数据结构实验
数据结构实验报告实验总结
数据结构实验报告实验总结本次数据结构实验主要涉及线性表、栈和队列的基本操作以及链表的应用。
通过实验,我对这些数据结构的特点、操作和应用有了更深入的了解。
下面对每一部分实验进行总结。
实验一:线性表的基本操作线性表是一种常见的数据结构,本实验要求实现线性表的基本操作,包括插入、删除、查找、遍历等。
在实验过程中,我对线性表的结构和实现方式有了更清晰的认识,掌握了用数组和链表两种方式实现线性表的方法。
实验二:栈的应用栈是一种后进先出(LIFO)的数据结构,本实验要求利用栈实现简单的括号匹配和后缀表达式计算。
通过实验,我了解到栈可以方便地实现对于括号的匹配和后缀表达式的计算,有效地解决了对应的问题。
实验三:队列的应用队列是一种先进先出(FIFO)的数据结构,本实验要求利用队列实现银行排队和迷宫求解。
通过实验,我对队列的应用有了更加深入的了解,了解到队列可以解决需要按顺序处理的问题,如排队和迷宫求解等。
实验四:链表的应用链表是一种常用的数据结构,本实验要求利用链表实现学生信息管理系统。
通过实验,我对链表的应用有了更深入的了解,了解到链表可以方便地实现对于数据的插入、删除和修改等操作,并且可以动态地调整链表的长度,适应不同的需求。
通过本次实验,我掌握了线性表、栈、队列和链表的基本操作,并了解了它们的特点和应用方式。
同时,通过实际编程的过程,我对于数据结构的实现方式和效果有了更直观的认识,也锻炼了自己的编程能力和解决问题的能力。
在实验过程中,我遇到了一些问题,如程序逻辑错误和内存泄漏等,但通过调试和修改,最终成功解决了这些问题,对自己的能力也有了更多的信心。
通过本次实验,我深刻体会到了理论与实践的结合的重要性,也对于数据结构这门课程有了更加深入的理解。
总之,本次数据结构实验给予了我很多有益的启发和收获,对于数据结构的概念、特点和应用有了更深入的理解。
在以后的学习中,我会继续加强对数据结构的学习和研究,不断提高自己的编程能力和解决问题的能力。
数据结构实验报告-答案.doc
数据结构实验报告-答案数据结构(C语言版)实验报告专业班级学号姓名实验1实验题目:单链表的插入和删除实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。
实验要求:建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。
实验主要步骤:1、分析、理解给出的示例程序。
2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测试程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。
3、修改程序:(1)增加插入结点的功能。
(2)将建立链表的方法改为头插入法。
程序代码:#include“stdio.h“#include“string.h“#include“stdlib.h“#include“ctype. h“typedefstructnode//定义结点{chardata[10];//结点的数据域为字符串structnode*next;//结点的指针域}ListNode;typedefListNode*LinkList;//自定义LinkList单链表类型LinkListCreatListR1();//函数,用尾插入法建立带头结点的单链表LinkListCreatList(void);//函数,用头插入法建立带头结点的单链表ListNode*LocateNode();//函数,按值查找结点voidDeleteList();//函数,删除指定值的结点voidprintlist();//函数,打印链表中的所有值voidDeleteAll();//函数,删除所有结点,释放内存ListNode*AddNode();//修改程序:增加节点。
用头插法,返回头指针//==========主函数==============voidmain(){charch[10],num[5];LinkListhead;head=C reatList();//用头插入法建立单链表,返回头指针printlist(head);//遍历链表输出其值printf(“Deletenode(y/n):“);//输入“y“或“n“去选择是否删除结点scanf(“%s“,num);if(strcmp(num,“y“)==0||strcmp(num,“Y“)==0){printf(“PleaseinputDelete_data:“);scanf(“%s“,ch);//输入要删除的字符串DeleteList(head,ch);printlist(head);}printf(“Addnode?(y/n):“);//输入“y“或“n“去选择是否增加结点scanf(“%s“,num);if(strcmp(num,“y“)==0||strcmp(num,“Y“)==0){head=A ddNode(head);}printlist(head);DeleteAll(head);//删除所有结点,释放内存}//==========用尾插入法建立带头结点的单链表===========LinkListCreatListR1(void){charch[10];LinkListhead=(Li nkList)malloc(sizeof(ListNode));//生成头结点ListNode*s,*r,*pp;r=head;r->next=NULL;printf(“Input#toend“);//输入“#“代表输入结束printf(“\nPleaseinputN ode_data:“);scanf(“%s“,ch);//输入各结点的字符串while(strcmp(ch,“#“)!=0){pp=LocateNode(head,ch);//按值查找结点,返回结点指针if(pp==NULL){//没有重复的字符串,插入到链表中s=(ListNode*)malloc(sizeof(ListNode));strcpy(s->data,ch);r->next=s;r=s; r->next=NULL;}printf(“Input#toend“);printf(“PleaseinputNode_data:“);scanf(“%s“,ch);}returnhead;//返回头指针}//==========用头插入法建立带头结点的单链表===========LinkListCreatList(void){charch[100];LinkListhead,p;head =(LinkList)malloc(sizeof(ListNode));head->next=NULL;while(1){printf(“Input#toend“);printf(“PleaseinputNode_data:“);scanf(“%s“,ch);if(strcmp (ch,“#“)){if(LocateNode(head,ch)==NULL){strcpy(head->data,ch);p=(Li nkList)malloc(sizeof(ListNode));p->next=head;head=p;}}elsebreak;}retu rnhead;}//==========按值查找结点,找到则返回该结点的位置,否则返回NULL==========ListNode*LocateNode(LinkListhead,char*key){List Node*p=head->next;//从开始结点比较while(p!=NULL//扫描下一个结点returnp;//若p=NULL则查找失败,否则p指向找到的值为key的结点}//==========修改程序:增加节点=======ListNode*AddNode(LinkListhead){charch[10];ListNode*s,*pp ;printf(“\nPleaseinputaNewNode_data:“);scanf(“%s“,ch);//输入各结点的字符串pp=LocateNode(head,ch);//按值查找结点,返回结点指针printf(“ok2\n“);if(pp==NULL){//没有重复的字符串,插入到链表中s=(ListNode*)malloc(sizeof(ListNode));strcpy(s->data,ch);printf(“ok3\n“);s->next=head->next;head->next=s;}returnhead;}//==========删除带头结点的单链表中的指定结点=======voidDeleteList(LinkListhead,char*key){ListNode*p,*r,*q=hea d;p=LocateNode(head,key);//按key值查找结点的if(p==NULL){//若没有找到结点,退出printf(“positionerror”);exit(0);}while(q->next!=p)//p 为要删除的结点,q为p的前结点q=q->next;r=q->next;q->next=r->next;free(r);//释放结点}//===========打印链表=======voidprintlist(LinkListhead){ListNode*p=head->next;//从开始结点打印while(p){printf(“%s,“,p->data);p=p->next;}printf(“\n“);}//==========删除所有结点,释放空间===========voidDeleteAll(LinkListhead){ListNode*p=head,*r;while( p->next){r=p->next;free(p);p=r;}free(p);}实验结果:Input#toendPleaseinputNode_data:batInput#toendPleaseinputNode_data: catInput#toendPleaseinputNode_data:eatInput#toendPleaseinputNode_da ta:fatInput#toendPleaseinputNode_data:hatInput#toendPleaseinputNode_ data:jatInput#toendPleaseinputNode_data:latInput#toendPleaseinputNode _data:matInput#toendPleaseinputNode_data:#mat,lat,jat,hat,fat,eat,cat,bat ,Deletenode(y/n):yPleaseinputDelete_data:hatmat,lat,jat,fat,eat,cat,bat,Ins ertnode(y/n):yPleaseinputInsert_data:putposition:5mat,lat,jat,fat,eat,put,c at,bat,请按任意键继续...示意图:latjathatfateatcatbatmatNULLheadlatjathatfateatcatbatmatheadlatjatfateat putcatbatmatheadNULLNULL心得体会:本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。
数据结构实验
数据结构实验数据结构实验是计算机科学与技术专业的重要课程之一。
通过对这门课程的学习和实验,可以让学生深入了解数据结构在计算机科学中的重要性和应用。
一、实验的目的与意义数据结构实验的主要目的是帮助学生更深入地理解数据结构在计算机科学中的应用。
在实验中,学生可以通过编写代码和执行各种数据结构算法来更好地理解数据结构的实现原理。
通过实验,学生可以更清楚地了解算法的效率、时间复杂度和空间复杂度等概念。
此外,数据结构实验也有助于提高学生的编程能力。
在实验中,学生需要编写具有规范的代码,确保算法的正确性,同时还需要处理大量的数据,这可以提高学生的编程能力和耐心。
二、实验内容简介数据结构实验通常包括以下几个方面的内容:1.线性结构:顺序存储和链式存储线性表、栈、队列等。
2.非线性结构:数组、链表、二叉树等。
3.查找算法:顺序查找、二分查找、哈希查找等。
4.排序算法:插入排序、选择排序、归并排序、堆排序等。
5.图论算法:图的遍历、最短路径、最小生成树等。
6.字符串算法:KMP算法、BM算法等。
三、实验中的具体操作实验中的具体操作是根据具体的算法和数据结构来进行的。
以下是一个简单的例子:线性表的实验假设学生已经学习了顺序存储结构和链式存储结构的操作,以下是在实验中需要进行的具体操作:1.顺序存储结构创建一个空的顺序表插入一个元素到指定位置删除一个元素查找指定元素的位置输出顺序表的所有元素2.链式存储结构创建一个空的链表插入一个元素到指定位置删除一个元素查找指定元素的位置输出链表的所有元素在实验中,学生需要将这些操作封装成具体的函数,并且通过调用这些函数来实现对线性表的操作。
同时,学生还需要进行大量的测试和调试,以保证代码的正确性和实验的效果。
四、实验中的注意事项在进行数据结构实验时,学生需要注意以下几个方面:1.理论和实验相结合:不仅要理解理论知识,还要进行实验操作,才能更好地掌握数据结构。
2.代码规范:要写出规范、可读性强的代码,让他人容易理解。
数据结构形考实践实验
数据结构形考实践实验一、背景介绍数据结构是计算机科学中重要的基础概念之一,是研究数据组织、存储、管理和操作的方法和原则。
在计算机科学领域,对于数据结构的掌握和实践是非常重要的,因为它直接影响着程序的效率和性能。
为了更好地理解和应用数据结构,形考实践实验是必不可少的一环。
二、实验目的数据结构形考实践实验的目的是通过实际应用的方式,巩固和加深对数据结构的理解,并提高对数据结构的实践能力。
本实验旨在让学生通过解决实际问题的方式,熟悉和掌握常见的数据结构及其应用场景。
三、实验内容3.1实验环境在进行数据结构形考实践实验之前,我们需要准备好实验环境,包括以下方面的内容:-操作系统:建议使用W in do ws/L in ux/M a cO S等常见操作系统;-集成开发环境(ID E):可以选择V is ua l St ud io Co de、E cl i ps e等常用ID E;-编程语言:可以选择C/C++、J av a、Py t ho n等常用编程语言。
3.2实验步骤在进行数据结构形考实践实验时,我们可以按照以下步骤进行:1.阅读实验要求和相关文献,了解本次形考实验的目标和要求。
2.分析问题需求,确定合适的数据结构和算法。
3.设计和实现相应的数据结构和算法,注意代码的可读性和可维护性。
4.编写测试用例,对实现的数据结构和算法进行测试和验证。
5.解决实际问题,并对实现的数据结构和算法的效率进行评估和分析。
6.总结实验过程和结果,撰写实验报告。
3.3实验要求在进行数据结构形考实践实验时,需要满足以下要求:1.合理选择和使用数据结构和算法,解决实际问题。
2.程序必须能够正确运行,并具有较高的效率和性能。
3.实验报告要求详细描述实验过程、实验结果和分析。
四、实验案例为了更好地理解数据结构的应用,下面我们给出一个实验案例作为参考。
4.1问题描述假设我们需要设计一个学生信息管理系统,其中包括学生姓名、年龄、性别和成绩等信息。
数据结构实训实验报告
一、实验背景数据结构是计算机科学中一个重要的基础学科,它研究如何有效地组织和存储数据,并实现对数据的检索、插入、删除等操作。
为了更好地理解数据结构的概念和原理,我们进行了一次数据结构实训实验,通过实际操作来加深对数据结构的认识。
二、实验目的1. 掌握常见数据结构(如线性表、栈、队列、树、图等)的定义、特点及操作方法。
2. 熟练运用数据结构解决实际问题,提高算法设计能力。
3. 培养团队合作精神,提高实验报告撰写能力。
三、实验内容本次实验主要包括以下内容:1. 线性表(1)实现线性表的顺序存储和链式存储。
(2)实现线性表的插入、删除、查找等操作。
2. 栈与队列(1)实现栈的顺序存储和链式存储。
(2)实现栈的入栈、出栈、判断栈空等操作。
(3)实现队列的顺序存储和链式存储。
(4)实现队列的入队、出队、判断队空等操作。
3. 树与图(1)实现二叉树的顺序存储和链式存储。
(2)实现二叉树的遍历、查找、插入、删除等操作。
(3)实现图的邻接矩阵和邻接表存储。
(4)实现图的深度优先遍历和广度优先遍历。
4. 算法设计与应用(1)实现冒泡排序、选择排序、插入排序等基本排序算法。
(2)实现二分查找算法。
(3)设计并实现一个简单的学生成绩管理系统。
四、实验步骤1. 熟悉实验要求,明确实验目的和内容。
2. 编写代码实现实验内容,对每个数据结构进行测试。
3. 对实验结果进行分析,总结实验过程中的问题和经验。
4. 撰写实验报告,包括实验目的、内容、步骤、结果分析等。
五、实验结果与分析1. 线性表(1)顺序存储的线性表实现简单,但插入和删除操作效率较低。
(2)链式存储的线性表插入和删除操作效率较高,但存储空间占用较大。
2. 栈与队列(1)栈和队列的顺序存储和链式存储实现简单,但顺序存储空间利用率较低。
(2)栈和队列的入栈、出队、判断空等操作实现简单,但需要考虑数据结构的边界条件。
3. 树与图(1)二叉树和图的存储结构实现复杂,但能够有效地表示和处理数据。
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。
具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。
2、理解栈和队列的特性,并能够实现其基本操作。
3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。
4、学会使用图的数据结构,并实现图的遍历和相关算法。
二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。
三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。
实现顺序表的初始化、插入、删除和查找操作。
2、链表的实现定义链表的节点结构,包含数据域和指针域。
实现链表的创建、插入、删除和查找操作。
(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。
实现栈的入栈、出栈和栈顶元素获取操作。
2、队列的实现采用循环队列的方式实现队列的数据结构。
完成队列的入队、出队和队头队尾元素获取操作。
(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。
2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。
3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。
(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。
2、图的遍历实现深度优先遍历和广度优先遍历算法。
四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。
删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。
2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。
(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。
入栈和出栈操作的时间复杂度均为 O(1)。
2、队列队列的特点是先进先出,常用于排队、任务调度等场景。
数据的结构实验的1
数据的结构实验的1:数据结构实验的1第一点:数据结构实验的重要性和目的数据结构实验是计算机科学和软件工程领域中非常重要的一部分。
它不仅是理论知识的具体实践,而且也是理解和掌握数据结构的关键步骤。
数据结构是计算机科学中的基础,它研究如何有效地存储、组织和处理数据。
通过实验,学生可以深入了解数据结构的工作原理和性能,培养解决问题的能力,提高编程技能,为将来的职业生涯打下坚实的基础。
数据结构实验的目的在于通过实际的操作和观察,让学生更好地理解和掌握各种数据结构的特点和应用场景。
通过实验,学生可以学习如何选择合适的数据结构来解决实际问题,如何设计和实现数据结构的相关算法,以及如何分析数据结构的性能和优化算法。
这些能力和技能对于计算机科学和软件工程领域的人才来说至关重要。
第二点:数据结构实验的基本内容和步骤数据结构实验通常包括多个基本内容和步骤,旨在帮助学生全面掌握数据结构的知识和技能。
以下是常见的数据结构实验内容和步骤:1.实验准备:在实验之前,学生需要了解实验要求和目的,阅读相关的理论知识,熟悉实验中所使用的编程语言和工具。
2.实验设计:学生需要根据实验要求,设计合适的数据结构和算法,选择合适的数据输入和测试用例,以确保实验结果的准确性和可靠性。
3.实验实现:学生需要根据设计方案,编写相应的代码来实现数据结构和算法。
在这个过程中,学生需要注重代码的可读性和可维护性,遵循编程规范和习惯。
4.实验测试:学生需要对实现的数据结构和算法进行测试,验证其正确性和性能。
测试可以包括手工测试和自动化测试,以保证实验结果的准确性和可靠性。
5.实验报告:学生需要根据实验结果和观察,撰写实验报告,总结实验中的发现和收获,反思实验中的问题和不足,提出改进的建议和思考。
通过这些基本内容和步骤,学生可以全面地掌握数据结构的知识和技能,培养解决问题的能力和创新思维,为将来的职业生涯打下坚实的基础。
数据结构实验是计算机科学和软件工程领域中不可或缺的一部分,学生应该重视并积极参与其中。
数据结构课程实验报告
数据结构课程实验报告一、实验目的本次数据结构课程实验的主要目的是通过实践掌握常见数据结构的基本操作,包括线性结构、树形结构和图形结构。
同时,也要求学生能够熟练运用C++语言编写程序,并且能够正确地使用各种算法和数据结构解决具体问题。
二、实验内容本次实验涉及到以下几个方面:1. 线性表:设计一个线性表类,并且实现线性表中元素的插入、删除、查找等基本操作。
2. 栈和队列:设计一个栈类和队列类,并且分别利用这两种数据结构解决具体问题。
3. 二叉树:设计一个二叉树类,并且实现二叉树的遍历(前序遍历、中序遍历和后序遍历)。
4. 图论:设计一个图类,并且利用图论算法解决具体问题(如最短路径问题)。
三、实验过程1. 线性表首先,我们需要设计一个线性表类。
在这个类中,我们需要定义一些成员变量(如线性表大小、元素类型等),并且定义一些成员函数(如插入元素函数、删除元素函数等)。
在编写代码时,我们需要注意一些细节问题,如边界条件、异常处理等。
2. 栈和队列接下来,我们需要设计一个栈类和队列类。
在这两个类中,我们需要定义一些成员变量(如栈顶指针、队头指针等),并且定义一些成员函数(如入栈函数、出栈函数、入队函数、出队函数等)。
在编写代码时,我们需要注意一些细节问题,如空间不足的情况、空栈或空队列的情况等。
3. 二叉树然后,我们需要设计一个二叉树类,并且实现二叉树的遍历。
在这个类中,我们需要定义一个节点结构体,并且定义一些成员变量(如根节点指针、节点数量等),并且定义一些成员函数(如插入节点函数、删除节点函数、遍历函数等)。
在编写代码时,我们需要注意一些细节问题,如递归调用的情况、空节点的情况等。
4. 图论最后,我们需要设计一个图类,并且利用图论算法解决具体问题。
在这个类中,我们需要定义一个邻接矩阵或邻接表来表示图形结构,并且定义一些成员变量(如顶点数量、边的数量等),并且定义一些成员函数(如添加边函数、删除边函数、最短路径算法等)。
数据结构实验
数据结构实验
数据结构实验是计算机科学专业的必修课程之一,旨在通过实践来让学生掌握数据结
构的基本概念、操作及应用等知识,提高程序设计能力和算法实现能力。
以下是数据结构
实验的相关内容。
一、实验目的
1. 理解基本数据结构及其操作的实现方法。
2. 掌握数据结构中各种算法的实现方式,如顺序查找、二分查找、快速排序等。
3. 学会通过编程实现各种数据结构和算法,并能解决各种实际问题。
二、实验内容
1. 数组和链表的操作实现。
2. 栈和队列的实现。
3. 二叉树和图的操作实现。
4. 常见查找算法的实现,如顺序查找、二分查找等。
5. 常见排序算法的实现,如冒泡排序、选择排序、插入排序、快速排序等。
6. 哈希表和堆的实现。
三、实验步骤
1. 数组和链表的操作实现
在这个实验中,我们将学习如何使用数组和链表来存储数据,并实现一些基本的操作,如查找、添加、删除等。
4. 常见查找算法的实现
顺序查找、二分查找等是常见的算法,我们将通过编程来实现这些算法,并掌握其原
理和使用方法。
5. 常见排序算法的实现
冒泡排序、选择排序、插入排序、快速排序等是常见的排序算法,在本实验中,我们
将通过编程来实现这些算法,并学习如何调用这些算法来解决实际问题。
6. 哈希表和堆的实现
哈希表和堆是常用的高效数据结构,在本实验中,我们将学习如何使用哈希表和堆来解决实际问题,并学习哈希算法及堆操作的实现方法。
四、实验结果。
国开数据结构(本)数据结构课程实验报告
国开数据结构(本)数据结构课程实验报告1. 实验目的本次实验的主要目的是通过实际操作,掌握数据结构的基本概念、操作和应用。
通过对实验内容的了解和实际操作,达到对数据结构相关知识的深入理解和掌握。
2. 实验工具与环境本次实验主要使用C++语言进行编程,需要搭建相应的开发环境。
实验所需的工具和环境包括:C++编译器、集成开发环境(IDE)等。
3. 实验内容本次实验主要包括以下内容:3.1. 实现顺序存储结构的线性表3.2. 实现链式存储结构的线性表3.3. 实现栈和队列的顺序存储结构和链式存储结构3.4. 实现二叉树的顺序存储结构和链式存储结构3.5. 实现图的邻接矩阵和邻接表表示4. 实验步骤实验进行的具体步骤如下:4.1. 实现顺序存储结构的线性表- 定义数据结构- 实现插入、删除、查找等操作4.2. 实现链式存储结构的线性表- 定义数据结构- 实现插入、删除、查找等操作4.3. 实现栈和队列的顺序存储结构和链式存储结构- 定义数据结构- 实现入栈、出栈、入队、出队操作4.4. 实现二叉树的顺序存储结构和链式存储结构- 定义数据结构- 实现插入、删除、查找等操作4.5. 实现图的邻接矩阵和邻接表表示- 定义数据结构- 实现插入、删除、查找等操作5. 实验结果与分析通过对以上实验内容的实现和操作,得到了以下实验结果与分析: 5.1. 顺序存储结构的线性表- 实现了线性表的插入、删除、查找等操作- 通过实验数据进行性能分析,得出了相应的性能指标5.2. 链式存储结构的线性表- 实现了线性表的插入、删除、查找等操作- 通过实验数据进行性能分析,得出了相应的性能指标5.3. 栈和队列的顺序存储结构和链式存储结构- 实现了栈和队列的入栈、出栈、入队、出队操作- 通过实验数据进行性能分析,得出了相应的性能指标5.4. 二叉树的顺序存储结构和链式存储结构- 实现了二叉树的插入、删除、查找等操作- 通过实验数据进行性能分析,得出了相应的性能指标5.5. 图的邻接矩阵和邻接表表示- 实现了图的插入、删除、查找等操作- 通过实验数据进行性能分析,得出了相应的性能指标6. 总结与展望通过本次数据结构课程的实验,我们深入了解并掌握了数据结构的基本概念、操作和应用。
数据结构课程实验报告
数据结构课程实验报告目录1. 实验简介1.1 实验背景1.2 实验目的1.3 实验内容2. 实验方法2.1 数据结构选择2.2 算法设计2.3 程序实现3. 实验结果分析3.1 数据结构性能分析3.2 算法效率比较3.3 实验结论4. 实验总结1. 实验简介1.1 实验背景本实验是数据结构课程的一次实践性操作,旨在帮助学生加深对数据结构的理解和运用。
1.2 实验目的通过本实验,学生将学会如何选择合适的数据结构来解决特定问题,了解数据结构与算法设计的关系并能将其应用到实际问题中。
1.3 实验内容本实验将涉及对一些经典数据结构的使用,如链表、栈、队列等,并结合具体问题进行算法设计和实现。
2. 实验方法2.1 数据结构选择在实验过程中,需要根据具体问题选择合适的数据结构,比如针对需要频繁插入删除操作的情况可选择链表。
2.2 算法设计针对每个问题,需要设计相应的算法来实现功能,要考虑算法的效率和实际应用情况。
2.3 程序实现根据算法设计,编写相应的程序来实现功能,并进行调试测试确保程序能够正确运行。
3. 实验结果分析3.1 数据结构性能分析在实验过程中,可以通过对不同数据结构的使用进行性能分析,如时间复杂度和空间复杂度等,以便选择最优的数据结构。
3.2 算法效率比较实验完成后,可以对不同算法在同一数据结构下的效率进行比较分析,找出最优算法。
3.3 实验结论根据实验结果分析,得出结论并总结经验教训,为后续的数据结构和算法设计提供参考。
4. 实验总结通过本次实验,学生将对数据结构与算法设计有更深入的了解,并能将所学知识应用到实际问题中,提高自己的实践能力和解决问题的能力。
国开数据结构(本)数据结构课程实验报告(一)
国开数据结构(本)数据结构课程实验报告一、实验目的本实验旨在帮助学生掌握数据结构的基本概念,熟练掌握数据结构的基本操作,进一步提高学生的编程能力和数据处理能力。
二、实验内容1. 数据结构的基本概念在实验中,我们首先介绍了数据结构的基本概念,包括数据的逻辑结构和物理结构,以及数据结构的分类和应用场景。
2. 数据结构的基本操作接着,我们介绍了数据结构的基本操作,包括插入、删除、查找等操作,通过具体的案例和代码演示,让学生理解和掌握这些基本操作的实现原理和方法。
3. 编程实践在实验的第三部分,我们组织学生进行数据结构的编程实践,要求学生通过实际编写代码来实现各种数据结构的基本操作,加深对数据结构的理解和掌握。
三、实验过程1. 数据结构的基本概念在本部分,我们通过课堂讲解和案例分析的方式,向学生介绍了数据结构的基本概念,包括线性结构、树形结构、图形结构等,让学生对数据结构有一个整体的认识。
2. 数据结构的基本操作在这一部分,我们通过具体的案例和代码演示,向学生介绍了数据结构的基本操作,包括插入、删除、查找等操作的实现原理和方法,让学生掌握这些基本操作的具体实现。
3. 编程实践最后,我们组织学生进行数据结构的编程实践,要求他们通过实际编写代码来实现各种数据结构的基本操作,加深对数据结构的理解和掌握,同时也提高了他们的编程能力和数据处理能力。
四、实验结果与分析通过本次实验,学生们对数据结构有了更深入的理解和掌握,他们能够熟练地使用各种数据结构的基本操作,编写出高效、稳定的代码,提高了他们的编程能力和数据处理能力。
五、实验总结本实验对于学生掌握数据结构的基本概念和操作起到了很好的辅助作用,通过实际的编程实践,学生们不仅加深了对数据结构的理解和掌握,同时也提高了他们的编程能力和数据处理能力。
这对于他们今后的学习和工作都具有重要的意义。
六、参考文献1. 《数据结构与算法分析》2. 《数据结构(C语言版)》3. 《数据结构与算法》以上是我对“国开数据结构(本)数据结构课程实验报告”的详细报告,希望能够满足您的要求。
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中的重要基础课程,通过本次实验,旨在加深对常见数据结构(如数组、链表、栈、队列、树、图等)的理解和运用,提高编程能力和问题解决能力,培养算法设计和分析的思维。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容1、数组与链表的实现与操作分别实现整数数组和整数链表的数据结构。
实现数组和链表的插入、删除、查找操作,并比较它们在不同操作下的时间复杂度。
2、栈与队列的应用用数组实现栈结构,用链表实现队列结构。
模拟栈的入栈、出栈操作和队列的入队、出队操作,解决实际问题,如表达式求值、任务调度等。
3、二叉树的遍历构建二叉树的数据结构。
实现先序遍历、中序遍历和后序遍历三种遍历算法,并输出遍历结果。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法,并分析它们的时间复杂度。
四、实验步骤1、数组与链表数组的实现:定义一个固定大小的整数数组,通过索引访问和操作数组元素。
链表的实现:定义链表节点结构体,包含数据和指向下一个节点的指针。
插入操作:对于数组,若插入位置在末尾,直接赋值;若不在末尾,需移动后续元素。
对于链表,找到插入位置的前一个节点,修改指针。
删除操作:数组需移动后续元素,链表修改指针即可。
查找操作:数组通过索引直接访问,链表需逐个节点遍历。
2、栈与队列栈的实现:用数组模拟栈,设置栈顶指针。
队列的实现:用链表模拟队列,设置队头和队尾指针。
入栈和出栈操作:入栈时,若栈未满,将元素放入栈顶,栈顶指针加 1。
出栈时,若栈不为空,取出栈顶元素,栈顶指针减 1。
入队和出队操作:入队时,在队尾添加元素。
出队时,取出队头元素,并更新队头指针。
3、二叉树构建二叉树:采用递归方式创建二叉树节点。
先序遍历:先访问根节点,再递归遍历左子树,最后递归遍历右子树。
中序遍历:先递归遍历左子树,再访问根节点,最后递归遍历右子树。
(完整版)数据结构实验报告全集
数据结构实验报告全集实验一线性表基本操作和简单程序1.实验目的(1)掌握使用Visual C++ 6.0上机调试程序的基本方法;(2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。
2.实验要求(1)认真阅读和掌握和本实验相关的教材内容。
(2)认真阅读和掌握本章相关内容的程序。
(3)上机运行程序。
(4)保存和打印出程序的运行结果,并结合程序进行分析。
(5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果实验代码:1)头文件模块#include iostream.h>//头文件#include<malloc.h>//库头文件-----动态分配内存空间typedef int elemtype;//定义数据域的类型typedef struct linknode//定义结点类型{elemtype data;//定义数据域struct linknode *next;//定义结点指针}nodetype;2)创建单链表nodetype *create()//建立单链表,由用户输入各结点data域之值,//以0表示输入结束{elemtype d;//定义数据元素dnodetype *h=NULL,*s,*t;//定义结点指针int i=1;cout<<"建立一个单链表"<<endl;while(1){cout <<" 输入第"<< i <<"结点data域值:";cin >> d;if(d==0) break;//以0表示输入结束if(i==1)//建立第一个结点{h=(nodetype*)malloc(sizeof(nodetype));//表示指针hh->data=d;h->next=NULL;t=h;//h是头指针}else//建立其余结点{s=(nodetype*) malloc(sizeof(nodetype));s->data=d;s->next=NULL;t->next=s;t=s;//t始终指向生成的单链表的最后一个节点}i++;}return h;}3)输出单链表中的元素void disp(nodetype*h)//输出由h指向的单链表的所有data域之值{nodetype *p=h;cout<<"输出一个单链表:"<<endl<<" ";if(p==NULL)cout<<"空表";while(p!=NULL){cout<<p->data<<" ";p=p->next;}cout<<endl;}4)计算单链表的长度int len(nodetype *h)//返回单链表的长度{int i=0;nodetype *p=h;while(p!=NULL){p=p->next;i++;}return i;}5)寻找第i个节点nodetype *find(nodetype *h,int i)//返回第i个节点的指针{nodetype *p=h;int j=1;if(i>len(h)||i<=0)return NULL;//i上溢或下溢celse{while (p!=NULL&&j<1)//查找第i个节点,并由p指向该节点{j++;p=p->next;}return p;} }6)单链表的插入操作nodetype *ins(nodetype *h,int i,elemtype x)//在单链表head中第i个节点//(i>=0)之后插入一个data域为x的节点{nodetype *p,*s;s=(nodetype*)malloc(sizeof(nodetype));//创建节点ss->data=x;s->next=NULL;if(i==0)//i=0:s作为该单链表的第一个节点{s->next=h;h=s;}else{p=find(h,i);//查找第i个节点,并由p指向该节点if(p!=NULL){s->next=p->next;p->next=s;}return h;}}7)单链表的删除操作nodetype *del(nodetype *h,int i)//删除第i个节点{nodetype *p=h, *s;int j=1;if(i==1)//删除第1个节点{h=h->next;free(p);}else{p=find(h,i-1);//查找第i-1个节点,并由p指向该节点 if(p!=NULL&&p->next!=NULL){s=p->next;//s指向要删除的节点p->next=s->next;free(s);}else cout<<"输入i的值不正确"<<endl;}return h;}8)释放节点空间void dispose(nodetype *h)//释放单链表的所有节点占用的空间{nodetype *pa=h,*pb;if(pa!=NULL){pb=pa->next;if(pb==NULL)//只有一个节点的情况free(pa);else{while (pb!=NULL)//有两个及以上节点的情况{free(pa);pa=pb;pb=pb->next;}free(pa);}}}9)主程序模块:#include"slink.h"//包含头文件slinkvoid main(){nodetype *head;//定义节点指针变量head=create();//创建一个单链表disp(head);//输出单链表cout<<"单链表长度:"<<len(head)<<endl;ins(head, 2,0);//在第二个节点之后插入以0为元素的节点 disp(head);//输出新链表del(head,2);//删除第二个节点disp(head);//输出新链表}5.实验结果建立一个单链表:输入第1结点data域值:1输入第2结点data域值:2输入第3结点data域值:3输入第4结点data域值:4输入第5结点data域值:5输入第6结点data域值:6输入第7结点data域值:7输入第8结点data域值:8输入第9结点data域值:9输入第10结点data域值0:输出一个单链表:1 2 3 4 5 6 7 8 9单链表长度:9输出一个单链表:1 02345678 9输出一个单链表:1 2 3 4 5 6 7 8实验二顺序栈的实现1.实验目的掌握顺序栈的基本操作:初始化栈、判栈空否、入栈、出栈、取栈顶数据元素等运算以及程序实现方法。
数据结构实验十
数据结构实验十数据结构实验十:树的遍历算法实现及性能比较一、实验背景和目的树是一种重要的数据结构,广泛应用于计算机科学和信息技术领域。
树的遍历是指按照一定规则依次访问树中的每个节点,以达到对树中所有节点的访问目的。
本实验旨在探究树的遍历算法的实现方法,并通过性能比较,分析不同算法的优劣。
二、实验内容本次实验主要包括以下内容:1. 实现二叉树的先序遍历算法。
2. 实现二叉树的中序遍历算法。
3. 实现二叉树的后序遍历算法。
4. 比较三种遍历算法的性能。
三、实验步骤和方法1. 实现二叉树的先序遍历算法:先序遍历算法的实现方法可以使用递归或非递归方式。
递归方式较为简单,可以按照以下步骤进行实现:- 如果树为空,则返回。
- 先访问根节点。
- 递归地先序遍历左子树。
- 递归地先序遍历右子树。
2. 实现二叉树的中序遍历算法:中序遍历算法的实现方法也可以使用递归或非递归方式。
递归方式较为简单,可以按照以下步骤进行实现:- 如果树为空,则返回。
- 递归地中序遍历左子树。
- 访问根节点。
- 递归地中序遍历右子树。
3. 实现二叉树的后序遍历算法:后序遍历算法的实现方法同样可以使用递归或非递归方式。
递归方式较为简单,可以按照以下步骤进行实现:- 如果树为空,则返回。
- 递归地后序遍历左子树。
- 递归地后序遍历右子树。
- 访问根节点。
4. 比较三种遍历算法的性能:为了比较三种遍历算法的性能,可以使用相同的测试数据集进行测试,并记录下每种算法的运行时间。
可以选择不同规模的树进行测试,以观察算法的时间复杂度和空间复杂度。
四、实验结果和分析经过实验,记录下了三种遍历算法的运行时间,并进行了性能比较。
以下是实验结果的分析:1. 先序遍历算法的运行时间较短,因为先序遍历是从根节点开始访问,直接按照顺序遍历即可。
2. 中序遍历算法的运行时间较长,因为需要先遍历左子树,再访问根节点,最后遍历右子树。
3. 后序遍历算法的运行时间最长,因为需要先遍历左子树,再遍历右子树,最后访问根节点。
数据结构实验报告1线性表的顺序存储结构
数据结构实验报告1线性表的顺序存储结构一、实验目的本次实验的主要目的是深入理解线性表的顺序存储结构,并通过编程实现其基本操作,包括创建线性表、插入元素、删除元素、查找元素以及输出线性表等。
通过实际操作,掌握顺序存储结构的特点和优势,同时也了解其在不同情况下的性能表现。
二、实验环境本次实验使用的编程语言为C++,编译环境为Visual Studio 2019。
三、实验原理1、线性表的定义线性表是由 n(n≥0)个数据元素组成的有限序列。
在顺序存储结构中,线性表的元素存储在一块连续的存储空间中,通过数组来实现。
2、顺序存储结构的特点存储密度高,无需额外的指针来表示元素之间的关系。
可以随机访问表中的任意元素,时间复杂度为 O(1)。
插入和删除操作需要移动大量元素,平均时间复杂度为 O(n)。
四、实验内容及步骤1、定义线性表的数据结构```cppdefine MAX_SIZE 100 //定义线性表的最大长度typedef struct {int dataMAX_SIZE; //存储线性表元素的数组int length; //线性表的当前长度} SeqList;```2、初始化线性表```cppvoid InitList(SeqList L) {L>length = 0; //初始时线性表长度为 0}```3、判断线性表是否为空```cppbool ListEmpty(SeqList L) {return (Llength == 0);}```4、求线性表的长度```cppint ListLength(SeqList L) {return Llength;}```5、按位查找操作```cppint GetElem(SeqList L, int i) {if (i < 1 || i > Llength) {printf("查找位置不合法!\n");return -1;}return Ldatai 1;}```6、按值查找操作```cppint LocateElem(SeqList L, int e) {for (int i = 0; i < Llength; i++){if (Ldatai == e) {return i + 1;}}return 0; //未找到返回 0}```7、插入操作```cppbool ListInsert(SeqList L, int i, int e) {if (L>length == MAX_SIZE) {//表已满printf("表已满,无法插入!\n");return false;}if (i < 1 || i > L>length + 1) {//插入位置不合法printf("插入位置不合法!\n");return false;}for (int j = L>length; j >= i; j) {//移动元素L>dataj = L>dataj 1;}L>datai 1 = e; //插入元素L>length++;//表长加 1return true;}```8、删除操作```cppbool ListDelete(SeqList L, int i) {if (L>length == 0) {//表为空printf("表为空,无法删除!\n");return false;}if (i < 1 || i > L>length) {//删除位置不合法printf("删除位置不合法!\n");return false;}for (int j = i; j < L>length; j++){//移动元素L>dataj 1 = L>dataj;}L>length; //表长减 1return true;}```9、输出线性表```cppvoid PrintList(SeqList L) {for (int i = 0; i < Llength; i++){printf("%d ", Ldatai);}printf("\n");}```10、测试用例```cppint main(){SeqList L;InitList(&L);ListInsert(&L, 1, 10);ListInsert(&L, 2, 20);ListInsert(&L, 3, 30);ListInsert(&L, 4, 40);ListInsert(&L, 5, 50);printf("线性表的长度为:%d\n", ListLength(L));printf("查找第 3 个元素:%d\n", GetElem(L, 3));int loc = LocateElem(L, 30);if (loc) {printf("元素 30 的位置为:%d\n", loc);} else {printf("未找到元素 30\n");}ListDelete(&L, 3);printf("删除第 3 个元素后的线性表:");PrintList(L);return 0;}```五、实验结果及分析1、实验结果成功创建并初始化了线性表。
数据结构实验二 线性表
数据结构实验二线性表数据结构实验二线性表1. 实验目的1.1 理解线性表的概念和特性1.2 学习线性表的顺序存储结构和链式存储结构1.3 掌握线性表的基本操作:初始化、插入、删除、查找、修改、遍历等1.4 熟悉线性表的应用场景2. 实验内容2.1 线性表的顺序存储结构实现2.1.1 定义线性表结构体2.1.2 初始化线性表2.1.3 插入元素2.1.4 删除元素2.1.5 查找元素2.1.6 修改元素2.1.7 遍历线性表2.2 线性表的链式存储结构实现2.2.1 定义链表节点结构体2.2.2 初始化链表2.2.3 插入元素2.2.4 删除元素2.2.5 查找元素2.2.6 修改元素2.2.7 遍历链表3. 实验步骤3.1 实现顺序存储结构的线性表3.2 实现链式存储结构的线性表3.3 编写测试程序,验证线性表的各种操作是否正确3.4 进行性能测试,比较两种存储结构的效率差异4. 实验结果与分析4.1 执行测试程序,检查线性表的操作结果是否正确4.2 对比顺序存储结构和链式存储结构的性能差异4.3 分析线性表的应用场景,总结线性表的优缺点5. 实验总结5.1 总结线性表的定义和基本操作5.2 回顾实验中遇到的问题和解决方法5.3 提出对线性表实现的改进方向和思考附件:请参考附件中的源代码和实验报告模板。
法律名词及注释:1. 版权:指对某一作品享有的法律上的权利,包括复制权、发行权、改编权等。
2. 法律责任:指违反法律或合同规定所承担的责任。
3. 保密义务:指个人或组织根据法律、法规、合同等规定需要承担的保密责任。
4.知识产权:指人们在社会实践中所创造的智力劳动成果所享有的权利,包括专利权、著作权、商标权等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构实验指导书实验一线性表的顺序存储结构一、实验学时 4学时二、背景知识:顺序表的插入、删除及应用。
三、目的要求:1.掌握顺序存储结构的特点。
2.掌握顺序存储结构的常见算法。
四、实验内容1.从键盘随机输入一组整型元素序列,建立顺序表。
(注意:不可将元素个数和元素值写死在程序中)2.实现该顺序表的遍历(也即依次打印出每个数据元素的值)。
3.在该顺序表中顺序查找某一元素,如果查找成功返回1,否则返回0。
4.实现把该表中某个数据元素删除。
5.实现在该表中插入某个数据元素。
6.实现两个线性表的归并(仿照课本上P26 算法2.7)。
7. 编写一个主函数,调试上述6个算法。
五、实现提示1.存储定义#include <iostream.h>#include <stdlib.h>#define MAXSIZE 100 //表中元素的最大个数typedef int ElemType;//元素类型typedef struct list{ElemType *elem;//静态线性表int length; //表的实际长度int listsize; //表的存储容量}SqList;//顺序表的类型名2.建立顺序表时可利用随机函数自动产生数据。
3.为每个算法功能建立相应的函数分别调试,最后在主函数中调用它们。
六、注意问题插入、删除元素时对于元素合法位置的判断。
七、测试过程1.先从键盘输入元素个数,假设为6。
2.从键盘依次输入6个元素的值(注意:最好给出输入每个元素的提示,否则除了你自己知道之外,别人只见光标在闪却不知道要干什么),假设是:10,3,8,39,48,2。
3.遍历该顺序表。
4.输入待查元素的值例如39(而不是待查元素的位置)进行查找,因为它在表中所以返回1。
假如要查找15,因为它不存在,所以返回0。
5.输入待删元素的位置将其从表中删掉。
此处需要注意判断删位置是否合法,若表中有n个元素,则合法的删除位置是[1,n]。
例如,该示例中的合法删除位置是[1,6],输入其它位置均应报错。
提示:删除完毕后再调用遍历函数打印一下结果,看删除的是否正确。
6.输入待插入元素值和待插入的位置,进行插入操作。
注意:要判断待插入位置的合法性,应是[1,n+1]。
此示例中合法插入位置是[1,7],输入其它位置均应报错。
同理,插入完毕后也要调用遍历函数,看看插入的结果是否正确。
7.要实现两个表的归并,需要先建立两个顺序表LA和LB,依照算法2.7归并后将结果放入LC表中,故而归并操作结束后也要对LC表进行遍历,以验证结果的正确。
实验二链式存储结构----单链表的有关操作一、实验学时 8学时二、背景知识:单链表的插入、删除及应用。
三、目的要求1.掌握单向链表的存储特点及其实现。
2.掌握单向链表的插入、删除算法及其应用算法的程序实现。
四、实验内容1.随机产生或键盘输入一组元素,建立一个带头结点的单向链表(无序)。
2.遍历单向链表。
3.把单向链表中元素原地逆置(即不允许申请新的结点空间)。
4.在单向链表中删除所有的偶数位置的元素结点。
(注:不是删除数据域的值为偶数的结点)五、实验说明1.类型定义#include <stdlib.h>typedef int ElemType;//元素类型typedef struct LNode{ElemType data;struct LNode *next;}LNode,*LinkList;2.为了算法实现简单,最好采用带头结点的单向链表。
六、注意问题1.重点理解链式存储的特点及指针的含义。
2.注意比较顺序存储与链式存储的各自特点。
3.注意比较带头结点、无头结点链表实现插入、删除算法时的区别。
如果时间允许,请实现在不带头结点的单链表中的上述操作。
4.单向链表的操作是数据结构的基础,一定要注意对这部分的常见算法的理解。
七、测试过程1.从键盘输入若干个元素以构造一个带头结点的单链表,例如:23,18,3,94,39。
提示:构造单链表可以用头插法,也可用尾插法,但是头插之后的结果正好是逆序的,而尾插是正序。
2.对该单链表进行遍历,打印出每个数据元素结点的数据域的值。
注意:头结点的数据域可以不赋值,它不被打印,因为它只是为了编程统一引入的,并没有用它来装实际的数据。
3.对单链表进行原地逆置。
注意:原地逆置是指不增加额外的存储空间,故而应该只修改该链表的指针值,而不开辟新的单元就完成逆置。
提示:头插法产生的结果正好是逆序的,所以可将原链表中的数据元素结点依次摘下,用头插法插入到头结点后面,就实现了原地逆置。
4.删除链表中的偶数位置元素,即删除链表中的2号、4号、6号、8号……元素。
提示:删除i号结点,需要将i-1号结点的指针域指向i+1号结点。
所以,要完成删除偶数位置结点,一方面要记录每个结点的位序,另一方面要记录它的前一结点位置以方便删除。
5.注意测试边界数据,例如链表长度为0。
实验三栈和队列的应用一、实验学时 4学时二、背景知识:入栈、出栈,入队、出队。
三、目的要求1.掌握栈、队列的思想及其存储实现。
2.掌握栈、队列的常见算法的程序实现。
四、实验内容1.采用顺序存储实现栈的初始化、入栈、出栈、判栈空操作。
2.采用顺序存储实现循环队列的初始化、入队、出队操作。
3.综合训练:1) 利用栈实现求一个十进制数的二进制表示算法。
2) 利用栈实现表达式中括号匹配算法。
五、基本要求1.实现算法3中的某一个即可。
2.类型定义顺序栈示例#define MAX 100 //栈的最大值typedef struct{ElemType *base;int top;}SqStack;顺序队列示例#define MAX 100 //队列的最大长度typedef struct{ElemType *base;int front,rear;}SqQueue;六、注意问题重点理解栈、队列的算法思想,能够根据实际情况选择合适的存储结构。
七、测试过程1.先做好栈的构造、入栈、出栈、判栈空函数,以及队列的构造、入队、出队函数,并进行相应检测。
2.十进制转二进制问题参照课本P48 算法3.1来完成。
要求输入一个任意的十进制数,得到其对应的二进制数。
3.括号匹配问题也采用栈来完成,实现思路参考课本P49。
要求从键盘读入圆括号和方括号的任意序列,输出“匹配”或“此串括号匹配不合法”的信息。
例如,读入([]()),结果“匹配”。
读入[(]),结果“此串括号匹配不合法”。
实验四二叉树的常见操作一、实验学时 8学时二、背景知识:二叉树的存储、建立、遍历及其应用。
三、目的要求1.掌握二叉树的存储实现。
2.掌握二叉树的遍历思想。
3.掌握二叉树的常见算法的程序实现。
四、实验内容1.输入字符序列,建立二叉链表。
2.中序遍历二叉树:递归算法。
3.求二叉树的高度。
4.求二叉树的叶子个数。
5.借助队列实现二叉树的层次遍历。
6.在主函数中设计一个简单的菜单,分别调试上述算法。
五、实验说明1.类型定义 //二叉链表存储typedef char ElemType;//元素类型typedef struct BiTNode{ElemType data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;2.元素类型可以根据实际情况选取。
六、注意问题1.注意理解递归算法的执行步骤。
2.注意字符类型数据在输入时的处理。
七、测试过程1.从键盘读入某二叉树的前序序列,以”*”或”#”或其它特殊字符代表空格,构造二叉树。
注意测试边界情况,例如空树也是二叉树。
2.在一次执行过程中,多次反复调用求树高和求叶结点数的函数,看看每次的结果是否都正确。
此处考查全局变量的应用。
实验五图的建立与遍历一、实验学时 6学时二、背景知识:图的建立、图的深度优先遍历和广度优先遍历三、目的要求1.掌握图的邻接矩阵和邻接表的两种存储结构。
2.区分有向图、无向图、有向网、无向网在存储上的不同之处。
3.理解图的深度优先遍历需要借助栈,图的广度优先遍历需要借助队列。
四、实验内容1.建立有向图、无向图、有向网、无向网的邻接矩阵存储。
2.建立有向图、无向图、有向网、无向网的邻接表存储。
3.在邻接矩阵存储结构上进行图的深度和广度优先遍历。
4.在邻接表存储结构上进行图的深度和广度优先遍历。
五、实验说明1.对于四种图的类型,选取一个做实验内容1和2中的一个。
2.依据选取的存储结构,选做实验内容3和4中的一个。
六、注意问题1.注意图的顶点集是非空有限集,边集是有限集。
2.图的存储结构和起始顶点一旦确定,它的遍历序列就是唯一的了。
3.图的遍历可从任意顶点出发,为方便起见,我们取第一个顶点作为出发点。
七、测试过程1.从键盘敲入图的顶点数和边数,判断这两个值的合法性。
2.依次读入n个顶点,构造顶点集。
3.依次读入e条边,将其添入到邻接矩阵或邻接表中。
4.参照课本P169 算法7.4和7.5完成图的深度优先遍历。
5.参照课本P170 算法7.6完成图的广度优先遍历。
实验六折半查找验证实验一、实验学时:2学时二、背景知识:折半查找算法三、目的要求1.掌握折半查找算法的基本思想;2.掌握折半查找算法的实现方法;3.掌握折半查找算法的时间性能。
4.自己确实掌握一种排序算法,理解时间性能好的那几种算法。
四、实验内容1.对给定的数组(假设长度为n)排序。
排序算法任选,但要求对于简单的排序算法,比如简单插入排序、简单选择排序、冒泡排序,要脱离课本自己单独能写出来。
对于复杂的排序算法,比如堆排序、快速排序、归并排序,要求理解算法的思想,脱离课本也能写出大致框架。
2.查找数组中与给定值k相等的元素。
五、实验说明类型定义:typedef int ElemType;typedef struct{ElemType *elem; //数组元素存储空间地址 Int length; //表长度}SSTable //静态查找表的顺序存储结构六、注意问题1.此处数据元素是int类型,所以不用求其关键字。
2.需要预先实现EQ(int,int)函数。
七、测试过程1.从键盘敲入元素序列,而不是在程序中写死。
2.排序算法任选。
3.基于排序后生成的有序表进行折半查找。