文科数学集合考点+练习

合集下载

高中集合试题及答案解析

高中集合试题及答案解析

高中集合试题及答案解析一、选择题1. 集合A={1, 2, 3},集合B={3, 4, 5},求A∩B的值。

A. {1, 2}B. {3}C. {4, 5}D. 空集答案:B解析:根据集合交集的定义,A∩B是指既属于集合A又属于集合B的所有元素组成的集合。

在本题中,只有3同时属于集合A和集合B,因此A∩B={3}。

2. 如果集合A={x|x<5},集合B={x|x>3},求A∪B的值。

A. {x|x<3}B. {x|x<5}C. {x|x>=3}D. {x|x>=5}答案:C解析:集合并集的定义是将两个集合中所有的元素合并在一起,不重复计算。

在本题中,集合A包含所有小于5的数,集合B包含所有大于3的数。

因此,A∪B包含所有大于等于3的数,即{x|x>=3}。

二、填空题3. 若集合M={x|x²-5x+6=0},请写出集合M的所有元素。

答案:{2, 3}解析:首先解方程x²-5x+6=0,通过因式分解得到(x-2)(x-3)=0,因此x=2或x=3。

所以集合M的元素为2和3。

4. 已知集合N={x|-2≤x≤2},求集合N的补集。

答案:{x|x<-2或x>2}解析:集合N的补集是指所有不属于N的元素组成的集合。

根据N的定义,它的补集是所有小于-2或大于2的实数。

三、解答题5. 集合P={x|0<x<10},集合Q={x|x是偶数},求P∩Q,并说明其性质。

答案:P∩Q={2, 4, 6, 8}解析:集合P包含所有0到10之间的实数,而集合Q包含所有偶数。

因此,P∩Q包含所有既是0到10之间又是偶数的实数,即{2, 4, 6, 8}。

这个集合是有限集,且每个元素都是正偶数。

6. 已知集合R={x|x²-4=0},求R的子集个数。

答案:4解析:集合R的元素可以通过解方程x²-4=0得到,即x=±2。

集合练习题及讲解高中必刷

集合练习题及讲解高中必刷

集合练习题及讲解高中必刷### 高中数学集合练习题及讲解练习题1:已知集合A={x|x<5},B={x|-3≤x<2},求A∩B。

解析:根据集合的交集定义,我们需要找出同时满足A和B条件的元素。

集合A包含所有小于5的实数,而集合B包含所有大于等于-3且小于2的实数。

因此,A∩B将包含所有大于等于-3且小于2的实数。

答案:A∩B={x|-3≤x<2}。

练习题2:集合P={x|x²-1=0},Q={x|x²-4=0},求P∪Q。

解析:首先解方程x²-1=0和x²-4=0。

对于x²-1=0,解得x=±1;对于x²-4=0,解得x=±2。

集合P包含所有解得x²-1=0的实数,即P={-1,1};集合Q包含所有解得x²-4=0的实数,即Q={-2,2}。

根据并集的定义,P∪Q包含P和Q中的所有元素。

答案:P∪Q={-2,-1,1,2}。

练习题3:集合M={x|-2<x<3},N={x|x>1},判断M⊆N。

解析:要判断M是否是N的子集,我们需要验证M中的所有元素是否也属于N。

集合M包含所有大于-2且小于3的实数,而集合N包含所有大于1的实数。

显然,M中的所有元素都大于1,因此M中的元素也属于N。

答案: M⊆N。

练习题4:集合S={x|0<x<10},T={x|x>0},求S∩T。

解析:根据交集的定义,我们需要找出同时满足S和T条件的元素。

集合S包含所有大于0且小于10的实数,而集合T包含所有大于0的实数。

因此,S∩T将包含所有大于0且小于10的实数。

答案:S∩T={x|0<x<10}。

练习题5:集合U={x|x>0},V={x|x<0},求U∩V。

解析:根据交集的定义,我们需要找出同时满足U和V条件的元素。

集合U包含所有大于0的实数,而集合V包含所有小于0的实数。

高三文科数学复习题(集合)word版本

高三文科数学复习题(集合)word版本

高三文科数学(集合)A 组1.( 2007 年高考广东文科卷)已知集合 M= { x1x 0} , N= x10 ,则 MN1 x()A . { x 1 x 1}B . { x x 1}C . { x 1 x 1}D . { x x 1}2.( 2008 年高考广东文科卷)第二十九届夏季奥林匹克运动会将于2008 年 8 月 8 日在北京举行,若集合 A { 参加北京奥运会比赛的运动员},集合 B{ 加北京奥运会比赛的男运动员},集合 C { 加北京奥运会比赛的女运动员} ,则下列关系正确的是()A.A BB. B CC. B C AD.ABC3A { 1,1} ,B { x | mx1} ,且 A B A,则 m 的值为 ().已知集合A . 1B .— 1C .1 或— 1D .1或—1或 04.( 2009 年高考广东文科卷)已知全集 U=R ,则正确表示集合M= {— 1, 0, 1}和 N={ x x 21 0 }关系的韦恩( Venn )图是()5.如图, U 是全集, M 、P 、S 是 U 的 3 个子集, 则阴影部分所表示的集合是 ( )A 、 M P SB 、M P SC 、M PC u SD 、 MPC u S6.已知集合 A={1 , 2,3, 4} ,那么 A 的真子集的个数是7.已知集合A( x , y)| y 3x2 ,B( x , y)| y x 2那么集合 A B=8.已知全集 U=2 ,3 , a 22a3,若A= b , 2 , CA 5 ,求实数的 a ,b 值U9.已知集合A=x 3 x 7 ,B={x|2<x<10},C={x | x< a},全集为实数集R.(1)求 A ∪ B, (C R A) ∩ B ;(2) 如果 A ∩ C≠ φ,求 a 的取值范围。

B 组10.设A x 2x2px q 0 , B x 6x 2( p 2)x 5 q0,若A B1,2则 A B()A.1,1, 4B.1,4C.1,1D.1 23223211. 50 名学生做的物理、化学两种实验,已知物理实验做的正确得有40 人,化学实验做的正确的有31 人,两种实验都做错的有 4 人,则这两种实验都做对的有人 .12.已知集合Aa, a d, a2d ,B a,aq,aq 2,其中 a, d,qR ,若 A=B ,求 q 的值。

高中集合练习题及答案

高中集合练习题及答案

高中集合练习题及答案一、选择题1. 集合A={1,2,3},集合B={2,3,4},求A∪B。

A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {4}2. 集合A={x|x<5},集合B={x|x>3},求A∩B。

A. {x|x<3}B. {x|3<x<5}C. {x|x>5}D. 空集3. 集合M={x|x^2-4=0},求M的元素个数。

A. 0B. 1C. 2D. 34. 对于集合N={1,2,3,...,10},如果a∈N且a为奇数,求a的个数。

A. 5B. 6C. 8D. 105. 集合P={x|x是偶数},集合Q={x|x是质数},判断P和Q的关系。

A. P⊆QB. Q⊆PC. P∩Q=空集D. P∩Q≠空集二、填空题6. 集合S={x|x是小于10的正整数},S的补集是_________。

7. 如果集合A={1,2,3},B={3,4,5},那么A∩B=_________。

8. 集合W={x|x是自然数,且x能被3整除},W的元素个数是_________。

9. 集合X={x|x^2-4=0},X的元素是_________。

10. 如果集合Y={x|x^2+x+1=0},求Y的元素个数是_________。

三、解答题11. 已知集合A={1,2,3},B={3,4,5},求A∪B∩C,其中C是A和B 的交集的补集。

12. 集合D={x|x是小于20的正整数},E={x|x是大于10的正整数},求D∪E,并判断D∪E是否为全集。

13. 集合F={x|x是偶数},G={x|x是大于10的整数},求F∩G,并说明其元素个数。

14. 集合H={x|x^2-3x+2=0},求H的元素,并判断H是否为有限集。

15. 集合I={x|x是小于100的质数},求I的元素个数,并列出前5个元素。

四、证明题16. 证明:对于任意集合A,A的补集的补集等于A本身。

高中集合练习题及答案

高中集合练习题及答案

高中集合练习题及答案集合是数学中一个非常重要的概念,它在高中数学中占有重要地位。

集合论是研究集合的数学分支,它提供了一种描述和处理数学对象的方式。

在高中数学中,学生需要掌握集合的基本概念、运算以及集合在解决数学问题中的应用。

以下是一些高中集合练习题及答案,供同学们练习和参考。

练习题1:设集合A={x|x<5},B={x|x>3},求A∩B。

答案:集合A表示所有小于5的实数的集合,集合B表示所有大于3的实数的集合。

A与B的交集A∩B就是同时满足小于5且大于3的实数的集合,即A∩B={x|3<x<5}。

练习题2:已知集合M={1,2,3},N={2,3,4},求M∪N。

答案:集合M表示元素为1,2,3的集合,集合N表示元素为2,3,4的集合。

M与N的并集M∪N就是包含M和N所有元素的集合,即M∪N={1,2,3,4}。

练习题3:设A={x|-1≤x≤2},B={x|x>1},求A-B。

答案:集合A表示闭区间[-1,2]中的所有实数的集合,集合B表示大于1的所有实数的集合。

A-B表示A中所有不属于B的元素组成的集合,即A-B={x|-1≤x≤1}。

练习题4:如果A={x|x<0或x>5},B={x|-3≤x≤4},求A∩B。

答案:集合A表示所有小于0或大于5的实数的集合,集合B表示闭区间[-3,4]中的所有实数的集合。

A与B的交集A∩B就是同时满足小于0或大于5且在闭区间[-3,4]中的实数的集合,即A∩B={x|-3≤x<0}。

练习题5:设A={1,2,3},B={x|x∈A且x≠2},求B。

答案:集合A表示元素为1,2,3的集合。

B是A中所有不等于2的元素组成的集合,即B={1,3}。

练习题6:已知A={x|-2<x<3},B={x|-1<x<4},求A∪B。

答案:集合A表示开区间(-2,3)中的所有实数的集合,集合B表示开区间(-1,4)中的所有实数的集合。

高中数学集合、复数必做题型(含解析)

高中数学集合、复数必做题型(含解析)

集合,复数---高考题型一.选择题(共40小题)1.已知集合M={x||x﹣1|≥2},N={﹣1,0,1,2,3},则(∁R M)∩N=()A.{0,1,2}B.{1,2}C.{﹣1,0,1,2}D.{2,3}2.已知集合U={0,1,2,3},S={0,3},T={2},则∁U(S∪T)=()A.{1}B.{0,2}C.{1,2,3}D.{0,1,2,3} 3.设集合A={x|x<2},,则(∁U A)∩B=()A.(1,2)B.[1,2]C.[2,3)D.[2,3]4.设集合M={2m﹣1,m﹣3},若﹣3∈M,则实数m=()A.0B.﹣1C.0或﹣1D.0或15.已知集合M={x|x2+x﹣6<0},集合,则M∪N=()A.{x|﹣3<x<1}B.{x|﹣4<x<1}C.{x|﹣4<x<2}D.{x|﹣3<x<2} 6.设全集U={﹣3,﹣2,﹣1,0,1,2,3},集合A={﹣3,﹣2,2,3},B={﹣3,0,1,2},则(∁U A)∩B=()A.∅B.{1}C.{0,1}D.{0,1,2} 7.已知集合A={x|﹣1≤2x﹣1≤3},B={x|x2﹣3x<0},则A∪B=()A.(0,2]B.[0,2]C.[0,3)D.[0,3]8.设集合A={x|0<x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[0,+∞)B.[0,1]C.(0,1]D.[0,1)9.已知集合A={x|x2≤4},集合B={x|x>0},则A∪B=()A.(﹣∞,﹣2]B.[﹣2,0)C.[﹣2,+∞)D.(0,2]10.已知集合A={x|x2﹣2<0},且a∈A,则a可以为()A.﹣2B.﹣1C.D.11.设集合A={x|1<2x<8},B={x||x+1|≥3},则A∩B=()A.(0,2]B.[2,3)C.(2,3]D.(0,3)12.已知集合,N={x||x﹣1|≤2},则M∩N=()A.[﹣1,3]B.[1,2]C.[﹣1,2)D.(2,3]13.若集合A={x|2x2+3x﹣9≤0},B={x|2x>﹣3,x∈Z},则A∩B=()A.{﹣3,﹣2,﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0,1}D.{﹣2,﹣1,0,1}14.已知集合A={x∈Z|x2﹣2x﹣3<0},则集合A的子集个数为()A.3B.4C.8D.16 15.若集合M={x|x2﹣3x﹣4≤0},N={x|﹣2≤x≤2},则M∪N=()A.[﹣1,2]B.[﹣1,4]C.[﹣2,2]D.[﹣2,4] 16.已知集合A={x∈Z|x2﹣2x﹣3<0},B={﹣2,﹣1,0,1},则A∪B=()A.{﹣2,﹣1}B.{﹣2,﹣1,0,1,2} C.{﹣2,﹣1,0}D.{0,1}17.已知集合,B={x||x﹣1|<2},则A∩B=()A.[2,3]B.[2,3)C.(2,3)D.(2,3] 18.已知集合A={x|﹣5<x<2},B={x||x|<3},则A∪B=()A.(﹣∞,2)B.(﹣∞,3)C.(﹣3,2)D.(﹣5,3)19.已知集合A={x|﹣2≤x≤2},B={x|0<x<2},则()A.A⊆B B.B⊆A C.A∪B=R D.A∩B=∅20.已知集合A={x|≥1},B={x|﹣2<x<1},则A∩(∁R B)=()A.(﹣2,2)B.[﹣1,1]C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣1)∪(1,+∞)21.设i是虚数单位,复数,则在复平面内z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限22.设复数z=1﹣i,则=()A.B.C.D.23.已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限24.若复数z满足z•(2+3i)=3﹣2i,其中i为虚数单位,则|z|=()A.0B.﹣1C.D.1 25.复数的共轭复数是()A.i+2B.i﹣2C.﹣i﹣2D.2﹣i26.若复数z=2﹣i,则i•z的虚部是()A.2i B.i C.2D.127.若复数z=i(i﹣1),则|z﹣1|=()A.﹣2﹣i B.﹣i C.D.528.已知复数z满足z=(2+i)(1+3i)(i为虚数单位),则复数z的共轭复数的虚部为()A.﹣7i B.7i C.﹣7D.﹣129.已知a,b∈R,i为虚数单位,若,则|a+bi|=()A.3B.5C.9D.230.已知a,b∈R,a+i与3+bi互为共轭复数,则|a﹣bi|=()A.2B.3C.D.431.复数(2﹣3i)i的实部为()A.﹣2B.2C.﹣3D.332.设复数z在复平面内对应的点为(2,5),则1+z在复平面内对应的点为()A.(3,﹣5)B.(3,5)C.(﹣3,﹣5)D.(﹣3,5)33.已知复数(为虚数单位),则|z|=()A.2B.C.D.34.若复数z满足,则复数z的虚部为()A.B.C.D.35.复平面内表示复数的点位于()A.第一象限B.第二象限C.第三象限D.第四象限36.已知z+i=zi,则|z|=()A.B.0C.D.137.已知,i为虚数单位,则z=()A.﹣2+i B.2﹣i C.2+i D.﹣2﹣i38.已知复数,则=()A.B.C.D.39.若(z+1)i=z,则z2+i=()A.B.C.D.40.已知复数z满足(1﹣i)(z+4i)=2i,则z的虚部为()A.﹣3B.﹣3i C.﹣1D.﹣i集合,复数---高考题型参考答案与试题解析一.选择题(共40小题)1.已知集合M={x||x﹣1|≥2},N={﹣1,0,1,2,3},则(∁R M)∩N=()A.{0,1,2}B.{1,2}C.{﹣1,0,1,2}D.{2,3}【解答】解:集合M={x||x﹣1|≥2}={x|x≥3或x≤﹣1},则∁R M={x|﹣1<x<3},又N={﹣1,0,1,2,3},则(∁R M)∩N={0,1,2}.故选:A.2.已知集合U={0,1,2,3},S={0,3},T={2},则∁U(S∪T)=()A.{1}B.{0,2}C.{1,2,3}D.{0,1,2,3}【解答】解:U={0,1,2,3},S={0,3},T={2},根据集合补集的概念和运算得:S∪T={0,2,3},∁U(S∪T)={1}.故选:A.3.设集合A={x|x<2},,则(∁U A)∩B=()A.(1,2)B.[1,2]C.[2,3)D.[2,3]【解答】解:集合A={x|x<2},={x|1≤x<3},∴∁U A={x|x≥2},(∁U A)∩B={x|2≤x<3}.故选:C.4.设集合M={2m﹣1,m﹣3},若﹣3∈M,则实数m=()A.0B.﹣1C.0或﹣1D.0或1【解答】解:设集合M={2m﹣1,m﹣3},∵﹣3∈M,∴2m﹣1=﹣3或m﹣3=﹣3,当2m﹣1=﹣3时,m=﹣1,此时M={﹣3,﹣4};当m﹣3=﹣3时,m=0,此时M={﹣3,﹣1};所以m=﹣1或0.故选:C.5.已知集合M={x|x2+x﹣6<0},集合,则M∪N=()A.{x|﹣3<x<1}B.{x|﹣4<x<1}C.{x|﹣4<x<2}D.{x|﹣3<x<2}【解答】解:集合M={x|x2+x﹣6<0}={x|﹣3<x<2},集合={x|﹣4<x<1},则M∪N={x|﹣4<x<2}.故选:C.6.设全集U={﹣3,﹣2,﹣1,0,1,2,3},集合A={﹣3,﹣2,2,3},B={﹣3,0,1,2},则(∁U A)∩B=()A.∅B.{1}C.{0,1}D.{0,1,2}【解答】解:∵U={﹣3,﹣2,﹣1,0,1,2,3},A={﹣3,﹣2,2,3},B={﹣3,0,1,2},∴∁U A={﹣1,0,1},(∁U A)∩B={0,1}.故选:C.7.已知集合A={x|﹣1≤2x﹣1≤3},B={x|x2﹣3x<0},则A∪B=()A.(0,2]B.[0,2]C.[0,3)D.[0,3]【解答】解:因为A={x|﹣1≤2x﹣1≤3}={x|0≤x≤2}=[0,2],B={x|x2﹣3x<0}={x|0<x<3}=(0,3),所以A∪B=[0,2]∪(0,3)=[0,3).故选:C.8.设集合A={x|0<x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[0,+∞)B.[0,1]C.(0,1]D.[0,1)【解答】解:x2﹣2x≤0,x(x﹣2)≤0,∴0≤x≤2,B=[0,2],又A=(0,1],则A∩B=(0,1].故选:C.9.已知集合A={x|x2≤4},集合B={x|x>0},则A∪B=()A.(﹣∞,﹣2]B.[﹣2,0)C.[﹣2,+∞)D.(0,2]【解答】解:由题意A={x|x2≤4}={x|﹣2≤x≤2},B={x|x>0},所以A∪B={x|﹣2≤x≤2}∪{x|x>0}={x|x≥﹣2}=[﹣2,+∞).故选:C.A.﹣2B.﹣1C.D.【解答】解:由题意可得集合A={x|﹣<x<},因为a∈A,所以﹣<a<,故选项B正确,ACD错误.故选:B.11.设集合A={x|1<2x<8},B={x||x+1|≥3},则A∩B=()A.(0,2]B.[2,3)C.(2,3]D.(0,3)【解答】解:因为1<2x<8⇒20<2x<23,所以0<x<3,即A=(0,3),且|x+1|≥3⇒x+1≥3或x+1≤﹣3,所以x≥2或x≤﹣4,即B=(﹣∞,﹣4]∪[2,+∞),所以A∩B=[2,3).故选:B.12.已知集合,N={x||x﹣1|≤2},则M∩N=()A.[﹣1,3]B.[1,2]C.[﹣1,2)D.(2,3]【解答】解:∵,N={x|﹣1≤x≤3},∴M∩N=(2,3].故选:D.13.若集合A={x|2x2+3x﹣9≤0},B={x|2x>﹣3,x∈Z},则A∩B=()A.{﹣3,﹣2,﹣1,0,1}B.{﹣2,﹣1,0}C.{﹣1,0,1}D.{﹣2,﹣1,0,1}【解答】解:由2x2+3x﹣9≤0解得,所以,因为B={x|2x>﹣3,x∈Z},所以,所以A∩B={﹣1,0,1},故选:C.A.3B.4C.8D.16【解答】解:∵集合A={x|x∈Z|x2﹣2x﹣3<0}={x∈Z|﹣1<x<3}={0,1,2},∴集合A的子集个数为23=8.故选:C.15.若集合M={x|x2﹣3x﹣4≤0},N={x|﹣2≤x≤2},则M∪N=()A.[﹣1,2]B.[﹣1,4]C.[﹣2,2]D.[﹣2,4]【解答】解:∵M={x|﹣1≤x≤4},N={x|﹣2≤x≤2},∴M∪N=[﹣2,4].故选:D.16.已知集合A={x∈Z|x2﹣2x﹣3<0},B={﹣2,﹣1,0,1},则A∪B=()A.{﹣2,﹣1}B.{﹣2,﹣1,0,1,2} C.{﹣2,﹣1,0}D.{0,1}【解答】解:∵B={﹣2,﹣1,0,1},集合A={x∈Z|x2﹣2x﹣3<0}={0,1,2},∴A∪B={﹣2,﹣1,0,1,2}.故选:B.17.已知集合,B={x||x﹣1|<2},则A∩B=()A.[2,3]B.[2,3)C.(2,3)D.(2,3]【解答】解:∵,B={x|﹣1<x<3},∴A∩B=(2,3).故选:C.18.已知集合A={x|﹣5<x<2},B={x||x|<3},则A∪B=()A.(﹣∞,2)B.(﹣∞,3)C.(﹣3,2)D.(﹣5,3)【解答】解:∵A={x|﹣5<x<2},B={x|﹣3<x<3},∴A∪B=(﹣5,3).故选:D.19.已知集合A={x|﹣2≤x≤2},B={x|0<x<2},则()A.A⊆B B.B⊆A C.A∪B=R D.A∩B=∅【解答】解:∵集合A={x|﹣2≤x≤2},B={x|0<x<2},∴B⊆A,A∪B=A,A∩B=B,因此选项B正确,选项A,C,D错误;故选:B.20.已知集合A={x|≥1},B={x|﹣2<x<1},则A∩(∁R B)=()A.(﹣2,2)B.[﹣1,1]C.(﹣∞,﹣2]∪[2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:A={x|≥1}={x|x<﹣1或x≥2},B={x|﹣2<x<1},则∁R B={x|x≥1或x≤﹣2},故A∩(∁R B)=(﹣∞,﹣2]∪[2,+∞).故选:C.21.设i是虚数单位,复数,则在复平面内z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=,故在复平面内z所对应的点(﹣1,1)在第二象限.故选:B.22.设复数z=1﹣i,则=()A.B.C.D.【解答】解:由题意,,故.故选:B.23.已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:因为,所以,复数在复平面内对应的点的坐标为,位于第二象限.故选:B.24.若复数z满足z•(2+3i)=3﹣2i,其中i为虚数单位,则|z|=()A.0B.﹣1C.D.1【解答】解:z•(2+3i)=3﹣2i,则z=,故|z|==.故选:D.25.复数的共轭复数是()A.i+2B.i﹣2C.﹣i﹣2D.2﹣i【解答】解:∵复数==﹣2﹣i,∴共轭复数是﹣2+i故选:B.26.若复数z=2﹣i,则i•z的虚部是()A.2i B.i C.2D.1【解答】解:z=2﹣i,则iz=i(2﹣i)=1+2i,其虚部为2.故选:C.27.若复数z=i(i﹣1),则|z﹣1|=()A.﹣2﹣i B.﹣i C.D.5【解答】解:z=i(i﹣1)=﹣1﹣i,则z﹣1=﹣2﹣i,故|z﹣1|=|2﹣i|=.故选:C.28.已知复数z满足z=(2+i)(1+3i)(i为虚数单位),则复数z的共轭复数的虚部为()A.﹣7i B.7i C.﹣7D.﹣1【解答】解:因为z=(2+i)(1+3i)=﹣1+7i,所以,所以复数z的共轭复数的虚部为﹣7.故选:C.29.已知a,b∈R,i为虚数单位,若,则|a+bi|=()A.3B.5C.9D.2【解答】解:若,则a+bi=(2+i)(1﹣2i)=4﹣3i,故|a+bi|==5.故选:B.30.已知a,b∈R,a+i与3+bi互为共轭复数,则|a﹣bi|=()A.2B.3C.D.4【解答】解:∵a+i与3+bi互为共轭复数,∴a=3,b=﹣1,∴|a﹣bi|=|3+i|==.故选:C.31.复数(2﹣3i)i的实部为()A.﹣2B.2C.﹣3D.3【解答】解:(2﹣3i)i=3+2i,其实部为3.故选:D.32.设复数z在复平面内对应的点为(2,5),则1+z在复平面内对应的点为()A.(3,﹣5)B.(3,5)C.(﹣3,﹣5)D.(﹣3,5)【解答】解:复数z在复平面内对应的点为(2,5),则z=2+5i,故1+z=1+2+5i=3+5i,其在复平面内对应的点为(3,5).故选:B.33.已知复数(为虚数单位),则|z|=()A.2B.C.D.【解答】解:,则=.故选:D.34.若复数z满足,则复数z的虚部为()A.B.C.D.【解答】解:设z=a+bi(a,b∈R),则,∵,∴a﹣bi﹣3i=a+bi,即﹣b﹣3=b,解得b=.故选:B.35.复平面内表示复数的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=﹣1﹣i,则z在复平面对应的点(﹣1,﹣1)位于第三象限.故选:C.36.已知z+i=zi,则|z|=()A.B.0C.D.1【解答】解:z+i=zi,则z(1﹣i)=﹣i,故z=,所以|z|=.故选:A.37.已知,i为虚数单位,则z=()A.﹣2+i B.2﹣i C.2+i D.﹣2﹣i 【解答】解:,则z=(1﹣2i)i=2+i.故选:C.38.已知复数,则=()A.B.C.D.【解答】解:==,则.故选:D.39.若(z+1)i=z,则z2+i=()A.B.C.D.【解答】解:由(z+1)i=z得:(1﹣i)z=i,即,所以.故选:D.40.已知复数z满足(1﹣i)(z+4i)=2i,则z的虚部为()A.﹣3B.﹣3i C.﹣1D.﹣i【解答】解:因为,所以z的虚部为﹣3.故选:A.。

集合复习题带答案解析

集合复习题带答案解析

集合复习题带答案解析集合是数学中的基本概念之一,它描述了一组元素的全体。

在高中数学中,集合的概念和运算是基础中的基础。

以下是一些集合的复习题以及相应的答案解析。

题目1:已知集合A={x | x > 3},集合B={x | x < 5},求A∩B。

答案:A∩B = {x | 3 < x < 5}解析:集合A包含所有大于3的元素,集合B包含所有小于5的元素。

求两个集合的交集,即求同时满足两个条件的元素。

因此,交集中的元素x必须同时大于3且小于5。

题目2:集合C={x | x^2 - 5x + 6 = 0},求C的元素。

答案: C = {2, 3}解析:集合C由满足方程x^2 - 5x + 6 = 0的所有x组成。

解这个一元二次方程,我们可以得到x的值为2和3,因此C的元素就是这两个数。

题目3:已知集合D={x | x = 2k, k∈Z},集合E={x | x = 3m,m∈Z},求D∪E。

答案:D∪E = R (全体实数集)解析:集合D包含所有2的整数倍,集合E包含所有3的整数倍。

由于任何整数都可以表示为6的倍数(2和3的最小公倍数),因此D和E的并集包含了所有整数,也就是全体实数集。

题目4:集合F={x | x^2 - 4x + 3 = 0},判断F是否是空集。

答案: F不是空集。

解析:集合F由满足方程x^2 - 4x + 3 = 0的所有x组成。

这个方程可以通过因式分解为(x - 1)(x - 3) = 0,解得x = 1或x = 3。

因此,F包含元素1和3,不是空集。

题目5:已知集合G={x | x^2 + 2x + 1 = 0},求G的补集。

答案: G的补集是所有不在G中的实数。

解析:集合G由满足方程x^2 + 2x + 1 = 0的所有x组成。

这个方程可以写成(x + 1)^2 = 0,解得x = -1。

因此,G只包含一个元素-1。

G的补集就是除了-1以外的所有实数。

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( )A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<3.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,24.若全集U =R ,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A .{3,4,5,6}B .{0,1,2}C .{0,1,2,3}D .{4,5,6}5.设全集{}*5U x N x =∈≤,集合{}1,2M =,{}2,3,4N =,则图中阴影部分表示的集合是( )A .{}2B .{}3,4C .{}2,3D .{}2,3,4 6.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( )A .6B .5C .4D .37.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( )A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-8.设集合{}A x x a =>,()(){}120B x x x =-->,若A B ⊆,则实数a 的取值范围是( ). A .(),1-∞ B .(],1-∞ C .()2,+∞D .[)2,+∞9.已知集合{}21A x x =<,{}e 2xB x =<,则A B =( )A .()1,1-B .()1,ln 2-C .()0,ln 2D .()ln 2,110.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)- 11.设集合{}2,3,4,5A =,{}3,4,6B =,则A B =( ).A .{}2B .{}2,3C .{}3,4D .{}2,3,412.已知集合{}{}{}21,2,20,1A B xx mx A B ==+-=⋂=∣,则B =( ) A .{}1,1-B .{}2,1-C .{}1,2D .{}1,1,2-13.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,14.已知集合{}22280,03x A x x x B xx -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤ B .{42x x -≤≤且3}x ≠- C .{}34x x -≤≤D .{34}x x -<≤15.已知集合{}ln ,1A y y x x ==>,1,12x B y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .102y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅二、填空题16.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________17.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 18.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________.19.已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x <-1或x >4},若A B ⊆,则实数a 的取值范围是________.20.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 21.已知A ,B 为非空集,I 为全集,且A B ≠,用适当的符号填空: (1)A B ______A B ; (2)A ______()I A A ⋃; (3)A B ______A ; (4)∅______A B ;(5)A A ⋂______A A ⋃; (6)A ∅______A ; (7)A ∅____()I A A ⋂____∅; (8)A B ____A ____A B .22.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)23.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.24.已知全集{}1,2,345U =,,,集合{}123A =,,,则A =_____________. 25.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.三、解答题26.已知集合{|28}x a A x -=>,2{|20}B x x x =+-<,再从条件① ,条件② ,条件③这三个条件中选择一个作为已知,求实数a 的取值范围. 条件①:A B =∅;条件②:A B A =;条件③:RA B ⊆.27.已知{}{15},1,R A x x B x a x a a =-<<=-<<∈ (1)若2,B ∈求实数a 的取值范围 (2)若B A ⊆,求实数a 的取值范围28.已知集合{}{}|26,|3782A x x B x x x =≤≤=-≥-. (1)求A B ,R()A B ;(2)若{}|44C x a x a =-<≤+,且A ⊆C ,求a 的取值范围.29.设全集U =R ,集合{}|32A x a x a =≤≤+,1|284xB x ⎧⎫=<<⎨⎬⎩⎭.(1)当1a =-时,求()U A B ⋃; (2)若A ∩B =A ,求实数a 的取值范围.30.已知函数()()4log 5f x x =-()g x x α=(α为常数),且()g x 的图象经过点(P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.D 【解析】 【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可. 【详解】因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=,所以A B ={}01x x <<, 故选:D 3.B【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 4.A 【解析】 【分析】根据图中阴影部分表示()U A B 求解即可.【详解】由题知:图中阴影部分表示()U A B ,{}|3UB x x =≥,则(){}3,4,5,6U B A =.故选:A 5.B 【解析】 【分析】由Venn 图中阴影部分可知对应集合为N ()U M ,然后根据集合的基本运算求解即可.【详解】解:由Venn 图中阴影部分可知对应集合为N()U M全集*{|5}{1U x N x =∈≤=,2,3,4,5},集合{1M =,2},{2N =,3,4},UM ={}3,4,5,N()U M ={}3,4.故选:B . 6.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安},{德化,永安,漳平},共4个,故选:C. 7.D 【解析】 【分析】先求出集合B 的元素,进行并集运算即可. 【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤{}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-. 故选:D. 8.D 【解析】 【分析】求解一元二次不等式解得集合B ,根据集合的包含关系,列出a 的不等关系,即可求得结果. 【详解】()(){}120{2B x x x x x =-->=或1}x <,因为A B ⊆,故可得2a ≥,即实数a 的取值范围是[)2,+∞. 故选:D. 9.B 【解析】 【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可. 【详解】由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2xB x e=<,即集合{}ln 2B x x =<,因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<. 故选:B. 10.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)MN =-.11.C 【解析】 【分析】依据交集定义即可求得A B 【详解】{}{}{}2,3,4,53,4,63,4A B ⋂=⋂=故选:C 12.B 【解析】 【分析】根据交集性质求解即可. 【详解】因为{}1A B ⋂=,所以1B ∈, 所以120m +-=,解得1m =.所以{}{}2|202,1B x x x =+-==-,满足{}1A B ⋂=.故选:B 13.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 14.D 【解析】 【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可. 【详解】因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B xx x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤, 故选:D. 15.A 【解析】 【分析】根据题意求出,A B 后运算由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B =故1(0,)2A B =故选:A二、填空题16.{(1,1)}【解析】 【分析】由集合中的条件组成方程组求解可得. 【详解】 将21y x =-代入2y x ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =. 故答案为:{(1,1)} 17. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6. 18.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1A ∈, 当2a =-1无意义,不满足题意; 当1a =12=,满足题意;当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:1 19.a <-4或a >2 【解析】 【分析】按集合A 为空集和不是空集两种情况去讨论即可求得实数a 的取值范围. 【详解】①当a >3即2a >a +3时,A =∅,满足A B ⊆;. ②当a ≤3即2a ≤a +3时,若A B ⊆,则有233124a a a a ≤+⎧⎨+-⎩或,解得a <-4或2<a ≤3综上,实数a 的取值范围是a <-4或a >2. 故答案为:a <-4或a >220.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}.故答案为:{(2,1)}21. ⊆ ⊆ ⊆ ⊆ = = = = ⊆ ⊆ 【解析】 【分析】根据集合的交集,并集,补集的性质及子集、集合相等的概念求解. 【详解】由交集,并集,补集的运算及性质,结合子集、集合相等求解,直接写出答案即可. 故答案为:⊆,⊆,⊆,⊆,=,=,=,=,⊆,⊆22.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂23.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:724.{}45,## {}5,4 【解析】 【分析】根据补集运算得到答案即可. 【详解】因为全集{}1,2,345U =,,,集合{}123A =,,,所以A = {}45, 故答案为:{}45,25.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >.三、解答题26.若选① ,[2-,)∞+. 若选② ,(-∞,5]-. 若选③ ,[2-,)∞+. 【解析】 【分析】先将集合A,B 中的不等式求解,根据集合运算的最后结果分析参数a 需要满足的范围即可求解. 【详解】{|28}{|3}{|3}x a A x x x a x x a -=>=->=>+,2{|20}{|(2)(1)0}{|21}B x x x x x x x x =+-<=+-<=-<<,若选择条件①:A B =∅,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+.若选择条件②:A B A =,即B A ⊆,则需32a +-,即5a -,所求实数a 的取值范围为(-∞,5]-.若选择条件③:R A B ⊆, 因为{|2R B x x =-或1}x , 所以要使R A B ⊆,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+.27.(1)23a <<;(2)05a ≤≤.【解析】【分析】(1)由题可得12a a -<<,即得;(2)根据B A ⊆,结合集合的包含关系,即可求得a 的取值范围.(1)∵2,B ∈{}1B x a x a =-<<,∴12a a -<<,即23a <<,∴实数a 的取值范围为23a <<;(2)∵B A ⊆,{}{15},1,R A x x B x a x a a =-<<=-<<∈,∴115a a -≥-⎧⎨≤⎩,解得05a ≤≤, 故实数a 的取值范围为05a ≤≤.28.(1)[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂(2)[)2,6【解析】【分析】(1)解不等式求得集合B ,由此求得A B ,进而求得R ()A B . (2)根据A 是C 的子集列不等式组,由此求得a 的取值范围.(1)3782,515,3x x x x -≥-≥≥,所以{}|3B x x =≥, 所以[]()()R 3,6,(),36,A A B B ⋂=-∞⋃+∞⋂.(2)由于{}|44C x a x a =-<≤+,且A ⊆C ,所以422646a a a -<⎧⇒≤<⎨+≥⎩,所以a 的取值范围是[)2,6.29.(1){|1x x ≤或3}x ≥ (2)2(,1)(1,)3-⋃+∞ 【解析】【分析】(1)化简集合B ,根据补集、并集的运算求解;(2)由条件转化为A ⊆B ,分类讨论,建立不等式或不等式组求解即可.(1)当1a =-时,{}3|1A x x =-≤≤,{}1|28|234x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, {||2U B x x x ∴=≤-或3}x ≥,(){|1U B x x A =≤∴或3}x ≥.(2)由A ∩B =A ,得A ⊆B ,当A =∅时,则3a >a +2,解得a >1,当A ≠∅时,则32231a a a >-⎧⎪+<⎨⎪≤⎩,解得213a -<<, 综上,实数a 的取值范围是2(,1)(1,)3-⋃+∞. 30.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R .。

高中集合练习题及答案

高中集合练习题及答案

高中集合练习题及答案一、选择题1. 集合A={1,2,3},集合B={2,3,4},求A∩B。

A. {1,2,3}B. {2,3}C. {1,4}D. {4}2. 若集合A={x|x<5},集合B={x|x>3},则A∪B表示的数集是:A. {x|x<5}B. {x|x>3}C. {x|x≤3}D. {x|x<=5}3. 对于集合A={1,2,3},集合B={4,5,6},下列哪个集合是A和B的差集?A. {1,2,3}B. {4,5,6}C. {1,2,3,4,5,6}D. {4,5}4. 集合P={x|x²-5x+6=0},求P的元素。

A. {2,3}B. {1,6}C. {-1,6}D. {2,-3}5. 若A={x|x²-3x+2=0},B={x|x²-4x+3=0},求A∩B。

A. {1}B. {2}C. {1,2}D. 空集二、填空题6. 集合M={x|x>0},N={x|x<0},则M∪N表示的数集是______。

7. 若集合C={x|x²-4=0},求C的元素为______。

8. 集合D={x|x²+2x+1=0},求D的元素为______。

9. 集合E={x|x²-4x+3=0},求E的补集(相对于实数集R)。

10. 若F={x|x²-x-6=0},求F的元素为______。

三、解答题11. 已知集合G={x|0<x<5},H={x|-3<x<2},求G∩H和G∪H。

12. 集合K={x|x²-8x+15=0},求K的所有子集。

13. 集合L={x|-1≤x≤4},M={x|x>1},求L∩M和L∪M。

14. 若集合O={x|x²-4x+3=0},P={x|x²-6x+8=0},求O∪P和O∩P。

15. 集合Q={x|x²-5x+6=0},R={x|x²+2x+1=0},求Q∩R和Q∪R。

高考文科数学集合习题精选(20200618130349)

高考文科数学集合习题精选(20200618130349)

(D) |0, 1, 2|
图是
5、已知 A,B 均为集合 U={1,3,5,7,9} 的子集 , 且 A ∩B={3}, ( C UB) ∩A={9}, 则 A= ( )
A.{1,3}
B.{3,7,9}
C.{3,5,9}
4、设 P={x|x<4},Q={x|x 2<4}, 则 ( )
D.{3,9}
A.P Q
B.Q P
C.P CRQ
数为
(A)5 (B)4 (C)3 (D)2
(2020 年高考题)已知集合 M { x | 1 x 3} , N { x | 2 x 1} , 则 M I N
A. ( 2,1)
B. ( 1,1)
C. (1,3)
D. ( 2,3)
(2020 高考题 )已知集合 A ={1,2,3,4}, B ={x|x =n2, n∈A}, 则 A∩B= ( ).
A .{1,4}
B.{2,3}
C.{9,16}
D. {1,2}
(2020 年高考题)已知集合 A={x|x2 -x-2<0}, B={x| - 1<x<1}, 则
(A)A B (B)B A
( C)A=B
(D) A∩ B=
( 2011 年 高 考 题 ) 设 集 合 U= 1,2,3,4 , M 1,2,3 , N
3. 设全集 U 1,2,3,4,5 , 集合 M 1,4 , N 1,3,5 , 则 N∩( Cu M)
A. 1,3 B.
1,5 C. 3,5 D. 4,5
三、基础练习题 1. 设集合 U {1,2,3,4}, A {1,2}, B { 2,4},
CU(A B )=
( A ){2}

高中数学《集合》知识点归纳及题型练习

高中数学《集合》知识点归纳及题型练习

高中数学《集合》知识点归纳及题型练习【知识点】1.集合的三个特性:确定性,互异性,无序性2.自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R 。

3.集合的三种表示方法:列举法,描述法,文氏图。

4.集合的分类:有限集,无限集,空集5.子集:若a A ∈,则a B ∈,称为A 是B 的子集,记作:A B ⊆或B A ⊇, 读作:“集合A 包含于集合B ”或“集合B 包含集合A ”。

6.真子集:若A B ⊆且B A ⊆,则称集合A 与集合B 相等,记作:A B =; 若A B ⊆且A B ≠,则称集合A 是集合B 的真子集,记作:【注意】空集φ是任何集合的真子集。

一个集合的子集个数为2n ,真子集个数为21n -,非空真子集个数为22n -。

7.补集:已知A U ⊆,由所有属于U 但不属于A 中的元素组成的集合称为A 的补集,记作:U A , 读作:A 在U 中的补集。

即:{|,}U A x x U x A =∈∉且8.交集:由两个集合中的公共元素组成的集合,即:{|}A B x x A x B =∈∈,且9.并集:由两个集合中的所有元素组成的集合,即:{|}A B x x A x B =∈∈,或10.集合的包含关系:A B ⊆⇔A B A A B B =⇔=题型1.集合性质的应用1.判断能否构成集合:【根据集合的确定性】(1)我国的所有直辖市; (2)我校的所有大树;(3)深圳机场学校的所有优秀学生; (4)深圳市的全体中学生;(5)不等式220x x ->的所有实数解; (6)所有的正三角形。

2.用,∈∉填空:2 N , , -3 Z , , 2- R ; 已知2{|20}A x x x =--=,则1 A ,2 A ,-1 A ,-2 A 。

3.集合{(0,1),(1,2)}A =中有 个元素;{,{0},{1,2}}B φ=中有 个元素。

3.已知集合{0,1,2}M x =+,则x 不能取哪些值?4.(1)2{1,0,}x x ∈,则x = ; (2)若2{,1}{1,}x x =,则x = 。

高中数学集合题目训练

高中数学集合题目训练

高中数学集合题目训练一、基础概念类1. 集合A = {x | x是小于10的正偶数},集合B = {2, 4, 6, 8},问集合A和集合B 是什么关系呢?- 那我们先来看看集合A里都有啥。

小于10的正偶数呢,那就是2、4、6、8呀。

这和集合B里的元素一模一样。

所以呀,集合A和集合B是相等的关系,就像两个长得一模一样的双胞胎,我们可以写成A = B。

2. 已知集合C={1, 3, 5},集合D={x|x是奇数且x < 7}。

集合C和集合D的关系是啥?- 首先看集合D,奇数而且小于7的数有1、3、5,这和集合C里的元素是一样的。

所以集合C是集合D的子集,而且是真子集哦,因为集合D里还有可能有其他元素(虽然这里没有),我们可以写成C⊂neqq D。

二、集合的运算类1. 集合E = {1, 2, 3, 4, 5},集合F={3, 4, 5, 6, 7}。

求E∩ F(也就是求这两个集合的交集)。

- 交集嘛,就是两个集合里共同有的元素。

那我们看看集合E和集合F,共同有的元素是3、4、5。

所以E∩ F = {3, 4, 5},就像两个人都有的宝贝一样,把这些宝贝挑出来放在一起。

2. 设集合G={x|x > - 2},集合H={x|x < 3}。

求G∪ H(也就是求这两个集合的并集)。

- 并集呢,就是把两个集合的元素都放在一起。

集合G里是大于 - 2的数,集合H里是小于3的数。

那把它们放在一起就是所有的实数啦,不过这里我们可以写成G∪ H={x|x∈ R},就像把两个人的东西都堆在一起,那就是一大堆东西啦,这里就是所有的实数。

三、稍复杂一点的题目1. 已知集合M={x|x^2-5x + 6 = 0},求集合M。

- 要找集合M,就得先解这个方程x^2-5x + 6 = 0。

这个方程可以分解成(x - 2)(x - 3)=0。

那x - 2 = 0或者x - 3 = 0,解得x = 2或者x = 3。

高考文科数学集合习题精选

高考文科数学集合习题精选

集合部分一、基础练习1. 设集合{}{}|1|22A x x B x x =>-=-<<,,则A B =( )A.{}|2x x >- B.{}1x x >-| C.{}|21x x -<<- D.{}|12x x -<<2. 已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( )A. (-1,1)B. (-2,1)C. (-2,-1)D. (1,2)3. 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}4. 已知集合{}|2,{|4,|A x x B x x Z =≤=≤∈,则A B =( )(A )(0,2) (B )[0,2] (C ){0,2} (D ){0,1,2}5. 已知集合{}{}0,1,2,3,4,1,3,5,,M N P M N ===则P 的子集共有( )(A )2个 (B )4个 (C )6个 (D )8个二、基础练习1. 设{|210}S x x =+>,{|350}T x x =-<,则S T =( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<<2. 设集合A={4,5,7,9},B={3,4,7,8,9},全集=A B ,则集合C u (A B )中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个 3. 设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则 N ∩(C u M )A.{}1,3B. {}1,5C. {}3,5D. {}4,5三、基础练习题1. 设集合},4,2{},2,1{},4,3,2,1{===B A U C U (A B )=(A ){2} (B ){3} (C ){1,2,4} (D ){1,4}2. 设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤( ) A .{}01, B .{}101-,, C .{}012,, D .{}1012-,,,3. 已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M ∪N )=(A) {5,7} (B ) {2,4} (C ){2,4,8} (D ){1,3,5,6,7}4. 设全集U ={x *N ∈|6}x <集合A={1,3},B={3,5},则C u (A B )=A. {1,4}B. {1,5}C.{2.4}D.{2,5}5. 设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=)(N M C U(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4四、提高题1、设全集{}1lg |*<∈=⋃=x N x B A U ,若{}4,3,2,1,0,12|=+==⋂n n m m B C A U ,则集合B=__________2、设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a = ___________3、已知全集U=R ,则正确表示集合M= {-1,0,1} 和N= { x |x 2+x=0} 关系的韦恩(Venn )图是4、设P={x|x<4},Q={x|x 2<4},则 ( )A.P QB.Q PC.P C R QD.Q C R P5、已知A,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3}, ( C U B)∩A={9},则A= ( )A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}6、已知全集U=A ∪B 中有m 个元素,( C U A)∪ (C U B)中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A. mnB. m+nC.n-mD.m-n(2015年高考题)已知集合A={x|x=3n+2,n ∈N },B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5 (B )4 (C )3 (D )2(2014年高考题)已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N =A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-(2013高考题)已知集合A ={1,2,3,4},B ={x|x =n2,n ∈A},则A∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}(2012年高考题)已知集合A={x|x2-x -2<0},B={x|-1<x<1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2011年高考题)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则075,2,A b a c ==求与=⋂(M N )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2010年高考题)已知集合2,,4,|A x x x R B x x x Z =≤∈=≤∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|⊆⊆⊆⊆。

文科数学集合考点+练习

文科数学集合考点+练习
①加法:
②减法:
③数乘:


⑥换底公式:
【2.2.2】对数函数及其性质
(5)对数函数
函数名称
对数函数
定义
函数 且 叫做对数函数
图象
定义域
值域
过定点
图象过定点 ,即当 时, .
奇偶性
非奇非偶
单调性
函数值的
变化情况
变化对图象的影响
在第一象限内, 越大图象越靠低;在第四象限内, 越大图象越靠高.
〖2.3〗幂函数
⑤图象特征:幂函数 ,当 时,若 ,其图象在直线 下方,若 ,其图象在直线 上方,当 时,若 ,其图象在直线 上方,若 ,其图象在直线 下方.
反函数的概念
设函数 的定义域为 ,值域为 ,从式子 中解出 ,得式子 .如果对于 在 中的任何一个值,通过式子 , 在 中都有唯一确定的值和它对应,那么式子 表示 是 的函数,函数 叫做函数 的反函数,记作 ,习惯上改写成 .
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.
⑧函数的单调性法.
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。
1.函数 的定义域为( )
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.
③判别式法:若函数 可以化成一个系数含有 的关于 的二次方程 ,则在 时,由于 为实数,故必须有 ,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.

(版)高考文科数学集合习题

(版)高考文科数学集合习题

集合局部一、根底练习.设集合A x|x1,Bx|2x2,那么AUB〔〕A.x|x2B.x|x1C.x|2x1D.x|1x2 2.集合M={x|(x+2)(x-1)<0},N={x|x+1<0},那么M∩N=〔〕A.(-1,1) B.(-2,1) C.(-2,-1) D.(1,2)3.集合A 1,3,5,7,9,B0,3,6,9,12,那么AIB〔〕A.{3,5}B.{3,6}C.{3,7}D.{3,9}4.集合A x|x2,B{x|x4,x Z|,那么AIB〔〕〔A〕〔0,2〕〔B〕[0,2]〔C〕{0,2}〔D〕{0,1,2}5.集合M 0,1,2,3,4,N1,3,5,PMIN,那么P的子集共有〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个二、根底练习1.设S{x|2x10},T{x|3x50},那么SIT〔〕A.B.{x|x1}C.{x|x5}D.{x|1x5}2323设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AUB,那么集合Cu〔AIB〕中的元素共有(A)3个〔B〕4个〔C〕5个〔D〕6个3.设全集U1,2,3,4,5,集合M1,4,N1,3,5,那么N∩(C uM)A.1,3B.1,5C.3,5D.4,5三、根底练习题1 .设集合U{1,2,3,4},A{1,2},B{2,4},U B〕=C〔A〔A〕{2}〔B〕{3}〔C〕{1,2,4}〔D〕{1,4}2.设集合M{mZ|3m2},N{n Z|1≤n≤3},那么MIN〔〕A.01,B.101,,C.01,,2D.101,,,23.全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},那么Cu(M∪N)=(A){5,7}〔B〕{2,4}〔C〕{2,4,8}〔D〕{1,3,5,6,7}4.设全集U{xN*|x6}集合A={1,3},B={3,5},那么Cu(AUB)=A.{1,4}B.{1,5}C.{2.4} D.{2,5}5.设集合U=1,2,3,4,M 1,2,3,N2,3,4,那么C U(M N)〔A〕1,2〔B〕2,3〔C〕2,4〔D〕1,4四、提高题1、设全集UA B xN*|lgx1,假设A C U B m|m2n1,n0,1,2,3,4,那么集合B=__________、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},那么实数a=___________23、全集U=R,那么正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩〔Venn〕图是4、设P={x|x<4},Q={x|xA.P Q5、A,B均为集合2<4},那么( )P CRQU={1,3,5,7,9}的子集,且D.Q CRPA∩B={3},(CUB)∩A={9},那么A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}6、全集U=A∪B中有m个元素,(CU A)∪(C UB)中有n个元素.假设A∩B非空,那么A∩B的元素个数为( )A.mnB.m+n〔2021年高考题〕集合A={x|x=3n+2,n N},B={6,8,12,14},那么集合A B中元素的个数为〔A〕5〔B〕4〔C〕3〔D〕2〔2021年高考题〕集合M{x|1x3},N{x|2x1},那么MI NA.(2,1)B.(1,1)C.(1,3)D.(2,3)(2021高考题)集合A={1,2,3,4},B={x|x=n2,n∈A},那么A∩B=().A.{1,4}B.{2,3}C.{9,16}D.{1,2}〔2021年高考题〕集合A={x|x2-x-2<0},B={x|-1<x<1},那么〔A〕AB〔B〕BA〔C〕A=B〔D〕A∩B=〔2021年高考题〕设集合U=1,2,3,4,M1,2,3,N2,3,4,那么A750,b2,求a与c e〔MN〕=〔A〕1,2〔B〕2,3〔C〕2,4〔D〕1,4〔2021年高考题〕集合A xx2,x R,Bx|x4,x Z|,那么AI B〔A〕〔0,2〕〔B〕[0,2]〔C〕|0,2|〔D〕|0,1,2|。

高考集合练习题

高考集合练习题

高考集合练习题一、选择题1. 集合A={x|x<5}与集合B={x|x>3}的交集是:A. {x|x>5}B. {x|x<3}C. {x|3<x<5}D. {x|x>=5}2. 已知集合M={x|x²-x-6=0},该集合的元素个数是:A. 0B. 1C. 2D. 33. 集合P={x|-2≤x≤2}与集合Q={x|x²-5x+6=0}的并集是:A. {x|-2≤x≤2}B. {x|-1≤x≤2}C. {x|x=2或x=3}D. {x|x=2}4. 若集合S={x|x²-2x-35=0},则S的补集(相对于实数集R)是:A. {x|x≠-5或x≠7}B. {x|x≠-5}C. {x|x≠7}D. {x|x≠-5且x≠7}5. 对于集合T={x|x²+4x+4=0},下列说法正确的是:A. T是单元素集合B. T是空集C. T有两个元素D. T没有元素二、填空题6. 若集合A={1,2,3},B={2,3,4},则A∪B=______。

7. 已知集合C={x|x²-4=0},C的补集(相对于实数集R)是{x|x≠±2},那么C的元素个数是______。

8. 若集合D={x|-1<x<1},E={x|x>0},则D∩E=______。

9. 集合F={x|x²+x-6=0}的元素是______。

10. 集合G={x|x²-4x+4=0}的元素是______。

三、解答题11. 已知集合H={x|-3≤x≤3},I={x|x>0},求H∩I,并说明其元素个数。

12. 集合J={x|x²-9=0},求J的补集(相对于实数集R)。

13. 集合K={x|0<x<10},L={x|x>5},求K∪L,并说明其元素范围。

14. 集合M={x|x²-5x+6=0},求M的补集(相对于实数集R),并说明其补集的元素范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.定义在R上的函数y=f(x)的值域为[a,b],则函数y=f(x-1)的值域为( )
A.[a-1,b-1]B.[a,b]C.[a+1,b+1]D.无法确定
7.若函数y=f(x)的定义域是[0,2],则函数 的定义域是( )
A.[0,1]B.[0,1)C. D.(0,1)
〖1.3〗函数的基本性质
【1.3.1】单调性与最大(小)值
(1)含绝对值的不等式的解法
不等式
解集

把 看成一个整体,化成 , 型不等式来求解
(2)一元二次不等式的解法
判别式
二次函数 的图象
一元二次方程 的根
(其中
无实根
的解集

的解集
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 ,则满足 的集合B的个数是()
A.1B.3C.4D.8
2.已知集合M={x| },N={y|y=3x2+1,xR},则MN=()
A.B.{x|x1}C.{x|x1}D.{x|x1或x0}
4.已知集合M={x|x<3},N={x|log2x>1},则M∩N=()
A. B.{x|0<x<3}C.{x|1<x<3}D.{x|2<x<3}
3.设 , ,若 ,则实数 的取值范围是()
考点一.集合(选择、填空 )
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
表示自然数集, 或 表示正整数集, 表示整数集, 表示有理数集, 表示实数集.
(3)集合与元素间的关系
对象 与集合 的关系是 ,或者 ,两者必居其一.
(4)集合的表示法
(3)分数指数幂的运算性质
① ②

【2.1.2】指数函数及其性质
(4)指数函数
函数名称
指数函数
定义
函数 且 叫做指数函数
图象
定义域
值域
过定点
图象过定点 ,即当 时, .
奇偶性
非奇非偶
单调性
在 上是增函数
在 上是减函数
函数值的
变化情况
变化对图象的影响
在第一象限内, 越大图象越高;在第二象限内, 越大图象越低.
①加法:
②减法:
③数乘:


⑥换底公式:
【2.2.2】对数函数及其性质
(5)对数函数
函数名称
对数函数
定义
函数 且 叫做对数函数
图象
定义域
值域
过定点
图象过定点 ,即当 时, .
奇偶性
非奇非偶
单调性
函数值的
变化情况
变化对图象的影响
在第一象限内, 越大图象越靠低;在第四象限内, 越大图象越靠高.
〖2.3〗幂函数
A. B.C.Biblioteka D.1.函数 的定义域为( )
A.[-4,1]B.[-4,0)C.(0,1]D.
2.函数 的定义域为{0,1,2,3},那么其值域为( )
A.{-1,0,3}B.{0,1,2,3}
C.{y| }D.{y| }
3.函数f(x)=log 的值域为( )
A. B. C. D.
1.函数 的定义域是.
(3)求函数的定义域时,一般遵循以下原则:
① 是整式时,定义域是全体实数.
② 是分式函数时,定义域是使分母不为零的一切实数.
③ 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
⑤ 中, .
⑥零(负)指数幂的底数不能为零.
①平移变换
②伸缩变换
③对称变换
考点三.指数函数、对数函数、幂函数及分段函数
〖2.1〗指数函数
【2.1.1】指数与指数幂的运算(1)根式的概念
①如果 ,且 ,那么 叫做 的 次方根.
当 是奇数时, 的 次方根用符号 表示;
当 是偶数时,正数 的正的 次方根用符号 表示,负的 次方根用符号 表示;
0的 次方根是0;
(1)函数的单调性
①定义及判定方法
函数的
性质
定义
图象
判定方法
函数的
单调性
如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.
(1)利用定义
(2)利用已知函数的单调性
(3)利用函数图象(在某个区间图
象上升为增)
⑦若 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知 的定义域为 ,其复合函数 的定义域应由不等式 解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ | 具有的性质},其中 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类
①含有有限个元素的集合叫做有限集.
②含有无限个元素的集合叫做无限集.
③不含有任何元素的集合叫做空集( ).
(4)利用复合函数
如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.
(1)利用定义
(2)利用已知函数的单调性
(3)利用函数图象(在某个区间图
象下降为减)
(4)利用复合函数
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.
③判别式法:若函数 可以化成一个系数含有 的关于 的二次方程 ,则在 时,由于 为实数,故必须有 ,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.
事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.
因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法
①设 是两个实数,且 ,满足 的实数 的集合叫做闭区间,记做 ;
满足 的实数 的集合叫做开区间,记做 ;
满足 ,或 的实数 的集合叫做半开半闭区间,分别记做 , ;
满足 的实数 的集合分别记做 .
注意:对于集合 与区间 ,前者 可以大于或等于 ,而后者必须 .
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
名称
记号
意义
性质
示意图
子集
(或
A中的任一元素都属于B
(1)A A
(2)
(3)若 且 ,则
(4)若 且 ,则

真子集
A B
(或B A)
,且B中至少有一元素不属于A
(1) (A为非空子集)
(2)若 且 ,则
集合
相等
A中的任一元素都属于B,B中的任一元素都属于A
⑤图象特征:幂函数 ,当 时,若 ,其图象在直线 下方,若 ,其图象在直线 上方,当 时,若 ,其图象在直线 上方,若 ,其图象在直线 下方.
反函数的概念
设函数 的定义域为 ,值域为 ,从式子 中解出 ,得式子 .如果对于 在 中的任何一个值,通过式子 , 在 中都有唯一确定的值和它对应,那么式子 表示 是 的函数,函数 叫做函数 的反函数,记作 ,习惯上改写成 .
(1)幂函数的定义
一般地,函数 叫做幂函数,其中 为自变量, 是常数.
(2)幂函数的图象
(3)幂函数的性质
①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.
幂函数是偶函数时,图象分布在第一、二象限(图象关于 轴对称);
是奇函数时,图象分布在第一、三象限(图象关于原点对称);
是非奇非偶函数时,图象只分布在第一象限.
〖2.2〗对数函数
【2.2.1】对数与对数运算
(1)对数的定义
①若 ,则 叫做以 为底 的对数,记作 ,其中 叫做底数, 叫做真数.
②负数和零没有对数.
③对数式与指数式的互化: .
(2)几个重要的对数恒等式
, , .
(3)常用对数与自然对数
常用对数: ,即 ;自然对数: ,即 (其中 …).
(4)对数的运算性质 如果 ,那么
③奇函数在 轴两侧相对称的区间增减性相同,偶函数在 轴两侧相对称的区间增减性相反.
④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.
〖补充知识〗函数的图象
(1)要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.
②存在 ,使得 .那么,我们称 是函数 的最大值,记作 .
②一般地,设函数 的定义域为 ,如果存在实数 满足:(1)对于任意的 ,都有 ;(2)存在 ,使得 .那么,我们称 是函数 的最小值,记作 .
相关文档
最新文档