,则动圆圆心N 的轨迹方程为 . 答案x 29+y 28=1 9.(2019浙江,15,4分)已知椭圆x 29+y 25=1的左焦点为F,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是 . 答案 √1510.(2021河南名校4月冲刺考试,15)已知点F 1,F 2分别为椭圆C:x 2a 2+y 2b2=1(a>b>0)的左,右焦点,点A 为C 的左顶点,C 上的点到点F 2的最小距离为2.过原点O 的直线l 交C 于P,Q 两点,直线QF 1交AP 于点B,且|AB|=|BP|,则椭圆C 的标准方程为 . 答案x 29+y 28=1 考点二 椭圆的几何性质1.(2019北京,4,5分)已知椭圆x 2a 2+y 2b2=1(a>b>0)的离心率为12,则( ) A.a 2=2b 2B.3a 2=4b 2C.a=2bD.3a=4b答案 B2.(2017课标Ⅲ,10,5分)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右顶点分别为A 1、A 2,且以线段A 1A 2为直径的圆与直线bx-ay+2ab=0相切,则C 的离心率为( ) A.√63B.√33C.√23D.13答案 A3.(2021河南、河北名校联盟联考,11)点P 在椭圆x 2a 2+y 2b2=1(a>b>0)上,F 1,F 2是椭圆的两个焦点,∠F 1PF 2=90°,且△F 1PF 2的三条边长成等差数列,则此椭圆的离心率为( ) A.57B.56C.45D.35答案 A4.(2022届安徽蚌埠开学考,10)已知椭圆x 2a 2+y 2b2=1(a>b>0)的右顶点为A,坐标原点为O,若椭圆上存在一点P 使得△OAP 是等腰直角三角形,则该椭圆的离心率为( ) A.√33B.√22C.√63D.√32答案 C5.(2022届山西长治月考,11)古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆锥,得到的截面是圆;把平面渐渐倾斜得到的截面是椭圆.若用周长为72的矩形ABCD 截某圆锥得到椭圆τ,且τ与矩形ABCD 的四边相切,椭圆τ的离心率为0.6,若点M,N 为椭圆τ长轴的两个端点,P 为椭圆上除去长轴端点外的任意一点,则△PMN 面积的取值范围是( ) A.(0,80) B.(0,80] C.(0,160) D.(0,160] 答案 B6.(2021全国甲,15,5分)已知F 1,F 2为椭圆C:x 216+y 24=1的两个焦点,P,Q 为C 上关于坐标原点对称的两点,且|PQ|=|F 1F 2|,则四边形PF 1QF 2的面积为 . 答案 87.(2021皖北协作体4月联考,14)“天问一号”推开了我国行星探测的大门,通过一次发射,将实现火星环绕、着陆、巡视,是世界首创,也是我国真正意义上的首次深空探测.2021年2月10日,天问一号探测器顺利进入火星的椭圆环火轨道(将火星近似看成一个球体,球心为椭圆的一个焦点).2月15日17时,天问一号探测器成功实施捕获轨道“远火点(椭圆轨迹上距离火星表面最远的一点)平面机动”,同时将近火点高度调整至约265公里.若此时远火点距离约为11 945公里,火星半径约为3 400公里,则调整后“天问一号”的运行轨迹(环火轨道曲线)的离心率约为 .(精确到0.1) 答案 0.68.(2022届云南玉溪质量检测一,15)已知A,B 为椭圆E:x 2a 2+y 2b2=1(a>b>0)的左,右顶点,点P 在E 上,在△APB 中,tan ∠PAB=12,tan ∠PBA=29,则椭圆E 的离心率为 . 答案2√239. (2022届广西柳铁一中“韬智杯”大联考,16)椭圆C:x 218+y 2b 2=1的上、下顶点分别为A 、C,如图,点B 在椭圆上,平面四边形ABCD 满足∠BAD=∠BCD=90°,且S △ABC =2S △ADC ,则该椭圆的短轴长为 .答案 6考点三 直线与椭圆的位置关系1.(2022届江西景德镇模拟,11)已知椭圆C:x 29+y 24=1上有一动点E(异于顶点),点F,G 分别在x,y 轴上,使得E 为FG 的中点,若x 轴上一点H,满足FG ⊥EH,则|GH|的最小值为( ) A.3 B.43√5 C.45√5 D.5答案 B2.(2021名校联盟4月押题卷(一),12)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的左焦点为F(-1,0),过点F 的直线交椭圆C 于A,B 两点,若A(1,y 1),则点B 横坐标的取值范围为( ) A.(-3,0) B.(-3,-1) C.(-2,0) D.(-2,-1) 答案 B3.(2021南昌重点中学联考,14)已知椭圆E:x 2a 2+y 2b2=1(a>b>0)的右焦点为F(3,0),过点F 的直线交E 于A,B 两点.若弦AB 的中点坐标为(1,-1),则E 的标准方程为 . 答案x 218+y 29=1 4.(2018课标Ⅰ,19,12分)设椭圆C:x 22+y 2=1的右焦点为F,过F 的直线l 与C 交于A,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA=∠OMB. 解析 (1)由已知得F(1,0),l 的方程为x=1, 由已知可得,点A 的坐标为(1,√22)或(1,−√22).所以AM 的方程为y=-√22x+√2或y=√22x-√2.(2)当l 与x 轴重合时,∠OMA=∠OMB=0°,当l 与x 轴垂直时,直线OM 为AB 的垂直平分线,所以∠OMA=∠OMB.当l 与x 轴不重合也不垂直时,设l 的方程为y=k(x-1)(k ≠0),A(x 1,y 1),B(x 2,y 2),则x 1<√2,x 2<√2,直线MA,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2,由y 1=kx 1-k,y 2=kx 2-k 得k MA +k MB =2kx 1x 2-3k(x 1+x 2)+4k (x 1-2)(x 2-2).将y=k(x-1)代入x 22+y 2=1得(2k 2+1)x 2-4k 2x+2k 2-2=0,所以,x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k(x 1+x 2)+4k=4k 3-4k -12k 3+8k 3+4k2k 2+1=0,从而k MA +k MB =0,故MA,MB 的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.5.(2022届云南师大附中月考,17)椭圆C:x 2a 2+y 2b2=1(a>b>0)的离心率是√32,且点A(2,1)在椭圆C 上,O 是坐标原点.(1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA,若l 与椭圆C 交于B,D 两点,求弦BD 的长度. 解析 (1)由e=√32,得c=√32a,b=12a,又点A(2,1)在椭圆上,所以4a 2+1a24=1,解得a=2√2,b=√2,所以椭圆C 的方程是x 28+y 22=1.(2)由题意得直线OA 的方程是y=12x,因为l ⊥OA,且l 过原点O,所以直线l 的方程是y=-2x,与椭圆联立,得17x 2=8,即x=±√2√17,不妨令B (√2√17√2√17),D (-2√217√2√17),则|BD|=√(√2√17√2√17)2+(√2√17√2√17)2=4√17017.6.(2022届甘肃嘉峪关一中开学考,20)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1、F 2,且|F 1F 2|=2,点M (√3,√32)在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知点P(1,t)为椭圆C 上一点,过点F 2的直线l 与椭圆C 交于异于点P 的A,B 两点,若△PAB 的面积是9√27,求直线l 的方程.解析 (1)设椭圆的半焦距为c,由题意可得{2c =2,3a 2+34b2=1,a 2=b 2+c 2,解得a 2=4,b 2=3,故椭圆C 的标准方程为x 24+y 23=1.(2)因为P(1,t)在椭圆C 上,所以14+t 23=1,解得|t|=32.当直线l 的斜率为0时,|AB|=2a=4,S △PAB =12|AB||t|=12×4×32=3.因为△PAB 的面积是9√27,所以直线l 的斜率为0不符合题意,故可设直线l 的方程为x=my+1,A(x 1,y 1),B(x 2,y 2),联立{x =my +1,x 24+y 23=1,整理得(3m 2+4)y 2+6my-9=0,则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.故|AB|=√m 2+1|y 1-y 2|=√m 2+1·√(-6m 3m 2+4)2-4(-93m 2+4)=12(m 2+1)3m 2+4.因为点P 到直线l 的距离d=32|m|√=3|m|√,所以S △PAB =12|AB|d=12·12(m 2+1)3m 2+4·3|m|√=9|m|√m 2+13m 2+4,因为△PAB 的面积是9√27,所以9|m|√m 2+13m 2+4=9√27,整理得31m 4+m 2-32=0,解得m 2=1,即m=±1.故直线l 的方程为x=±y+1,即x±y -1=0,7.(2020天津,18,15分)已知椭圆x 2a 2+y 2b2=1(a>b>0)的一个顶点为A(0,-3),右焦点为F,且|OA|=|OF|,其中O 为原点.(1)求椭圆的方程;(2)已知点C 满足3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P,且P 为线段AB 的中点.求直线AB 的方程.解析 (1)由已知可得b=3.记半焦距为c,由|OF|=|OA|可得c=b=3.又由a 2=b 2+c 2,可得a 2=18.所以,椭圆的方程为x 218+y 29=1. (2)因为直线AB 与以C 为圆心的圆相切于点P,所以AB ⊥CP.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为y=kx-3.由方程组{y =kx -3,x 218+y 29=1,消去y,可得(2k 2+1)·x 2-12kx=0,解得x=0,或x=12k 2k 2+1.依题意,可得点B 的坐标为(12k2k 2+1,6k 2-32k 2+1).因为P 为线段AB 的中点,点A 的坐标为(0,-3),所以点P 的坐标为(6k 2k 2+1,-32k 2+1).由3OC ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,得点C 的坐标为(1,0),故直线CP 的斜率为-32k 2+1-06k 2k 2+1-1,即32k 2-6k+1.又因为AB ⊥CP,所以k ·32k 2-6k+1=-1,整理得2k 2-3k+1=0,解得k=12或k=1.所以直线AB 的方程为y=12x-3或y=x-3.8.(2021北京,20)已知椭圆E:x 2a 2+y 2b2=1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4√5. (1)求椭圆E 的标准方程;(2)过点P(0,-3)的直线l 的斜率为k,交椭圆E 于不同的两点B,C,直线AB 交y=-3于点M,直线AC 交y=-3于点N,若|PM|+|PN|≤15,求k 的取值范围.解析 (1)将A(0,-2)代入椭圆方程得b=2,由椭圆四个顶点围成的四边形面积为2ab=4√5,解得a=√5, 所以椭圆E 的标准方程为x 25+y 24=1.(2)由题意得直线l 的方程为y+3=k(x-0),即y=kx-3,将y=kx-3代入椭圆方程并化简得(4+5k 2)x 2-30kx+25=0,由Δ=(-30k)2-4×25(4+5k 2)>0,解得k<-1或k>1,设B(x 1,y 1),C(x 2,y 2),不妨设点B 位于第一象限,点C 位于第四象限,如图所示.则x 1+x 2=30k 4+5k2,x 1x 2=254+5k2,直线AB 的方程为y+2y 1+2=x -0x 1-0,令y=-3,解得x=-x 1y 1+2,得M (-x 1y 1+2,-3),同理可得N (-x 2y 2+2,-3),∴|PM|+|PN|=x 1y 1+2+x2y 2+2=x 1(y 2+2)+x 2(y 1+2)(y 1+2)(y 2+2)=x 1(kx 2-1)+x 2(kx 1-1)[(kx 1-3)+2][(kx 2-3)+2]=2kx 1x 2-(x 1+x 2)(kx 1-1)(kx 2-1)=2kx 1x 2-(x 1+x 2)k 2x 1x 2-k(x 1+x 2)+1=2k ·254+5k 2-30k 4+5k2k 2·254+5k2-k ·30k 4+5k2+1=50k -30k25k 2-30k 2+4+5k2=5k ≤15,解得k ≤3,又k>1,所以1<k ≤3.由椭圆的对称性知,当点B 位于第二象限,点C 位于第三象限时,-3≤k<-1. 综上,k 的取值范围为[-3,-1)∪(1,3].9.(2022届四川石室中学开学考,21)已知椭圆C 1:x 2a 2+y 2b2=1(a>b>0)的离心率为√22,椭圆C 1的长轴是圆C 2:x 2+y 2=2的直径. (1)求椭圆C 1的标准方程;(2)过椭圆C 1的右焦点F 作两条相互垂直的直线l 1,l 2,其中l 1交椭圆C 1于P,Q 两点,l 2交圆C 2于M,N 两点,求四边形PMQN 面积的取值范围. 解析 由题意得,c a =√22,2a=2√2,解得a=√2,c=1,又a 2=b 2+c 2,所以b=1,故椭圆C 1的标准方程为x 22+y 2=1. (2)由(1)知椭圆C 1的右焦点F(1,0), 当直线l 1的斜率不存在时,|PQ|=2b 2a =√2,|MN|=2√2,故四边形PMQN 的面积S=12×√2×2√2=2, 当直线l 1的斜率为0时,|PQ|=2a=2√2,|MN|=2, 故四边形PMQN 的面积S=12×2√2×2=2√2,当直线l 1的斜率存在且不为0时,设直线l 1的方程为x=my+1,P(x 1,y 1),Q(x 2,y 2),由{x =my +1,x 22+y 2=1,得(2+m 2)y 2+2my-1=0,所以y 1+y 2=-2m 2+m 2,y 1·y 2=-12+m 2,所以|PQ|=√1+m 2√(y 1+y 2)2-4y 1·y 2=2√2(1+m 2)2+m 2,此时l 2的方程为mx+y-m=0,坐标原点到l 2的距离为d=|m|√,所以|MN|=2√2−(|m|√)2=2√2+m 21+m2,故四边形PMQN 的面积S=12×2√2(1+m 2)2+m 2×2√2+m 21+m 2=2√2√1+m 22+m 2=2√2√1−12+m 2∈(2,2√2),综上,四边形PMQN 面积的取值范围是[2,2√2].综合篇 知能转换考法一 求椭圆的标准方程1.(2022届陕西西北工业大学附属中学月考,5)如果点M(x,y)在运动过程中,总满足关系式√x 2+(y +3)2+√x 2+(y -3)2=4√3,则点M 的轨迹是( ) A.不存在 B.椭圆 C.线段 D.双曲线 答案 B2.(2021豫北名校5月联考,10)已知F 1(-1,0)为椭圆C:x 2a 2+y 2b2=1(a>b>0)的左焦点,过F 1的直线与椭圆C 交于A,B 两点,与y 轴交于D 点.若AD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,|AD|=|F 1B|,则椭圆C 的标准方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 D3.(2021四川绵阳二模,15)已知F(1,0)为椭圆E:x 2a 2+y 2b2=1(a>b>0)的右焦点,过E 的下顶点B 和F 的直线与E 的另一个交点为A,若4BF ⃗⃗⃗⃗⃗ =5FA ⃗⃗⃗⃗⃗ ,则a= . 答案 34.(2022届贵州部分重点中学月考,16)已知圆C:x 2+(y+1)2=16,P 是圆C 上的动点,若A(0,1),线段PA 的垂直平分线与直线PC 相交于点Q,则点Q 的轨迹方程是 ;若M(2,1),则|MQ|+|QC|的最大值为 . 答案x 23+y 24=1;6 5.(2020课标Ⅲ,20,12分)已知椭圆C:x 225+y 2m 2=1(0<m<5)的离心率为√154,A,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线x=6上,且|BP|=|BQ|,BP ⊥BQ,求△APQ 的面积. 解析 (1)由题设可得√25−m 25=√154,得m 2=2516,所以C 的方程为x 225+y 22516=1. (2)设P(x P ,y P ),Q(6,y Q ),根据对称性可设y Q >0,由题意知y P >0.由已知可得B(5,0),直线BP 的方程为y=-1y Q(x-5),所以|BP|=y P √1+y Q 2,|BQ|=√1+y Q 2.因为|BP|=|BQ|,所以y P =1,将y P =1代入C 的方程,解得x P =3或-3.由直线BP 的方程得y Q =2或8.所以点P,Q 的坐标分别为P 1(3,1),Q 1(6,2);P 2(-3,1),Q 2(6,8).|P 1Q 1|=√10,直线P 1Q 1的方程为y=13x,点A(-5,0)到直线P 1Q 1的距离为√102,故△AP 1Q 1的面积为12×√102×√10=52.|P 2Q 2|=√130,直线P 2Q 2的方程为y=79x+103,点A 到直线P 2Q 2的距离为√13026,故△AP 2Q 2的面积为12×√13026×√130=52.综上,△APQ 的面积为52.6.(2022届四川乐山月考,20)已知椭圆C:x 2a 2+y 2b2=1(a>b>0),过点P (-1,√22),离心率e=√22.(1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 交椭圆C 于A,B 两点,若在直线x=-2上存在点P,使得△ABP 为正三角形,求点P 的坐标.解析 (1)由题意得{ 1a 2+12b 2=1,c a =√22,a 2=b 2+c 2,则a 2=2,b 2=1,c 2=1,所以椭圆C 的方程为x 22+y 2=1.(2)由题知,F 1(-1,0),当直线l 的斜率不存在或斜率为0时,易知,不存在符合条件的点P.当直线l 的斜率存在且不为0时,设直线l 的方程为y=k(x+1)(k ≠0),线段AB 的中点为M,A(x 1,y 1),B(x 2,y 2),将y=k(x+1)代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x+2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2,则x M =-2k 21+2k 2,y M =k(x M +1)=k 1+2k2,故|AB|=√(1+k 2)[(x 1+x 2)2-4x 1x 2]=√(1+k 2)[16k4(1+2k 2)2-8k 2-81+2k2]=2√2×1+k21+2k2.因为△ABP为正三角形,所以PM ⊥AB,则k PM ·k AB =-1,即k PM =-1k ,故直线PM 的方程为y-k 1+2k 2=-1k (x +2k 21+2k2),将x=-2代入直线PM 的方程可得y=2k +3k 1+2k 2,故P (-2,2k +3k 1+2k2),所以点P 到直线l 的距离为|k+2k +3k2|√1+k ,又|PM|=√32|AB|,所以|k+2k +3k 2|√1+k =√32×2√2×1+k21+2k2,解得k 2=2,即k=±√2,故P 的坐标为(-2,±4√25). 7.(2022届四省八校期中联考,19)在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1和F 2,若A 为椭圆上一动点,直线AF 2与椭圆交于另一点B,若三角形ABF 1的周长为8,且点(1,−32)在椭圆上. (1)求椭圆的标准方程;(2)设直线F 1A 、F 1B 与直线x=4分别交于点M 、N,记直线MF 2和直线NF 2的斜率分别为k 1和k 2,若k 1k 2=54,试求直线AB 的斜率.解析 (1)由题意可得,4a=8,所以a=2,又点(1,−32)在椭圆上,易得b=√3,所以椭圆的标准方程为x 24+y 23=1. (2)由题意得直线AB 的斜率不为0,故可设直线AB 的方程为x=my+1,设A(x 1,y 1),B(x 2,y 2),联立方程组{x =my +1,x 24+y 23=1,整理得(3m 2+4)y 2+6my-9=0,故y 1+y 2=-6m 3m 2+4,y 1·y 2=-93m 2+4,故k AF 1=y 1x 1+1,k BF 1=y 2x 2+1,所以直线F 1A 的方程为y=y 1x 1+1(x+1),故可得M (4,5y 1x 1+1),同理可得N (4,5y 2x 2+1),故k 1=5y 13(x 1+1),k 2=5y 23(x 2+1),所以k 1k 2=25y 1y 29(x 1+1)(x 2+1)=259×y 1y 2(my 1+2)(my 2+2)=259×y 1y 2m 2y 1y 2+2m(y 1+y 2)+4=259×-93m 2+4-9m 23m 2+4-12m23m 2+4+4=-2516−9m 2.故-2516−9m 2=54,解得m=±2.所以直线AB 的斜率k=±12. 8.(2018天津,19,14分)设椭圆x 2a 2+y 2b2=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为√53,点A 的坐标为(b,0),且|FB|·|AB|=6√2. (1)求椭圆的方程;(2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l 与直线AB 交于点Q.若|AQ||PQ|=5√24sin ∠AOQ(O 为原点),求k 的值.解析 (1)设椭圆的焦距为2c,由已知有c 2a 2=59, 又由a 2=b 2+c 2,可得2a=3b.由已知可得,|FB|=a,|AB|=√2b,由|FB|·|AB|=6√2,可得ab=6,从而a=3,b=2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故|PQ|sin ∠AOQ=y 1-y 2. 又因为|AQ|=y 2sin ∠OAB ,而∠OAB=π4,故|AQ|=√2y 2.由|AQ||PQ|=5√24sin ∠AOQ,可得5y 1=9y 2. 由方程组{y =kx,x 29+y 24=1消去x,可得y 1=√9k +4. 易知直线AB 的方程为x+y-2=0,由方程组{y =kx,x +y -2=0消去x,可得y 2=2kk+1.由5y 1=9y 2,可得5(k+1)=3√9k 2+4,两边平方,整理得56k 2-50k+11=0,解得k=12或k=1128. 所以,k 的值为12或1128. 考法二 求椭圆的离心率(或其范围)1.(2020长沙一模,8)设椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1、F 2,点E(0,t)(0<t<b).已知动点P 在椭圆上,且P,E,F 2三点不共线,若△PEF 2的周长的最小值为3b,则椭圆C 的离心率为( ) A.√32B.√22C.12D.√53答案 D2.(2022届甘肃靖远开学考,10)已知F 1、F 2分别是椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点,点P,Q 是C 上位于x 轴上方的任意两点,且PF 1∥QF 2,若|PF 1|+|QF 2|≥b,则C 的离心率的取值范围是( ) A.(0,12] B.[12,1) C.(0,√32] D.[√32,1)答案 C3.(2022届河南部分名校联考,11)已知点F 1,F 2,分别为椭圆C:x 2a 2+y 2b2=1(a>b>0)的左,右焦点,点M 在直线l:x=-a 上运动,若∠F 1MF 2的最大值为60°,则椭圆C 的离心率是( ) A.13 B.12C.√32D.√33答案 C4.(2018课标Ⅱ,12,5分)已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1(a>b>0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P=120°,则C 的离心率为( )A.23B.12C.13D.14答案 D5.(2021全国乙理,11,5分)设B 是椭圆C:x 2a 2+y 2b2=1(a>b>0)的上顶点,若C 上的任意一点P 都满足|PB|≤2b,则C 的离心率的取值范围是( ) A.[√22,1) B.[12,1) C.(0,√22] D.(0,12]答案 C6.(2021九师联盟4月联考,11)设椭圆x 2a 2+y 2b2=1(a>b>0)上有一个点A,它关于原点的对称点为B,点F 为椭圆的右焦点,且满足AF ⊥BF,设∠ABF=θ,且θ∈(π12,π3),则椭圆的离心率的取值范围为( ) A.(√33,√62] B.[√22,√63) C.(√33,√62) D.(√22,√63)答案 B7.(2021东北三省四市联考,12)第24届冬季奥林匹克运动会于2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC,BD(如图2),且两切线斜率之积等于-916,则椭圆的离心率为( )图1 图2A.34B.√74C.916 D.√32答案 B8. (2022届重庆第十一中学月考,15)美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成30°角,则该椭圆的离心率为 .答案 129.(2020课标Ⅱ,19,12分)已知椭圆C 1:x 2a 2+y 2b2=1(a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A,B 两点,交C 2于C,D 两点,且|CD|=43|AB|. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程.解析 (1)由已知可设C 2的方程为y 2=4cx,其中c=√a 2-b 2.不妨设A,C 在第一象限,由题设得A,B 的纵坐标分别为b 2a ,-b 2a ;C,D 的纵坐标分别为2c,-2c,故|AB|=2b 2a ,|CD|=4c.由|CD|=43|AB|得4c=8b 23a ,即3×c a =2-2(c a)2.解得c a =-2(舍去)或c a =12.所以C 1的离心率为12. (2)由(1)知a=2c,b=√3c,故C 1:x 24c 2+y 23c 2=1. 设M(x 0,y 0),则x 024c 2+y 023c 2=1,y 02=4cx 0,故x 024c 2+4x 03c=1.① 由于C 2的准线为x=-c,所以|MF|=x 0+c,而|MF|=5,故x 0=5-c,代入①得(5-c)24c2+4(5−c)3c =1,即c 2-2c-3=0,解得c=-1(舍去)或c=3.所以C 1的标准方程为x 236+y 227=1,C 2的标准方程为y 2=12x. 考法三 直线与椭圆位置关系问题1.(2021兰州诊断,11)已知P(2,-2)是离心率为12的椭圆x 2a 2+y 2b2=1(a>b>0)外一点,经过点P 的光线被y 轴反射后,所有反射光线所在直线中只有一条与椭圆相切,则此条切线的斜率是 ( ) A.-18 B.-12 C.1 D.18答案 D2.(2022届安徽怀宁中学月考,20)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)过点-12,-√154,(√303,√66).(1)求椭圆C 的方程;(2)已知直线l:y=kx-2与椭圆C 交于M,N 两点. (i)若k=1,求线段MN 的中点坐标;(ii)当△OMN 的面积取到最大值时,求k 的值.解析 (1)由题意得{14a 2+1516b 2=1,103a 2+16b2=1,解得{a 2=4,b 2=1,故椭圆C 的方程为x 24+y 2=1.(2)设M(x 1,y 1),N(x 2,y 2),MN 的中点P 的坐标为(x 0,y 0),联立{y =kx -2,x 24+y 2=1,整理得(4k 2+1)x 2-16kx+12=0,∴Δ=(-16k)2-48(4k 2+1)>0,即k 2>34,x 1+x 2=16k4k 2+1,x 1x 2=124k 2+1.(i)∵k=1,∴x 1+x 2=165,∴x 0=85,y 0=x 0-2=-25,∴线段MN 的中点坐标为(85,-25). (ii)|MN|=√1+k 2|x 1-x 2|=√1+k 2√(x 1+x 2)2-4x 1x 2=4√(k 2+1)(4k 2-3)4k 2+1,又点O 到直线l 的距离d=√1+k ,∴S △OMN =12d ·|MN|=12·√1+k·4√(k 2+1)(4k 2-3)4k 2+1=4√4k 2-34k 2+1,令√4k 2-3=t,则t>0,∴S △OMN =4t t 2+4=4t+4t ≤44=1,当且仅当t=2时等号成立,此时k=±√72,且满足Δ>0,∴△OMN 面积的最大值是1,此时k 的值为±√72.3.(2022届陕西西北工业大学附属中学月考,21)过点A(0,1)作圆x 2+y 2=12的切线,两切线分别与x 轴交于点F 1(x 1,0),F 2(x 2,0)(x 1<x 2),以F 1,F 2为焦点的椭圆C 经过点A.(1)求椭圆C 的方程;(2)直线AF 2与椭圆C 的另一个交点为B,求直线BF 1被椭圆C 截得的线段长.解析 (1)过点A(0,1)作圆x 2+y 2=12的切线,显然切线斜率存在,故可设切线方程为y=kx+1,即kx-y+1=0,则圆心(0,0)到该切线的距离d=|0-0+1|k 2+(−1)2=1k 2+1,又圆x 2+y 2=12的半径r=√22,∴1k 2+1=√22,解得k=±1,故切线方程为y=x+1或y=-x+1.令y=0,解得x 1=-1,x 2=1,故F 1(-1,0),F 2(1,0).依题意可设椭圆的方程为x 2a 2+y 2b 2=1(a>b>0),又椭圆过点A(0,1),∴b=1,又c=1,∴a 2=b 2+c 2=2,故椭圆C 的方程为x 22+y 2=1.(2)由题知A(0,1),F 2(1,0),故直线AF 2的方程为x 1+y 1=1,即x+y-1=0.设直线AF 2与椭圆C 的另一个交点为B(x 3,y 3),联立{x +y -1=0,x 22+y 2=1,整理得3y 2-2y-1=0,∴y 3+1=23,解得y 3=-13,故x 3=1-(-13)=43,∴B 43,-13,则k BF 1=-13-043-(-1)=-17,故直线BF 1的方程为y=-17(x+1).设直线BF 1与椭圆C 的另一个交点为M(x 4,y 4),联立{y =−17(x +1),x22+y 2=1,整理得51y 2+14y-1=0,∴y 4-13=-1451,解得y 4=117,故x 4=-2417,∴M (-2417,117),∴|BM|=√(-2417-43)2+(117+13)2=√1402512+202512=100√251,所以直线BF 1被椭圆C 截得的线段长为100√251. 4.(2022届昆明一中双基检测二)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的右焦点为F,且F 与椭圆C 上点的距离的取值范围为[2-√3,2+√3]. (1)求a,b;(2)若点P 在圆M:x 2+y 2=5上,PA,PB 是C 的两条切线,A,B 是切点,求△PAB 面积的最小值. 解析 (1)由题意得{a -c =2−√3,a +c =2+√3,解得{a =2,c =√3,则b=√a 2-c 2=1.(2)由(1)得,椭圆C 的方程为x 24+y 2=1,设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),由x 124+y 12=1,得A 在直线l 1:x 1x4+y 1y=1上,将直线l 1与椭圆C 联立得,y 12x 24+y 12y 2=y 12x 24+(1−x 1x 4)2=y 12,即(x 12+4y 12)x 2-8x 1x+16-16y 12=0,则Δ=64x 12-4(x 12+4y 12)(16-16y 12)=64y 12(x 12+4y 12-4)=0,故直线l 1与C 相切,故C 在A 处的切线方程为l 1:x 1x 4+y 1y=1,同理C 在B 处的切线方程为l 2:x 2x4+y 2y=1.∵直线l 1与直线l 2相交于点P(x 0,y 0),故有x 1x 04+y 1y 0=1且x 2x 04+y 2y 0=1,∴直线AB 的方程为l:x 0x4+y 0y=1,将直线l 与椭圆C 联立得(x 02+4y 02)x 2-8x 0x+16-16y 02=0,则x 1+x 2=8x 0x 02+4y 02,x 1·x 2=16−16y 02x 02+4y 02,,故当y 0≠0时, |AB|=√1+x 0216y 02·√(x 1+x 2)2-4x 1·x 2 =√x 02+16y 024|y 0|·√(8x 0x 02+4y 02)2-4·16−16y 02x 02+4y 02 =2√x 02+16y 02·√x 02-(1-y 02)(x 02+4y 02)|y 0|(x 02+4y 02)=2√x 02+16y 02·√x 02+4y 02-4x 02+4y 02,故|AB|=2√x 02+16y 02·√x 02+4y 02-4x 02+4y 02.易验证当y 0=0时,该式也成立.∵点P 到直线l 的距离d=|x 024+y 02-1|√x 0216+y 02=0202√020,∴△PAB 的面积S=12|AB|·d=(x 02+4y 02-4)√x 02+4y 02-4x 02+4y 02,令t=√x 02+4y 02-4=√5−y 02+4y 02-4=√1+3y 02∈[1,4],则S=t 3t 2+4=11t +4t 3,易知S=11t +4t 3在t ∈[1,4]上单调递增,∴当t=1,即y 0=0,x 0=±√5时,△PAB 面积取得最小值15.5.(2021合肥二模,20)已知椭圆C:x 2a 2+y 2b2=1(a>b>0)的离心率为12,右顶点M 到左焦点的距离为3,直线l 与椭圆C 交于点A,B. (1)求椭圆C 的标准方程;(2)设直线MA,MB 的斜率为k 1,k 2.若4k 1k 2+9=0,求|AB|的最小值.解析 (1)设椭圆的半焦距为c,由题意得{ca =12,a +c =3,解得{a =2,c =1.∴b=√3,∴椭圆C 的标准方程为x 24+y 23=1.(2)由题意知,直线l 的斜率不为0,设其方程为x=my+n,A(x 1,y 1),B(x 2,y 2), 由{x =my +n,x 24+y 23=1得(3m 2+4)y 2+6mny+3n 2-12=0, ∴y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4,Δ=(6mn)2-4(3m 2+4)·(3n 2-12)=48(3m 2-n 2+4)>0. 由(1)知M(2,0),则直线MA,MB 的斜率分别为k 1=y 1x 1-2,k 2=y 2x 2-2,∴k 1k 2=y 1y 2(x 1-2)(x 2-2)=y 1y 2(my 1+n -2)(my 2+n -2)=y 1y 2m 2y 1y 2+m(n -2)(y 1+y 2)+(n -2)2=3n 2-123m 2+4m 2·3n 2-123m 2+4+m(n -2)(-6mn 3m 2+4)+(n -2)2=3n 2-124(n -2)2=3(n+2)4(n -2)=-94,解得n=1. ∴直线l 的方程为x=my+1,直线l 过定点(1,0),此时,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, ∴|AB|=√1+m 2|y 1-y 2|=√1+m 2·√(y 1+y 2)2-4y 1y 2=√1+m 2√(-6m 3m 2+4)2+363m 2+4=√1+m 2·√144(m 2+1)(3m 2+4)2=12(m 2+1)3m 2+4=4·3m 2+33m 2+4=4(1−13m 2+4)≥3(当且仅当m=0时取等号),∴|AB|的最小值为3.6.(2021天一大联考顶尖计划第三次联考,20)已知椭圆Γ:x 2a 2+y 2b2=1(a>b>0)的右焦点为F(c,0)(c>0),离心率为√32,经过F 且垂直于x 轴的直线交Γ于第一象限的点M,O 为坐标原点,且|OM|=√132.(1)求椭圆Γ的方程;(2)设不经过原点O 且斜率为12的直线交椭圆Γ于A,B 两点,A,B 关于原点O 对称的点分别是C,D,试判断四边形ABCD 的面积有没有最大值.若有,请求出最大值;若没有,请说明理由. 解析 (1)由题意知c a =√32,即a 2=43c 2,① 又由a 2=b 2+c 2,可得b 2=c 23.②联立{x =c,x 2a 2+y 2b 2=1,解得{x =c,y =±b 2a,则点M (c,b2a ).则|OM|=√c 2+(b2a )2=√132.③联立①②③,解得c=√3,a=2,b=1. 故椭圆Γ的方程为x 24+y 2=1.(2)设直线AB 的方程为y=12x+m,联立{y =12x +m,x 24+y 2=1,消去y 得2x 2+4mx+4(m 2-1)=0, 由题意得Δ=(4m)2-4×2×4(m 2-1)=16(2-m 2)>0,解得-√2<m<√2. 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-2m,x 1x 2=2(m 2-1).则|AB|=√1+(12)2|x 1-x 2|=√52√(x 1+x 2)2-4x 1x 2=√52√(-2m)2-4×2(m 2-1)=√52√8−4m 2.原点O 到直线AB 的距离d=√(12)+(−1)2=2√55·|m|,则直线CD 到直线AB 的距离d'=2d=4√55|m|, 显然四边形ABCD 是平行四边形, 所以S 四边形ABCD =|AB|d'=√52√8−4m 2·4√55|m| =2√m 2(8-4m 2)=2√14·4m 2(8-4m 2)≤2√14·(4m 2+8−4m 22)2=4,当且仅当4m 2=8-4m 2,即m=±1时,等号成立,故四边形ABCD 的面积存在最大值,且最大值为4.7.(2021宁夏名校二模,20)已知椭圆C 1:x 2a 2+y 2b2=1(a>b>0)的离心率为12,过点E(√7,0)的椭圆C 1的两条切线相互垂直.(1)求椭圆C 1的方程;(2)在椭圆C 1上是否存在这样的点P,过点P 引抛物线C 2:x 2=4y 的两条切线l 1、l 2,切点分别为B 、C,且直线BC 过点A(1,1)?若存在,指出这样的点P 有几个(不必求出点的坐标);若不存在,请说明理由.解析 (1)由椭圆的对称性,不妨设在x 轴上方的切点为M,x 轴下方的切点为N,则k NE =1,NE 的直线方程为y=x-√7,因为椭圆C 1:x 2a 2+y 2b2=1(a>b>0)的离心率为12,所以c a =12,则a=2c,由a 2=b 2+c 2得b 2=3c 2,所以椭圆C 1:x 24c 2+y 23c 2=1,联立直线NE 与椭圆的方程得{y =x -√7,x 24c 2+y 23c 2=1,消去y 得7x 2-8√7x+28-12c 2=0,则有Δ=0,即(-8√7)2-4×7×(28-12c 2)=0,解得c 2=1,所以椭圆C 1的方程为x 24+y 23=1.(2)设点B(x 1,y 1),C(x 2,y 2),P(x 0,y 0),由x 2=4y,即y=14x 2,得y'=12x,∴抛物线C 2在点B 处的切线l 1的方程为y-y 1=x 12(x-x 1).即y=x12x+y 1-12x 12,∵y 1=14x 12,∴y=x 12x-y 1.∵点P(x 0,y 0)在切线l 1上,∴y 0=x 12x 0-y 1.① 同理,y 0=x 22x 0-y 2.②由①、②得,点B(x 1,y 1),C(x 2,y 2)的坐标都满足方程y 0=x 2x 0-y.∵经过B(x 1,y 1),C(x 2,y 2)两点的直线是唯一的,∴直线BC 的方程为y 0=x 2x 0-y, ∵点A(1,1)在直线BC 上,∴y 0=12x 0-1, ∴点P 的轨迹方程为y=12x-1.又∵点P 在椭圆C 1上,在直线y=12·x-1上,直线y=12x-1经过椭圆C 1内一点(0,-1),∴直线y=12x-1与椭圆C 1交于两点,∴满足条件的点P 有两个.。
椭圆常考题型汇总及练习
椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。
6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的标准方程和几何性质练习题一1. 若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a ,b 满足( ) A .a 2>b 2 B.1a <1b C .0<a <bD .0<b <a答案:C 由ax 2+by 2=1,得x 21a +y 21b=1,因为焦点在x 轴上,所以1a >1b >0,所以0<a <b . 2. 一个椭圆中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2| 成等差数列,则椭圆方程为( )A.2x 8+2y 6=1B.2x 16+2y 6=1C.2x 8+2y 4=1D.2x 16+2y 4=1 答案:A 设椭圆的标准方程为2222x y a b +=1(a>b>0)。
由点P(2,3)在椭圆上知2243a b+=1。
又|PF 1|,|F 1F 2|,PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a=2×2c ,c 1,a 2=又c 2=a 2-b 2,联立得a 2=8,b 2=6 3. 已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .23B .6C .43D .12答案:C 如图,设椭圆的另外一个焦点为F ,则△ABC 的周长为|AB |+|AC |+|BC |=(|AB |+|BF |)+(|AC |+|CF |)=4a =43。
4. 已知椭圆x 2+my 2=1的离心率e ∈⎝⎛⎭⎫12,1,则实数m 的取值范围是( )A. ⎝⎛⎭⎫0,34B. ⎝⎛⎭⎫43,+∞C. ⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞ D. ⎝⎛⎭⎫34,1∪⎝⎛⎭⎫1,43答案:C 在椭圆x 2+my 2=1中,当0<m <1时,a 2=1m ,b 2=1,c 2=a 2-b 2=1m-1,∴e 2=c 2a 2=1m -11m=1-m ,又12<e <1,∴14<1-m <1,解得0<m <34,当m >1时,a 2=1,b 2=1m ,c 2=1-1m , e 2=c 2a 2=1-1m 1=1-1m ,又12<e <1,∴14<1-1m <1,解得m >43,综上可知实数m 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞。
5. 已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.1486422=-y x B. 1644822=+y x C. 1644822=-y xD.1486422=+y x 答案:D 设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r)+(3+r)=16,所以M 的轨迹是以C 1,C 2为焦点的椭圆,且2a=16,2c=8,故所求的轨迹方程为2x 64+2y 48=16. 椭圆12222=+b y a x (a >b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上的一点,ca x l 2:-=,且PQ ⊥l ,垂足为Q ,若四边形PQF 1F 2为平行四边形,则椭圆的离心率的取值范围是( )A. (12,1) B. (0,12)),1) 答案:A 设点P(x 1,y 1),由于PQ ⊥l ,故|PQ|=x 1+2a c,因为四边形PQF 1F 2为平行四边形,所以|PQ|=|F 1F 2|=2c ,即x 1+2a c =2c ,则有x 1=2c-2a c >-a ,所以2c 2+ac-a 2>0,即2e 2+e-1>0,解得e<-1或e>12,由于0<e<1,所以12<e<1,即椭圆离心率的取值范围是(12,1) 7. 已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15答案:B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7。
8. 设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是( ) A .4 B .3 C .2D .1 答案:D ∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0,∴PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n ,则m +n =4,m 2+n 2=12,2mn =4,∴S △F1PF 2=12mn =1 9. 已知椭圆C :12222=+by a x (a >b>0)的左右焦点分别为F 1,F 2,若椭圆C 上恰有8个不同的点P ,使得△F 1F 2P 为直角三角形,则椭圆C 的离心率的取值范围是( )A.(0,22) B.(0,22] C.(22,1) D.[22,1) 答案:C 由题意,问题等价于椭圆上存在四个点P 使得直线PF 1与直线PF 2垂直,所以|OP|=c>b , 即c 2>a 2-c 2,所以a<2c ,因为e=ca,0<e<1,所以22<e<1.10. 若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点,则→→⋅FP OP 的最大值为( ) A. 2B. 3C. 6D. 8答案:C 设椭圆上任意一点P(x 0,y 0),则有2200x y 43+=1,即=3-34,O(0,0),F(-1,0),则·=x 0(x 0+1)+=14+x 0+3=14(x 0+2)2+2.因为|x 0|≤2,所以当x 0=2时,·取得最大值为611. 在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率为( )A. 34B. 37C. 38D. 318答案:C 依题意知AB =BC =2c ,AC =2a -2c ,在△ABC 中,由余弦定理得(2a -2c )2=8c 2-2×4c 2×⎝⎛⎭⎫-718,故16e 2+18e -9=0,解得e =38. 12. 已知F 1,F 2分别是椭圆13422=+y x 的左、右焦点,A 是椭圆上一动点,圆C 与F 1A 的延长线、F 1F 2的延长线以及线段AF 2相切,若M (t ,0)为一个切点,则( ) A. t =2B. t >2C. t <2D. t 与2的大小关系不确定答案:A 如图,P ,Q 分别是圆C 与F 1A 的延长线、线段AF 2相切的切点,则|MF 2|=|F 2Q|=2a-(|F 1A|+|AQ|)=2a-|F 1P|=2a-|F 1M|,即|F 1M|+|MF 2|=2a. 所以t=a=2.13. 椭圆12222=+by a x (a >b >0)上一点A 关于原点的对称点为B ,F 为其右焦点,若AF ⊥BF ,设∠ABF =α,且α∈⎣⎡⎦⎤π12,π4,则该椭圆离心率的取值范围为( ) A. ⎣⎡⎦⎤22,63 B. ⎣⎡⎦⎤22,32 C. ⎣⎡⎭⎫63,1 D. ⎣⎡⎭⎫22,1 答案:A 由题知AF ⊥BF ,根据椭圆的对称性,AF ′⊥BF ′(其中F ′是椭圆的左焦点),因此四边形AFBF ′是矩形,于是|AB |=|FF ′|=2c ,|AF |=2c sin α,根据椭圆的定义,|AF |+|AF ′|=2a ,∴2c sin α+2c cos α=2a ,∴e =c a =1sin α+cos α=12sin ⎝⎛⎭⎫α+π4,而α∈⎣⎡⎦⎤π12,π4,∴α+π4∈⎣⎡⎦⎤π3,π2,∴sin ⎝⎛⎭⎫α+π4∈⎣⎡⎦⎤32,1,故e ∈⎣⎡⎦⎤22,6314. 直线x y 3-=与椭圆C :12222=+by a x (a >b>0)交于A ,B 两点,以线段AB 为直径的圆恰好经过椭圆的右焦点,则椭圆C 的离心率为( )A.3B.31-C.3-1D.4-23答案:C 设椭圆的左、右焦点分别为F 1,F 2,由题意可得 |OF 2|=|OA|=|OB|=|OF 1|=c ,由3得∠AOF 2=23π,∠AOF 1=3π。
所以|AF 23,|AF 1|=c. 由椭圆定义知,|AF 1|+|AF 2|=2a ,所以3,所以e=ca315. 已知椭圆的焦点在x 轴上,一个顶点为A (0,-1),其右焦点到直线x -y +22=0的距离为3,则椭圆的方程为答案: 1322=+y x 据题意可知椭圆方程是标准方程,故b =1.设右焦点为(c,0)(c >0),它到已知直线的距离为|c +22|2=3,解得c =2,所以a 2=b 2+c 2=3,故椭圆的方程为x 23+y 2=1.16. 设F 1,F 2分别是椭圆22x y 2516+=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为答案:4 由题意知|OM|=12|PF 2|=3,所以|PF 2|=6,所以|PF 1|=2a-|PF 2|=10-6=4 17. 分别过椭圆12222=+by a x (a >b>0)的左、右焦点F 1,F 2所作的两条互相垂直的直线l 1,l 2的交点在此椭圆的内部,则此椭圆的离心率的取值范围是答案:2由已知得交点P 在以F 1F 2为直径的圆x 2+y 2=c 2上。
又点P 在椭圆内部,所以有c 2<b 2,又b 2=a 2-c 2,所以有c 2<a 2-c 2,即2c 2<a 2,亦即:22c 1,a 2<所以c 20a 2<<18. 椭圆1422=+y x 的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是答案:⎝⎛⎭⎫-263,263 设椭圆上一点P 的坐标为(x ,y ),则F 1P →=(x +3,y ),F 2P →=(x -3,y )。