(完整word版)高等数学第一章函数与极限试题
高等数学习题-第1章-函数与极限(精品文档)
高等数学第一章函数与极限一、选择题(共 191 小题)1、A下列函数中为奇函数的是; ;; 答( )()tan(sin )()cos()()cos(arctan )()A y x x B y x x C y x D y x x==+==--22422π2、A[][]下列函数中(其中表示不超过的最大整数),非周期函数的是; ;; 答( )x x A y x x B y x C y a bx D y x x ()sin cos ()sin ()cos ()=+==+=-π223、D关于函数的单调性的正确判断是当时,单调增;当时,单调减;当时,单调减;当时,单调增;当时,单调增;当时,单调增。
答( )y xA x y xB x y xC x y x x y xD x y x x y x=-≠=-≠=-<=->=-<=->=-1010101010101()()()()4、C答( ) ;;; 的是下列函数中为非奇函数 7373)( 1arccos )()1lg()( 1212)(2222+--++=+=++=+-=x x x x y D xxx y C x x y B y A x x5、A函数 是奇函数; 偶函数;非奇非偶函数;奇偶性决定于的值 答( )f x a xa xa A B C D a ()ln()()()()()=-+>06、Bf x x e e A B C D x x ()()()()()()()=+-∞+∞-在其定义域,上是有界函数; 奇函数;偶函数; 周期函数。
答( ) 7、D设,,,则此函数是周期函数; B单调减函数;奇函数 偶函数。
答( ) f x x x x x A C D ()sin sin ()()();()=-≤≤-<≤⎧⎨⎪⎩⎪330ππ8、C设,,,则此函数是奇函数; 偶函数;有界函数; 周期函数。
答( )f x x x x x A B C D ()()()()()=--≤≤<≤⎧⎨⎪⎩⎪3330029、Bf x x A B C D ()(cos )()()()()()=-∞+∞333232在其定义域,上是最小正周期为的周期函数; 最小正周期为的周期函数;最小正周期为的周期函数; 非周期函数。
高数第一章 要求与练习(含答案)
第一章 函数与极限一、要求:函数定义域,奇偶性判定,反函数,复合函数分解,渐近线,求极限, 间断点类型判定,分段函数分段点连续性判定及求未知参数,零点定理应用. 二、练习: 1.函数 2112++-=x xy 的定义域 ;答:2x ≥-且1x ≠±;2.函数y =是由: 复合而成的;答:2ln ,,sin y u v v w w x ====;3. 设 ,1122xx x x f +=⎪⎭⎫ ⎝⎛+则()f x = ;答:22x -;4.已知)10f x x x ⎛⎫=+≠⎪⎝⎭,则()f x = ;答: ()11f x x xx==+()0x ≠;5.11lim 1n x x x →--= ,答:n ; n →∞= ;答: 0;6. 当a = 时,函数(),0,x e x f x a x x ⎧<=⎨+≥⎩在(,)-∞+∞上连续;答:1a =;7.设(3)(3)f x x x +=+,则(3)f x -=( B );A.(3)x x -,B.()6(3)x x --,C.()6(3)x x +-,D.(3)(3)x x -+; 8. 1lim sinn n n→∞=( B ); A.0 ,B.1, C.+∞,D.-∞;9.1x =是函数221()32x f x x x -=-+的(A );A.可去间断点,B.跳跃间断点,C.第二类间断点,D.连续点; 10. |sin |()cos x f x x xe-=是( A );A.奇函数,B.周期函数,C.有界函数,D.单调函数;11.下列正确的是( A )A.1limsin 0x x x →∞=,B.1lim sin 0x x x →∞=, C.01lim sin 1x x x →=, D.11lim sin 1x x x→∞=; 12. 1x =是函数()1,13,1x x f x x x -≤⎧=⎨->⎩的( D )A 、连续点B 、可去间断点C 、第二类间断点D 、跳跃间断点13. 函数221xx y =+的反函数为( A )A.()()2log 0,11x y x x =∈-,B. 2log 1yx y =-,C. 2log 1x y x =-,D. ln 1x y x =- 14. 计算()221lim 1xx x x →∞⎛⎫⎪-⎝⎭;()2lim 1xx x x →∞⎛⎫ ⎪-⎝⎭;(3)30tan sin lim sin 2x x x x →-; (4)21/30(1)1lim cos 1x x x →+--;(5)()231lim 3cos x x x x x →∞+++;(6)x → (7) ()()20ln ln 2ln limx a x a x a x →++--;(8)1x x ;(9) 01limx x →(10) 1x x . 解:()22121111lim lim lim 11111111xx x x x x x x x e e x x x -→∞→∞→∞⎛⎫==== ⎪-⎛⎫⎛⎫⎛⎫⎝⎭--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ()12lim lim 11xx x x x e x x -→∞→∞⎡⎤⎛⎫⎛⎫=-=⎢⎥ ⎪ ⎪-⎝⎭⎝⎭⎢⎥⎣⎦; (3)()23330001tan 1cos tan sin 12lim lim limsin 28816x x x x x x x x x x x x →→→⋅--====; (4)221/30021(1)123lim lim 1cos 132x x x x x x →→+-==---; (5)()223311lim 0,23cos 4,lim 3cos 0x x x x x x x x x x→∞→∞++=≤+≤∴+=++ ;(6)()44242x x x x →→→-===(7) ()()2222222222000ln 1ln ln 2ln 11lim lim limln 1a x x x x x a x a x a a x x x a a a -→→→⎛⎫- ⎪++--⎛⎫⎝⎭==--=- ⎪⎝⎭; 或 原式2220ln 1lim x x a x →⎛⎫- ⎪⎝⎭=222201limx x a x a →-==-(8) 111sin lim sin 200x x x x x x x x x→∞===⋅=;或原式=11x x x x→∞==0(9) ()()()()110001111lim lim ln 1ln 1lim ln 1ln 1122x x x x x x x x x x x -→→→⎡⎤+--=++-=⎡⎤⎣⎦⎢⎥⎣⎦; 或0000011111112112112lim lim ln lim ln 1lim lim 111122221111x x x x x x x x x x x x x x x x →→→→→⎛⎫+ ⎪==+=== ⎪- ⎪---⎝⎭(10)110x x x x x ===.15.已知21lim31x x ax bx →++=-,求,a b 的值; 解:设()()21x ax b x x c ++=-+,则()()11lim13,21x x x c c c x →-+=+==-,所以11,2a c b c =-==-=-.16. 已知232lim43x x x kx →-+=-,求k 的值. 解:()2332lim4,lim 303x x x x kx x →→-+=-=- ,()23lim 230,3x x x k k k →∴-+=+==-. 17.证明方程3320x x ++=在区间()1,1-内至少有一个根.证明 设()332f x x x =++,则()f x 在闭区间[]1,1-上连续,又()()113220,113260,f f -=--+=-<=++=>由零点定理,至少存在一点()1,1,ξ∈-使()0fξ=;即()3320f ξξξ=++=,即方程3320x x ++=在区间()1,1-内至少有一个根.。
(完整版)高等数学测试题及解答(分章)
第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sinlim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
高等数学第一章练习题
第一章函数、极限、连续一、单项选择题1.区间[a,+∞),表示不等式()2.若3.函数是()。
(A)偶函数(B)奇函数(C)非奇非偶函数(D)既是奇函数又是偶函数4.函数y=f(x)与其反函数 y=f-1(x)的图形对称于直线()。
5.函数6.函数7.若数列{x n}有极限a,则在a的ε邻域之外,数列中的点()(A)必不存在(B)至多只有有限多个(C)必定有无穷多个(D)可以有有限个,也可以有无限多个8.若数列{ x n }在(a-ε, a+ε)邻域内有无穷多个数列的点,则(),(其中为某一取定的正数)(A)数列{ x n }必有极限,但不一定等于a(B)数列{ x n }极限存在且一定等于a(C)数列{ x n }的极限不一定存在(D)数列{ x n }一定不存在极限9.数列(A)以0为极限(B)以1为极限(C)以(n-2)/n为极限(D)不存在极限10.极限定义中ε与δ的关系是()(A)先给定ε后唯一确定δ(B)先确定ε后确定δ,但δ的值不唯一(C)先确定δ后给定ε(D)ε与δ无关11.任意给定12.若函数f(x)在某点x0极限存在,则()(A) f(x)在 x0的函数值必存在且等于极限值(B) f(x)在x0的函数值必存在,但不一定等于极限值(C) f(x)在x0的函数值可以不存在(D)如果f(x0)存在则必等于极限值13.如果14.无穷小量是()(A)比0稍大一点的一个数(B)一个很小很小的数(C)以0为极限的一个变量(D)0数15.无穷大量与有界量的关系是()(A)无穷大量可能是有界量(B)无穷大量一定不是有界量(C)有界量可能是无穷大量(D)不是有界量就一定是无穷大量16.指出下列函数中当X→0+ 时,()为无穷大量。
17.若18.设19.求20.求21.求22.求23.求24.无穷多个无穷小量之和()(A)必是无穷小量(B)必是无穷大量(C)必是有界量(D)是无穷小,或是无穷大,或有可能是有界量25.两个无穷小量α与β之积αβ仍是无穷小量,且与α或β相比()。
高等数学-——函数与极限.pdf
《高等数学》第一章-——函数与极限练习题(A)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1){}{}{}(,)0U a x x a x a x a x a x a δδδδ=<−<=−<<∪<<+()(2)关系式221x y −=表示y 是x 的函数()(3)关系式{}{}max ,1min ,1y x x =+−表示y 是x 的函数()(4)关系式2arccos ,2y u u x ==+表示y 是x 的函数()(5)若()sgn f x x =,则21,0,()0,0.x f x x ≠⎧=⎨=⎩()(6)若2()ln ,()2ln ,f x x g x x ==则()()f x g x =.()(7)2sin y x =是周期为π的函数.()(8)()00000lim ()()lim ()()0x x f x x f x f x x f x Δ→Δ→+Δ=⇔+Δ−=.()(9)0y =是曲线21y x =的水平渐近线.()(10)()y f x =在0x 连续的充要条件是000()()()f x f x f x −+==.()(11)收敛数列的极限不唯一.()(12)lim ()().f x A f x A α=⇔=+(其中lim 0α=).()(13)212limn nn →+∞++⋅⋅⋅+=()(14)设()f x ,()g x 在(,)−∞+∞内有定义.若()f x 连续且()0f x ≠,()g x 有间断点,则()()g x f x 必有间断点()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.2arctan limn nn →+∞=3.212lim 10n n n →+∞⎛⎞+=⎜⎟⎝⎠4.0lim x x →=5.()()220lim 11sin x x x x x →⎡⎤++−+=⎣⎦6.221lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.2lim 31nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()3sin 2limtan x x x→=9.若lim ,n n x a →∞=则lim n n x →∞=10.若lim ,n n x a →∞=则2lim n n x →∞=11.()22limh x h x h→+−=12.231lim 1x x x →∞−=+13.331lim 1x x x →∞+=−三、选择题(将正确答案的序号填写在括号内)(1)设函数()f x 的定义域为D ,数集X D ⊂,则下列命题错误的是()A :若()f x 在X 上有界,则()f x 在X 上既有上界也有下界B :若()f x 在X 上有界,则()f x 在X 上也有界C :若()f x 在X 上有界,则1()f x 在X 上必无界D :若()f x 在X 上无界,则()f x 在X 上也无界(2)下列结论错误的是()A :sin y x =在定义域上有界B :tan y x =在定义域上有界C :arctan y x =在定义域上有界D :arccos y x =在定义域上有界(3)下列结论正确的是()A :arcsin y x =的定义域是(,)−∞+∞B :arctan y x =的值域是(,)−∞+∞C :cos y x =的定义域是(,)−∞+∞D :cot y arc x =的值域是(,22ππ−(4)若lim n n x a →+∞=,则下列结论错误的是()A :{}n x 必有界B :必有11limn nx a →∞=C :必有221lim lim n n n n x x a−→∞→∞==D :必有1000lim n n x a+→∞=(5)下列结论正确的是()A :若函数()f x 在点0x 处的左右极限存在,则0lim ()x x f x →一定存在B :若函数()f x 在点0x 处无定义,则0lim ()x x f x →一定不存在C :若0lim ()x x f x →不存在,则必有0lim ()x x f x →=∞D :0lim ()x x f x →存在的充要条件是函数()f x 在点0x 处的左右极限存在且相等E :若函数()f x 在点0x 处的左右极限存在但不相等,则01lim()x x f x →一定存在(6)若lim ()0,lim ()x x f x g x →∞→∞==∞,则下列结论错误的是()A :()lim ()()x f x g x →∞±不存在B :()lim ()()x f x g x →∞不一定存在C :lim[2()]x f x →∞一定存在D :()lim()x f x g x →∞不存在(7)下列结论正确的是()A:绝对值很小的数一定是无穷小B:至少有两个常数是无穷小C:常数不可能是无穷小D:在自变量的某一变化过程中,趋向0的函数是无穷小(8)下列结论正确的是()A :有界函数与无穷大的积不一定为无穷大B :无限个无穷小的和仍为无穷小C :两个无穷大的和(积及商)仍为无穷大D :无界函数一定是无穷大(9)下列等式不成立的是()A :1lim2n n n →+∞=B :1limln(1)n n →+∞=+C :lim 2n n →+∞=+∞D:lim1n →+∞−=(10)下列结论错误的是()A :单调有界数列必收敛B :单增有上界的数列必收敛C :单调数列必收敛D :单减有下界的数列必收敛(11)下列结论正确的是()A :当0x →时,1xe −是比2x 高阶的无穷小B :当1x →时,1x −与21x −是同阶的无穷小C :当n →+∞时,21n 是比1n低阶的无穷小D :当0x →时,若sin tan ax x ∼,则2a =(12)下列结论不正确的是()A :0x =是()xf x x=的跳跃间断点B :2x π=是()tan xf x x =的可去间断点C :()cot f x x =只有一个间断点D :0x =是1()sin f x x=的第二类间断点(13)下列结论不正确的是()A :若lim ,n n x a →+∞=则10lim n n x a+→+∞=B :01lim 1tan x x e x →−=C :若10n x n<≤,则lim 0n n x →+∞=D :123lim 121x x x x +→∞+⎛⎞=⎜⎟+⎝⎠(14)下列数列收敛的是()A :11,1,1,,(1),n +−− B :2,4,8,,2,nC :123,,,,,2341n n + D :233333,,,,,2222n⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠(15)下列数列发散的是()A :1sin2n n x n π=B :1(1)nn x n=−C :215n x n=+D :(1)nn x n =−(16)下列变量在给定变化过程中,不是无穷大量的是()A :lg ,(0)x x +→B :lg ,()x x →+∞C :21,(0)x x +→D :1,(0)xe x −−→(17)下列结论错误的是()A :0(,)x ∀∈−∞+∞,00lim sin sin x x x x →=B :2lim ln sin 0x x π→=C :0(1,1)x ∀∈−,0lim arccos arccos x x x x →=D :0lim sgn sgn x x x x →=四、计算题1.)lim arcsinx x →+∞−.2.2121lim()11x x x→−−−.3.3tan sin lim1x x x x e →−−. 4.()22lim 13tan cot xx x →+.5.1lim 1x x →−.五、证明题1.证明函数,()1sin ,x f x x x ⎧⎪=⎨⎪⎩>≤x x 在点0=x 处连续.2.证明2sin ,0(),0xx xf x a x x ⎧>⎪=⎨⎪+≤⎩在定义域内连续的充要条件是1a =.3.设()f x 在[0,1]上连续,且(0)0f =,(1)1f =,证明存在(0,1)ξ∈,使得()1f ξξ=−.4.证明222111lim 012n n n n n →∞⎛⎞++⋅⋅⋅+=⎜⎟+++⎝⎠.5.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=.6.证明方程531x x −=在1与2之间至少存在一个实根.《高等数学》第一章---函数与极限练习题(B)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1)2322(1,0)(3,4)x x x −−<⇔∈−∪()(2)以1为中心,2为半径的去心邻域为{}{}(1,2)1113U x x x x =−<<∪<<()(3)关系式2arcsin(3)y x =+表示y 是x 的函数()(4)关系式{}max ,1min{,5}y x x =+表示y 是x 的函数()(5)若函数()f x 的定义域为[1,4],则函数2()f x 的定义域为[1,2]()(6)若2(1)(1)f x x x −=−,则2()(1)f x x x =−()(7)函数1,0()0,01,0x x f x x x x −<⎧⎪==⎨⎪+>⎩是偶函数()(8)函数()cos 4f x x =的反函数1()arccos 4f x x−=()(9)若()()sgn ,f x g x x ==则()()f x g x =.()(10)sin 2tan 2xy x =+是周期为π的函数.()(11)函数lg y u x ==能构成复合函数y =的充分必要条件是[1,10]x ∈()(12)曲线211x y e−−=的水平渐近线是1y =()(13)若0lim ()x x f x →不存在,则必有00()()f x f x −+≠()(14)),0()0,0,0x a x f x x x a x +>⎧⎪==⎨⎪−<⎩在0x =连续的充要条件是0a =()(15)设()f x ,()g x 在(,)−∞+∞内有定义,()f x 为连续,且()0f x ≠,若()g x 有间断点,则222()()g x f x 必有间断点()(16)1x =是函数()2sgn(1)1y x =−+的可去间断点()(17)4x π=是2tan 21y x =−的无穷间断点()(18)lim ()1()1.f x f x α=⇔=+(其中lim 0α=)()(19)2080100(1)(100)lim 1(1)n n n n →∞−+=+()(20)222212lim 0n n n →+∞++⋅⋅⋅+=()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.24arctan(1)(sin 1)lim100n n n n →+∞−+=−3.417lim 100n n n →+∞⎛⎞+=⎜⎟⎝⎠4.()1lim 1sgn(1)x x x →−−=5.22301lim (3cos )2x x x x →⎡⎤++=⎢⎥+⎣⎦6.242lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.24lim 101nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()10050sin 4lim(tan 2)x x x →=9.若lim ,n n x a →+∞=则221lim n n n x x −→+∞⎡+⎤=⎣⎦10.225lim 2x x x →−=−11.()33limh x h x h→+−=12.20010001lim1x x x →∞−=+13.2lim ln sin x x π→=14.0x →=三、选择题(将正确答案的序号填写在括号内)(1)下列结论错误的是()A :由于函数()sin f x x =在[,]22ππ−上单调递增,因此()f x 的反函数1()f x −必存在且1()fx −的定义域为[1,1]−,值域为[,]22ππ−B :在同一平面坐标系中,函数()y f x =与其反函数1()y f x −=的图形关于直线y x =对称C :由于函数()tan f x x =在,22ππ⎛⎞−⎜⎟⎝⎠上单调递增且连续,因此()f x 的反函数1()f x −在(),−∞+∞上也是单调递增且连续.D :函数()cot f x arc x =的定义域为(,)−∞+∞,值域为,22ππ⎛⎞−⎜⎟⎝⎠(2)下列数列收敛的是()A ::1,1,1,1,1,1,n x −−−B ::0,1,2,3,4,5,n xC ::0,ln 2,ln 3,ln 4,ln 5,n xD :111:0,,0,,0,,248n x(3)下列数列发散的是()A :(1)1n n ⎧⎫−+⎨⎬⎩⎭B :3110n⎧⎫+⎨⎬⎩⎭C :{}(2)n−D :1ln(1)n n ⎧⎫⎨⎬+⎩⎭(4)下列结论错误的是()A :单调有界数列必收敛B :发散的数列必无界C :数列收敛的充要条件是任意子列都收敛于同一个数D :收敛的数列必有界(5)若lim ()f x 与lim ()g x 都不存在,则()A :[]lim ()()f x g x +与[]lim ()()f x g x 都不存在B :[]lim ()()f x g x +与[]lim ()()f x g x 一定都存在C :[]lim ()()f x g x −与()lim ()f x g x ⎡⎤⎢⎥⎣⎦都不存在.D :[]lim ()()f x g x ±、[]lim ()()f x g x 与()lim ()f x g x ⎡⎤⎢⎥⎣⎦可能存在,也可能不存在(6)下列结论正确的是()A :若0lim ()lim ()x x x x f x g x →→>,则必有()()f x g x >B :若()()f x g x >,则必有0lim ()lim ()x x x x f x g x →→>C :若0lim (),x x f x A →=则()f x 必有界D :0lim ()x x f x A →=的充要条件是对任意数列00,,n n x x y x →→有lim ()lim ()n n n n x x y x f x f y A→→==(7)下列结论正确的是()A :若数列n x 无界,则数列n x 一定发散B :若lim 0,lim 1,n n n n a b →∞→∞==则lim n n nba →∞一定存在C :若lim n n x a →+∞=,则必有lim n n x a→+∞=D :若221lim lim n n n n x x a −→+∞→+∞==,则lim n n x →+∞一定不存在(8)当x →∞时,下列变量中不是无穷小量的是()A :3211x x x −++BC :221(1)sin1x x x−−D :2211sin1xx x −−(9)下列变量在给定的变化过程中为无穷大量的是()A :41sin(0)x x x→B :21sin (0)x x x →C :cos ()x x x →∞D :1cos (0)x x x→(10)当0x →时,下列变量中与2tan x 为等价无穷小量的是()AB :xC :2xD :3x(11)设当x →0时,tan sin x x −是比sin narc x 高阶的无穷小,则正整数n 等于()A :1或2B :4C :5D :3.(12)设()1,()ln(1),,mx n x ex x m n N αβ+=−=+∈,则当x →0时,下列结论正确的是()A :当m n >时,()x α必是()x β等价的无穷小B :当m n =时,()x α必是()x β高阶的无穷小C :当m n <时,()x α是()x β的低阶无穷小D :当m n <时,()x α是()x β的同阶无穷小(13)设若,,ααββ′′∼∼则下列结论可能不正确的是()A :αβαβ′′∼B :αβαβ′′±±∼C :αβαβ′′∼D :(0)C C C αα′≠∼(14)()xf x x=在0x =有()A :跳跃间断点B :可去间断点C :震荡间断点.D :无穷间断点(15)函数1(3)ln y x x=−的间断点有()A :1个;B :2个C :3个D :4个(16)当x →∞时,若2111ax bx c x ∼++−,则,,a b c 的值一定为()A :0,1,1a b c ===−B :0,1,a b c ==为任意常数C :0,,a b c =为任意常数D :,,a b c 为任意常数(17)下列极限中结果等于e 的是()A :sin 0sin 2lim 1xxx x x →⎛⎞+⎜⎟⎝⎠B :sin sin lim 1xxx x x →∞⎛⎞−⎜⎟⎝⎠C :sin sin lim 1x xx x x −→∞⎛⎞−⎜⎟⎝⎠D :()2cot 0lim 1tan xx x →+(18)函数111()01x e x f x x −−⎧⎪≠=⎨⎪=⎩在点1x =处()A :连续B :不连续,但右连续或有右极限C :不连续,但左连续或有左极限D :左、右都不连续(19)下列结论正确的是()A :若函数()f x 在(,)a b 内连续,则()f x 在(,)a b 内一定有界B :若函数()f x 在[,]a b 内有间断点,则()f x 在[,]a b 上一定没有最值C :若函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,而函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处也是连续的D :一切初等函数在其定义域内都是连续的四、计算题1.设()0.10x e x f x x ⎧≤=⎨>⎩求)(x f 在0x =的极限2.求lim x →+∞3.求3211lim()11x x x x →−−−4.求)21sin limtan x arc xx →− 5.求lim ln(1)ln(1)n n nn n →∞⎛⎞−⎜⎟−+⎝⎠五、讨论题1.讨论2sin ,0;()1,0.xx x f x x x ⎧≠⎪=⎨⎪+=⎩在定义域内的连续性2.讨论a 取何值可使1sin arccos ,0;()0,0;ln(1),0.x x x f x x x a x ⎧>⎪⎪==⎨⎪−+<⎪⎩在定义域内连续.六、证明题1.设()f x 在[0,1]上连续,且(1)0f >,证明存在(0,1)ξ∈,使()1f ξξξ=−2.证明lim 1n →∞⎛⎞+⋅⋅⋅+=3.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=4.证明曲线423710y x x x =−+−在1x =与2x =之间至少存在与x 轴有一个交点5.证明0p >时,函数1sin ,0()0,px x f x xx ⎧≠⎪=⎨⎪=⎩0>≤x x 在点0=x 处连续.6.证明:0lim ()()x x f x A f x A α→=⇔=+,其中0lim 0x x α→=.《高等数学》第一章-——函数与极限自测题(A)题号一二三四五六总分得分一.判断题(判断下列各题是否正确,正确的划√,错误的划×。
高等数学第一章函数例题及答案
高等数学第一章 函数、极限、连续§1.1 函数一.求函数的定义域例1.求函数()2100ln ln ln x x x f -+=的定义域 例2.求5ln 1-+-=x x x y 的定义域例3.设()x f 的定义域为[]()0,>-a a a ,求()12-x f 的定义域 例4.设()⎩⎨⎧≤≤<≤=42 ,220 ,1x x x g 求()()()12-+=x g x g x f 的定义域,并求⎪⎭⎫ ⎝⎛23f 。
二.求函数的值域 例1.求3311-=x ey 的值域例2.求()()⎪⎩⎪⎨⎧>--≤≤---<-==2,2122,52,323x x x x x x x f y 的值域,并求它的反函数 三.求复合函数有关表达式 1.已知()x f 和()x g ,求()[]x g f 例1.已知()1-=x xx f ,求()⎥⎦⎤⎢⎣⎡-11x f f 例2.设()21x x x f +=,求()()[]()重复合n x f x f f f n =例3.设()⎩⎨⎧>≤-=2,02,42x x x x f ,求()[]x f f 2.已知()x g 和()[]x g f ,求()x f 例1.设()x e e e f x xx++=+21,求()x f例2.已知()xxxee f -=',且()01=f ,求()x f例3.设()x x fsin =,求()x f '例4.已知()x x f 2cos 3sin -=,求证()x x f 2cos 3cos += 3.已知()x f 和()[]x g f ,求()x g例.已知()()x x f +=1ln ,()[]x x g f =,求()x g 解:()[]x fx g 1-=实际上为求反函数问题()[]()[]x x g x g f =+=1ln ,()x e x g =+1 ()1-=x e x g 4.有关复合函数方程 例.设()x x f x x f 2311-=⎪⎭⎫⎝⎛-+,求()x f 四.有关四种性质例1.设()()x f x F =',则下列结论正确的是[ ](A )若()x f 为奇函数,则()x F 为偶函数。
(完整版)高数第一章例题及答案(终)理工类吴赣昌
第一章函数、极限与连续内容概要课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① a log □,( □0>) ② /N □, ( □0≠) ③(0)≥W④ arcsin W (W[]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ;(2)31121121arcsin≤≤-⇒≤-≤-⇒-=x x x y ; (3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★ 2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,x x g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★ 3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数;思路:注意自变量的不同范围; 解:216sin)6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★ 4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。
高等数学第一章函数与极限试题
第一章 函数与极限§1 函数一、是非判断题1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。
[ ]2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。
[ ] 4、定义在(∞+∞-,)上的常函数是周期函数。
[ ] 5、任一周期函数必有最小正周期。
[ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。
[ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。
[ ] 8、f(x)=1+x+ 2x 是初等函数。
[ ] 二.单项选择题1、下面四个函数中,与y=|x|不同的是 (A )||ln xey = (B )2x y = (C )44x y = (D )x x y sgn =2、下列函数中 既是奇函数,又是单调增加的。
(A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ϕϕ则函数==是(A )x 2log (B )x 2 (C )22log x (D )2x4、若)(x f 为奇函数,则 也为奇函数。
(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。
1、 y=)1arctan(+x e2、 y=x x x ++3、 y=xln ln ln四.设f(x)的定义域D=[0,1],求下列函数的定义域。
(1) f()2x(2) f(sinx)(3) f(x+a) (a>0)(3) f(x+a)+f(x-a) (a>0)五.设⎩⎨⎧=,,2)(x x x f 00≥<x x ,⎩⎨⎧-=,3,5)(x x x g 00≥<x x ,求)]([x g f 及)]([x f g 。
高等数学_第1章_函数与极限_计算题_204_答
高等数学院系_______学号_______班级_______姓名_________得分_______题 号 计算题 总 分 题 分 200 核分人 得 分复查人一、计算题(共 200 小题,100 分)1、f x x x xx x x x x ()sin sin sin sin cos sin sin (cos )=+-=-=--523232232312 =-⋅432sin sin x x4分而lim()limsin sin x x f x xx xx→→=-⋅=-03234312 7分所以取,,即A n g x x =-==-123123() 则当时,x f x g x →0()~()10分2、f x x xx()ln()ln(=++++111222=++++12111222l n ()l n ()x xx3分而lim()limln()limln()x x x f x xx xx xx→→→=++++02222221211=+=121328分所以取,,即A n g x x ===322322()则当时,x f x g x →0()~() 10分3、[][]原式=-+-++--→lim()()x x x x 313121231335分=+--------→→lim()lim()x x x x x x 3331313123138分=--+⋅--→→lim ()lim ()x x x x x x 33123313233=-=-12231610分4、原式=⋅→lim x nax x17分 =a n10分5、原式=---+-→→lim()lim ()x x x xx x12131411615分=⨯--⨯→→lim ()lim x x x xx x124136 8分=--=-()22410分6、原式=+-+---+→→limlimx x x x xx x x2215121312 5分=⋅+-⋅-+→→lim ()lim ()()x x xx x x x x 0012521232 8分=+++=+=→→limlim x x x x 005223225434210分7、证,则当时,αβαβ=+=-→-→arctan()arctan()1100x x x)1)(1(1)1()1(arctantan tan 1tan tan arctan)(x x x x -++--+=βα+β-α=β-α 且 3分)1)(1(1)1()1(~)1arctan()1arctan(x x x x x x -++--+--+[]因此,原式=+--++-→lim()()()()x x x x x x 011111 7分=+-=-=→→lim()limx x x x x x2221122110分8、原式=+→∞lim (tan)n nn1222π4分=+→∞⋅⋅lim (tan)tantan()n nn nn12122222πππππ 7分=e π2210分9、limlim()!()!n n nn n n nnx x an n na n →∞+→∞++=⋅++⋅⋅11111 4分=+→∞lim()n na n 11 7分=a e10分10、原式=-------+--→limx mn mn xx x x x x x x 1111111117分=-+m n m n10分11、原式=⋅+++→+∞lim x xx x xx11 8分=⨯=01010分12、)431ln(ln )751ln(ln lim22636xx x xx x x +-++++=∞→原式8分=++++-+→∞lim ln()ln ln()ln x x x x x x x3157113436222=310分13、原式=++→+∞limln ()ln ()x xxxxee ee22333223=++++→+∞--limln()ln()x x xx e x e23232323 5分=++++→+∞--lim ln()ln()x xxx e xe21323123238分=2310分14、证 s n n n s nnnn s n n n nn n n =+++++<+++=>+++=111212111112121214222222222()()()()()()ns n n 141<<即有6分)2(1)2(1)1(1lim 01lim 041lim222=⎥⎦⎤⎢⎣⎡+++++==∞→∞→∞→ 因此,而n n n n nn n n 10分15、0111111232333233≤+≤+<-<+<n n n nn nnn n n nsin !sin !即 7分而,lim ()limn n nn→∞→∞-==101033因此limsin !n n n n →∞+=231010分16、证有又有s n n n ns n n n ns n nn nn nn n nn n n =++++++<++++=>++++++=+11121111111112222222即:n n ns n 21+<<6分而,所以limlim lim lim ()n n n n n n n ns n n n n→∞→∞→∞→∞+===++++++222211111121=1 10分17、因为02212224<=⋅≤nn n n!6分而所以limlim!n n nnn →∞→∞==40210分18、原式=+--→limtan (tan )(tan )sin()x x x x x ππ33334分=+⋅--→→lim tan (tan )limtan sin()x x x x x x πππ33333=-⋅⋅-→63333limsin()cos cossin()x x x x ππππ 8分=⋅-⋅611212()=-2410分19、01000110011011110100lim3232=+++++=∞→xx x x x x x 原式20、当原式n n nx xn ≥=-++→∞21112lim(cos)(cos)(cos)πππ5分=+⋅→∞limcossin()n nn nππππ22217分=π2210分21、原式=⋅→∞--lim sinn n n 22211πππ7分=2π10分22、原式=⋅→∞limsinn e n e ne7分=e10分23、证:,则于是αααπαα=+=+-=-+=+-++=+arctantan tan()tan tan n nn nn n n nn 114111111121所以 απ-=+4121arctan n 5分故原式 =+⋅+=++⋅++→∞→∞lim (arctan)limarctann n n n n n n n 121112112112122 =1210分24、原式=+→lim ln()x x x 01133分 =+→⋅lim ln()x x x 0133138分==ln e 3310分注:直接用也可!limln()ααα→+=01125、)cos sin 1(tan cos sin 1limx x x x x x x x ++-+=→原式 5分)t a n c o s 1t a n s i n (21limxx x x x x x x -+=→ 8分=+=1211234()10分26、xx x xx x 2sin2lim2sin4lim2→→==原式 3分12sin2lim-=-→x x x 而12sin 2lim=+→xx x 8分不存在-因此xxx cos 22lim→10分27、原式=+-+-→limsin cos sin cos x xx x x px xpxx11 7分=++=1001p p10分28、原式=--→limsin cos sin cos ()cos cos x x x x x xαααα 4分=--⋅→limsin()cos cos x x x x xααα1 7分 ==122c o s s e c αα10分29、原式=+-++++→lim(tan )(sin )(tan sin )x x x x x x 031111 5分=-→12103limsin (cos )x x x x=⋅-→12102lim sin cos x x x xx7分 =1410分30、原式=⋅+→limsin ()cos x ax ax aax2221 7分=a2210分31、原式=-→lim cos sin x x x x1 4分 =⋅⋅→lim sin sin sin cos x x x x x x17分 =1210分32、f x ax x ax x a ()()()()()=+-+-12113分()lim ()lim1121111当时,a f x x x x x ==--=∞→→ 5分()lim ()lim2211112111x x f x x x aaa →→=--=-==-得7分()lim ()()lim ()lim ()31210012121212x x x ax x f x x a a →→→+-=>-=-=故欲使,必须即a =129分lim ()lim ()()()()x x f x x x x x →→=+-+-=121212121121122 10分33、原式 =⨯=→lim x x x431210(()~)x x x →+-⨯0131434,34、原式=+--+→→lim ()lim()x x x xx x53121145分 =⨯-⨯→→lim limx x x xx x52347分=-=-1012210分35、原式=+-⎡⎣⎢⎤⎦⎥-⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪-⎡⎣⎢⎤⎦⎥→lim ()()x a mmn na x a a a x a 12115分=⋅-+---→am x a xx a a m nx anlim()()211=⋅⋅-⋅--→am x aa n x a am nx alim2 8分=-2m anm n10分36、2422321)1(lim1)1(limxx xx x x ----+=→→原式 5分=⨯-⨯-→→lim lim()x x x xx x222234 8分=+=34710分37、原式=---------+-⋅+---⋅-→lim ()()()()()()()()x x x x xx xx x 03523121221111414413133 7分=-⨯--⨯⨯+-⨯=()()()231542331 10分38、原式=+++-→lim()()x x x x 0255556分=++=→lim ()x x 02554510分39、)5215)(2)(2()52()15(lim2++-+-+--=→x x x x x x x 原式5分=--+-++→lim()()()()x x x x x x 232225125 8分=+-++=→lim()()x x x x 23251251810分40、原式=+--++++→lim()(())x x x x x 22333282322324 5分=++++→lim()x x x 223333223248分=1410分41、原式=---+→lim()()()()x x x x x 22322 6分=-1410分42、原式=-+--++-→lim()()()()x x x x x x x x 12321213 4分=-+-++→lim()()()()x x x x x x 1212123 7分=1210分43、因 故即lim ()lim()lim ()x x x f x f x xx x xa a →-∞→-∞→-∞==-+-=--=0045102故a =14分由得lim ()lim ()x x x x x b b x x x →-∞→-∞-++-==-++2245045 =-+-+-=--++→-∞→-∞limlimx x x x x xx xx4545451451228分=+=4112 10分44、原式=-⋅-+→limtan tan tan tan x xx xxπ422111 5分=+→limtan (tan )x x x π4221 8分=1210分21)4(2)4(lim)4(2cot )22cot(2tan 4=-π-π=-π=-π=π→x x x x x x 原式或解:45、当时:010<<=→+∞a ax xlimlimx x xaa→+∞+=1025分当时,a ax x>=→+∞-10lim limlimx x xx xxaaa a→+∞→+∞-+=-+=11022 9分综上述得: ,lim()x x xaaa a →+∞+=>≠1001210分46、原式=--+→∞lim ()()()x xxx433267234258分=⋅436345=2310分47、原式=+++++-⋅→∞lim ()()()()()()x x xxxxx1121314151532222222223357分=⋅⋅⋅⋅=23455218522223510分48、原式=-----++→∞lim()()()()()()()x xxxxx xx 11213141512332328分=⨯=5235332!10分49、limlimx x xxxx xxee eee e→+∞--→+∞---+=-+=23423412323255 4分31432lim432lim552323-=+-=+--∞→--∞→xx x xxxx x ee eee e-而 7分.432lim2323不存在因此xxxx x eee e--∞→+-50、原式=-+-+-+-+→-∞lim()()x x x x x x x 48521485212225分=-+-+--→-∞limx x x x x 124485212=--+++→-∞limx xxxx1244852128分==124310分51、[]原式=++---++++→+∞lim()()x x x x x x x x x 22225212515分=++++→+∞limx x xx41251128分=210分52、原式=++++++++--→∞lim()()()()()()x xxxxxx 11213110110111122226分=++++⨯12310101122228分=⨯⨯⨯⨯=101121610117210分53、原式=+⋅-→∞limcos sin x x xxx2131 6分=2310分54、)1121(lim --+=+∞→x x x 原式 5分=⋅-→+∞lim ()x x x 12218分=-=→+∞limx x111110分解:原式2111111=⋅+--+-+→+∞lim x x x x x x 5分=-⋅+-+→+∞limx x x x x 2111118分=+=2111 10分55、[]由lim ()x x x ax b →+∞++-+3472=-+-+-++++=→+∞lim()()()()x a x ab x b x x ax b 3227347022224分有 得 3002032332-=>-=⎧⎨⎪⎩⎪==a a ab a b 6分而lim lim()x x x x x x x x x x →+∞→+∞++--⎡⎣⎢⎤⎦⎥=-++++3473233743347323322=-++++→+∞lim()x x xxx743347323328分==173231718310分[]解法:由得234703473022lim ()limx x x x ax b x x xa b xa →+∞→+∞++-+=++--=-=a =3 4分即b x x x x =++-→+∞lim ()34732=++++==→+∞limx x x x x4734732323326分⎥⎦⎤⎢⎣⎡+-+++∞→)32(3743lim 2x x x xx 而 )32(3743)347(lim2++++-=+∞→x x x x x 8分==173231718310分56、原式=-+=-→∞+limn nn 210331021015157、原式=-+--+++-++→∞lim()()n n n n n n n n 121121212335分=⋅-+→∞1332lim()n n n 8分 =-110分58、原式=--+-→∞lim()n n n n n n12121212 5分=-++-→∞lim()n n n n n n22121112 8分==→∞12214limn n n10分59、原式=++++-++-→∞lim()()()()n a n b n b n a n 122221 5分=+-+++++-→∞a b b n n a n nn 12112221lim 8分=+-a b 122()10分60、n nn n 1)32()31(3lim ++=∞→原式 7分 =3 10分61、原式=+-++++→∞lim()()()n n n n n n n 111 5分=++=→∞limn n n11010分62、原式.=++-+=→∞limn n n nn143351132263、原式=+==→∞limn n n10000110164、由()11112-=-⋅+kk k k k 5分原式=⋅⋅-⋅+→∞lim ()()()n n n n n1232234311=+→∞lim n n n 1218分 =1210分65、当时,因为a an n<=→∞10lim所以limn nnaa→∞+=20 5分当时,因为a an n>=→∞11lim ()11)1(21lim2lim=+=+∞→∞→n n nn n aaa所以 10分66、[]原式=+--+-+-+-+→∞lim()()n n n n n nn n n n 43424336213611 5分=+-+-++-+→∞lim()()n nnnnnn3271361111348分=3210分67、原式=++--+++-→∞lim ()()n n n n n n n 222451451=++++-→∞lim()n n n n n 6445125分=++++-→∞limn nnnn641451128分==62310分68、原式=+--+++→∞lim()n n n n n n 21215分=+++→∞limn n n11211 8分=1210分69、原式=+--⎡⎣⎢⎤⎦⎥→∞lim ()n n n n n 121222 5分=-+→∞lim()n n n 22 8分=-1210分70、原式=--→∞lim()()n a n n n n 231216 5分=--→∞lim()()n a n n2112168分=a2310分71、原式=-+-++-+⎡⎣⎢⎤⎦⎥→∞lim ()()()n n n 11212131114分⎥⎦⎤⎢⎣⎡+-=∞→111lim n n8分 =1 10分72、原式=-+-++--+⎡⎣⎢⎤⎦⎥→∞lim()()()n n n 121131315121121 6分=-+⎡⎣⎢⎤⎦⎥→∞limn n 121121 8分=1210分73、因为1111121111()()()()a n a n a n a n a n a n +-+++=+⋅+--++=+-+-+++⎡⎣⎢⎤⎦⎥121111()()()()a n a n a n a n5分故原式=+-+++⎡⎣⎢⎤⎦⎥→∞121111lim ()()()n a a a n a n 8分=+121()a a10分74、证则 S q q nqq S q q q nqS qS q S q q q nqn n n nn n n n n=++++⋅=++++-=-=++++---1232311212321()S q qq nqqn nn=-----111122()()5分因为,lim lim n n n nqnq→∞→∞==00 8分故原式==-→∞lim ()n n S q 11210分75、因为2122122321n n n nn n-=+-+- 2分故原式 =-+-+-+++-+⎡⎣⎢⎤⎦⎥→∞-lim ()()()()n n nn n 3525274749162122321 5分=-+⎡⎣⎢⎤⎦⎥*→∞lim ()n n n 3232 8分 =3 10分注:当, 当 故.这段不推证不扣分n n n n n n n n n n nn n n>≤++-<-→∞-==→∞→∞121122121020()lim lim76、原式=+⋅-⎡⎣⎢⎤⎦⎥→∞lim ()n n 53237分 =510分77、原式=+---→∞lim()()n nnb a a b b a3232 7分=1a10分因为 -<b a178、当时,有x x >+>011f x x x x x x n nn ()lim()()=+++++=→∞11115分当时,x f ==0012() 8分⎪⎩⎪⎨⎧=>=0210)( x x x x f ,当,当因此10分79、令,解得:x x x ()12112-<-<< 3分当时,-<<-<12121x x x ()f x xx x x x x n n n n ()lim()()=----=-+→∞+++1121122211126分当时,极限不存在x x ()121-≥9分因此,f x x x x ()=-+-<<2212210分80、)!1(1!1)!1(11+-=+-+=k k k k b k k 因为4分于是 S n n n n n =+++++=-+-++-+12233411121213111!!!()!(!)(!!)(!()!)=-+111()!n 8分1)!1(11lim =⎥⎦⎤⎢⎣⎡+-=∞→n n 故原式 10分81、当时,x x n n<=→∞10limf x xxn n n()lim=+=→∞10 3分当时,x xn n<=→∞110limf x xxxn n nn n()limlim=+=+-→∞→∞11111 6分当时,x f x ==112() 8分因此,当,当,当f x x x x ()=<=>⎧⎨⎪⎪⎩⎪⎪011211110分82、当时,+x xf x x x x x x xx n n ≠<=+++++++⎡⎣⎢⎤⎦⎥→∞-0111111222221()lim ()() =-+-+→∞lim()n nx x xx11111225分=-+xx11128分=+==x xx f 1000当,()⎪⎩⎪⎨⎧=≠+=0 001)(x x x x x f ,,因此: 10分83、令,即ϕ()x x x <-<-+<113312解得:12<<x4分f x f x x x n n n n ()lim ()lim()()==--→∞→∞+111ϕϕ =--+<<132122x x x 8分 当或时,不存在x x f x ≤≥12()10分84、当时,无意义当时,当=时,x f x x f f ===--=0111110()()()当时,011<<=x f x x() 5分 当时,x f x x >=12()8分综上所述,,当,当,当,当,当f x x x x x x x x x x ()=-∞<<-=--<<<<≤<+∞⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪22101110101110分85、21)(1ln )(02==±==x f x e x x f x ,,当无意义,当 当,,无意义x e ex f x =±=-ln ()21 3分)(1ln 0)(1ln 022=>>=><<x f x e x x f xee x ,,当,,当1)(1ln 2=<<<x f xe x ee ,,当9分⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>=<<=e ex e x e x e x e ex f 00211)(;,当,当,当因此:10分86、()()sin cos()cos()cos()11211121121 当 当当当f x x x x a bx x a b x a b x =>+<++=+-=-⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪π6分()()()cos()lim ()()cos()lim ()()cos()210110111111 , ,当且仅当 同量,当且仅当f f a b f x f a b f x f a b x x +=-=+=+==--=→+→- 解:a b m a b k a +=-=<<⎧⎨⎪⎩⎪2202πππ9分得:, 为任意整数a b m m ==-ππ()()2110分87、当时,x f x xx xx xn n n<=-+=-+=-→∞+11001212()lim4分当时,x f x xx xx xxxn n nn n n>=-+=-+=→∞+→∞-11111212212()limlim8分当时,因此 ,当,当,当x f x f x x x x x x ===-<>=⎛⎝101101()()10分88、因为:sin sin sin cosn n n nn n+-=+-++1212123分而2122cosn n ++≤5分lim sinlim sin()n n n nn n →∞→∞+-=++=121210 8分21cos221sinlim =++⋅-+=∞→ 故原式nn nn n 10分 89、lim ()x x→-=02103分又+1221221211xx=+<6分因此limx xx→-+=0121220 10分90、因为arctan x <π23分 而lim arcsinx x→∞=106分故lim arctan arcsinx x x →∞⋅=1010分91、因为111+<e x3分而limx x→∞=106分故lim()x xx e →∞+=11010分92、因为21222x xx x+≤= 3分而lim arctanx x→∞=10 6分故limarctan x x xx→∞+⋅=2110210分93、因为0112≤+≤sinx3分 而lim x x →=06分故lim sinx x x→+=0110 10分94、原式=-+++⎡⎣⎢⎤⎦⎥→+∞lim sinln ln()sinln ln()x x x x x 21212 4分=+⋅+→+∞lim sin lnsin ln x x x x x 2125分因为lim sin lnx x x→+∞+=10 而sin ln x x 21+≤8分 []所以lim cos ln()cos ln x x x →+∞+-=1010分95、原式 =⋅=⋅⋅→→→limsin sinlimsin lim sinx x x x x x xx xx x11 5分而limsin limsin x x x xx x→→==01又lim sinx x x→⋅=010 8分 因此:原式=010分96、原式=+--+---→lim()()()x x xx xx x5721311211217分=⨯-⨯-⨯=-3527221410分97、原式=-⎡⎣⎢⎤⎦⎥→∞+-lim ln x x x x x e 211114分=+-⎡⎣⎢⎤⎦⎥→∞lim ln x x x x x 2111 6分=+--→∞limln()ln()x xx x11111 8分 =--=112() 10分98、原式=-→+limln(sin )x x x x ex1314分=+→lim ln(sin )x x x x x31 7分 ==→limsin x x x x2110分99、原式=-→limsin ln cos x x xe x314分=→limsin ln cos x x xx36分 =⋅-→lim sin cos x x x x x218分 =-1210分100、[]由知lim (lim ()x x x x a b x b a b →→+-+=++=+=11313020得:a b =-24分原式 =--+-+=--+++-→→lim()lim()()()x x b x x x b x x x x 111313131321=-=24b8分 因此 b a =-=2410分101、由,知,lim ()x f x a b →∞===1014分由知lim ()limlim ()x x x f x x cx d x x x cx d c d →→→=+++-=++=++=112212210即c d =--1 5分于是 得 而有limlimlim ()()()()x x x x cx dx x x x dx dx x x x d x x dd c d →→→+++-=--++-=---+=-===--=-12212212211213112因此:,,,a b c d ===-=0121 10分102、0)(lim )1()1()1(3)( 1224=------+=→x f x x c x B A x x f x 则记得,即lim()()limx x x f x A x →→-==+=121410323分又由得lim ()()limlim()()(x x x x f x B x x x x x →→→-==+--=--++114144103211132 =+++=→1411132lim ()x x x x7分再由得 lim ()lim()()lim()()lim()()x x x x f x C x x x x x x x x x x x x →→→→==+----=+-+-=--+-+++114214214224321131122131=+--=++====→→1412114225421541212lim()()lim ()x x x x x x x A B C 因此,,, 10分103、原式=++→∞lim()()x x x x x62363232238分=27410分104、原式=+→∞lim()x nn x x82122 6分=+→∞41112limx nx8分=410分 105、()101 ,p q ==3分 ()20 p q ==6分()lim ()lim ()limlimlim ()35045255501555555151155252525 由知得:而 x x x x x x px x p q q p px qx x px px x x px p →→→→→-=++=++==--++-=--+-=-=-=于是:,p q ==--=-25123 10分106、原式=++-++-→limx xx xx0223112424分=++++++→limx x xx x223112428分=3210分107、原式=+⋅+-+---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→→lim lim ()()x x x x x x x00131415161121 7分=⋅⨯+⨯=1561321412() 10分108、原式=-+-+→lim()()()()x x x x x 1221211 6分=++=→limx x x 1213210分109、()lim()lim111112112u u f u u u u →→--=--= 2分()lim ()lim (sin)21110x x u x x x →→=+=4分[]()()()(sin )sin()31111111101102而在点的任意小的去心邻域内都存在点,属该邻域而使分母f u x u x x x x xx x n u x n n --=+-+-==-=π[]从而导致无定义f u x u x ()()--118分[]故无意义lim()()x f u x u x →--01110分110、原式=+-+-→lim(()cos )sin x xx x x x221211 4分=-+→+lim sin ln()x x x ex1221126分=++→lim sin ln()x x x x 0212128分 =+=2125210分111、12121111121121111211x x x x x x x y x x x x n n n n n nn n n n nn ++++++++=+=+=-=-()(), 2分y x x ba y xx x x b a1212322111111112111211=-=-=-=--=--()()y x x n n n n =-=-+-()()1112114分lim ()lim ()n n n n y ba→∞→∞-=--=1112015分又y y y x x ban n n 12112111111121412+++=-=--+-+-+- ()(()7分lim()n n x ababaa b ab→∞+=+-⋅+=+=+1111111223132319分∴=+→∞lim n n x ab a b32 10分112、解答要点原式=+⋅+→∞limln()n n nnn12111 7分=13分 113、解:原式=+-→+∞lim sin ()n n n n π223分=⋅⋅++⎡⎣⎢⎤⎦⎥→+∞lim sin n n n n π2225分=++→+∞limn n n n222π 8分=++→+∞limn n21212π 9分=π 10分114、原式=⋅+-→∞lim lnn n n n 2121 3分 =+-→∞lim ln()n n n 12215分=+--⋅-→∞limln()n n n n n 12212212218分=⨯=11110分115、解法一:若是的可去间断点,则存在x f x f x x =→00()lim ()2分从而lim ()sin lim(sin sin sin )x x f x x x x a b x →→⋅=++--=020210故a x x b x x =++-=→lim(sin sin sin )02115分再由得lim ()sin lim (sin sin sin )x x f x x x x xb →→⋅=++--=02011即b x x x x =++++=→limsin sin sin 02111129分故当,时,是的可去间断点a b x f x ===1120() 10分解法二:若是的可去断点,则必极限存在x f x f x x =→00()lim () 2分而 所以必须lim sin lim(sin sin (sin ))x x x x x a b x →→=++-+=0220105分[]求得:,此时 a f x x x b x xb b xxx x b x x x x ==++-+=-+-++++→→→1111211102222lim ()limsin sin (sin )sin lim()()sin sin sin sin (sin )仅当,即时,上面极限存在12012-==b b9分 综上述,,时,是的可去断点a b x f x ===1120()10分116、f x x x x x x x f x ()()()()()=+--==11101,与是的间断点 4分因为:lim()()()x x x x x →+--=∞0111所以是的无穷间断点x f x =0() 7分而lim()()()x x x x x →+--=11112所以是的可去间断点x f x =1() 10分 117、(]f x ()()的定义域为,,-∞1123分 x f x =1是的间断点()5分lim ()lim()()x x f x x x x →→=---=∞11214所以是的无穷断点x f x =1() 10分注:将作为间断点者,扣分x =43118、x x f x ==01及是的间断点() 4分由于lim ()limcos()x x f x xx x →→=-=∞021π 所以是的无穷间断点x f x =0() 7分而令limcos()limcos()()limsin ()x t t xx x t x t ttt t →→→-=-++=-+=-100211221212πππππ所以是的可去间断点x f x =1() 10分 119、x f x =±±012,,,时,没有定义 ()3分)sin()2(lim 1sin 1lim )(lim 0211t t t x t x x x f t x x π+π+-=π-=→→→令由于=+-⋅=-→lim()sin t t ntt 02212πππ5分lim ()limsin lim()sin()x x t f x x xt x t t t →-→-→=-=+--112112πππ令 =--⋅=→lim()sin t t t t212ππππ7分 所以是的可去间断点x f x =±1()8分的无穷间断点均为,,,)(320x f x ±±=10分 120、x f x =±±012,,,没定义 ()1分由于 lim ()limtan limtan x x x f x x xxx →→→==⋅=11πππππ所以是的可去间断点x f x =0()4分 x f x =±±12,,均为的无穷间断点 ()6分x k f x =±±±-1232212,,也是的间断点 () 7分且故,,是的可去间断点limtan ()x k x x x k f x →-==±±±-3121232212π10分121、x f x =0时,没定义()2分 因为f ()0032-=5分f e ee e x x xx x x()limlim002332233200110011+=++=++→+→+ =238分 所以是的跳跃间断点x f x =0()10分 122、x f x =0是的间断点()2分 因为,f f ()()000000-=+=6分 即lim ()x f x →=08分 所以是的可去间断点x f x =0()10分 123、x x x f x ===012,及是的间断点() 3分因为 限:lim ()limln limln()()x x x f x x x x x x x →→→=-=-=-<<011101所以是的可去间断点x f x =0()5分lim ()limln ()x x f x x x x f x →→=-==1111所以是的可去间断点 8分因limln x x x →-=∞21所以是的无穷间断点x f x =2() 10分124、x f x x f x >==<=-=-012012时,时()arcsin ()arcsin()ππ所以的连续区间为,及, 时没定义f x x f x ()()()()-∞+∞=0005分而 f f x f f x x x ()lim ()()lim ()0020020000+==-==-→+→+ππ所以是的跳跃间断点x f x =0() 10分 125、x f x =±01,是的间断点()3分因为lim ()lim arctanx x f x x x→→=-=0110所以是可去间断点x =05分而 f x x f x x x x ()lim arctan()lim arctan10112101121010+=-=-=-=-→+→-ππ所以是跳跃间断点x =18分f x x f x x x x ()lim arctan()lim arctan-+=-=--=-=-→-+→--10112101121010ππ所以也是跳跃间断点x =-1 10分 126、x x x f x ===-011,,是的三个间断点()3分f x x x x xx x x x ()()()()=+-=-+≠≠11111101 ,lim ()x f x x →=-=010,是可去间断点6分 lim ()x f x x →==101,是可去间断点8分 lim ()x f x x →-=∞=-11,是无穷间断点10分 127、) , 2 , 1 , 0(n ±±=π=n x 是)(x f 的间断点。
高等数学第一章习题集(函数与极限)
6
高等数学习题集
(5) lim 1 x 1 x ;
x0
x
(6)
lim
x1
x
1 1
3 x3 1
.
3.
设
lim
x
x2 1 x 1
ax
b
0,
求 a 和 b 的值.
7
高等数学习题集
§1.6 极限存在准则 两个重要极限
1. 选择题.
(1)
lim
x x0
f
(x )存在是
f (x) 在 x0 的某一去心领域内有界的______ 条件.
(2)
设函数
ax2 f (x)
2x 1
x 1, 且 lim f (x) 存在,则 a _____. x 1 x1
3* 根据函数极限的定义证明:
(1)
lim
x
1 x3 2x3
x x0
x x0
A) lim f x lim f x
x x0
x x0
C) lim f x 不一定存在 x x0
(2) lim x2 9 (
).
x3 x 3
).
B) lim f x lim f x
x x0
x x0
1 x sin x 1
(题集
§1.8 函数的连续性与间断点
1. 选择题.
(1) 设 f x 在 x x0 处 连 续 , 且 存 在 0 , 使 当 0 x x0 时 有 f x 0, 则
(
).
A) f x0 0
高等数学习题_第1章_函数与极限
高等数学第一章函数与极限一、选择题〔共 191 小题〕1、A下列函数中为奇函数的是; ;; 答( )()tan(sin )()cos()()cos(arctan )()A y x x B y x x C y x D y x x==+==--22422π2、A[][]下列函数中(其中表示不超过的最大整数),非周期函数的是; ;; 答( )x x A y x x B y x C y a bx D y x x ()sin cos ()sin ()cos ()=+==+=-π223、D关于函数的单调性的正确判断是当时,单调增;当时,单调减;当时,单调减;当时,单调增;当时,单调增;当时,单调增。
答( )y xA x y xB x y xC x y x x y xD x y x x y x=-≠=-≠=-<=->=-<=->=-1010101010101()()()()4、C答( ) ;;; 的是下列函数中为非奇函数 7373)( 1arccos )()1lg()( 1212)(2222+--++=+=++=+-=x x x x y D xxx y C x x y B y A x x5、A函数 是奇函数; 偶函数;非奇非偶函数;奇偶性决定于的值 答( )f x a xa xa A B C D a ()ln()()()()()=-+>06、Bf x x e e A B C D x x ()()()()()()()=+-∞+∞-在其定义域,上是有界函数; 奇函数;偶函数; 周期函数。
答( ) 7、D设,,,则此函数是周期函数; B单调减函数;奇函数 偶函数。
答( ) f x x x x x A C D ()sin sin ()()();()=-≤≤-<≤⎧⎨⎪⎩⎪330ππ8、C设,,,则此函数是奇函数; 偶函数;有界函数; 周期函数。
答( )f x x x x x A B C D ()()()()()=--≤≤<≤⎧⎨⎪⎩⎪3330029、Bf x x A B C D ()(cos )()()()()()=-∞+∞333232在其定义域,上是最小正周期为的周期函数; 最小正周期为的周期函数;最小正周期为的周期函数; 非周期函数。
(完整word版)高等数学第一章函数与极限试题
高等数学第一章函数与极限试题一. 选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x xe xf 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11 C ) X1 D ) x4.下列各式正确的是 ( ) A )lim0+→x )x1+1(x=1 B ) lim 0+→x )x1+1(x=e C ) lim ∞→x )x 11-(x=-e D ) lim ∞→x )x1 +1(x-=e 5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1; B.∞; C.3ln ; D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( ) A.1; B.∞; C.2-e ; D.2e7.极限:∞→x lim 332x x +=( )A.1;B.∞;C.0;D.2.8.极限:xx x 11lim-+→=( ) A.0; B.∞; C 21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( )A.0;B.∞;C.2;D.21.10.极限: xxx x 2sin sin tan lim 30-→=( ) A.0; B.∞; C.161; D.16.二. 填空题11.极限12sin lim 2+∞→x xx x = . 12. lim→x xarctanx =_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________;14.=→x xx x 5sin lim0___________; 15. =-∞→n n n)21(lim _________________; 16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x xx 其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合()()x x x x f 25lg 12-+-+=19. 无穷小量是 20. 函数)(x f y =在点x0 连续,要求函数yf (x) 满足的三个条件是三. 计算题21.求).111(lim 0x ex xx --+-→ 22.设f(e 1-x )=3x-2,求f(x)(其中x>0); 23.求lim 2 x →(3-x)25--x x ;24.求lim ∞→ x (11-+x x )x; 25.求lim x →)3(2tan sin 22x x x x +26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限nnnn 1)321(lim ++∞→28.求它的定义域。
(word完整版)考研专项练习高等数学--习题集.docx
第一章 函数·极限·连续一. 填空题1. 已知 f ( x)sin x, f [ ( x)] 1 x 2 , 则 (x)__________, 定义域为 ___________.1 xax2.设 limate tdt , 则 a = ________.xx3. lim12n222=________.nnn 1 nn 2nn n1 | x | 1 4. 已知函数 f (x)| x | 1 0, 则 f[f(x)] _______.5.lim ( n3 nnn ) =_______.n6. 设当 x0 时, f (x)ex1ax为 x 的 3 阶无穷小 , 则 a _____, b ______ .1 bx7.lim cot x1 1=______.sin x xx 08. 已知 limn 1990A (0), 则 A = ______, k = _______.n k(n 1) kn二. 选择题1. 设 f(x)和 (x)在 (- , + )内有定义 , f(x)为连续函数 , 且 f(x) 0, (x)有间断点 , 则(a) [ f(x)]必有间断点(b) [(x)]2必有间断点(c) f [(x)] 必有间断点 (d)( x)必有间断点f ( x)2. 设函数 f ( x) x tan xe sin x , 则 f(x) 是(a) 偶函数(b) 无界函数 (c) 周期函数(d) 单调函数3. 函数 f ( x)| x | sin( x 2) 在下列哪个区间内有界x( x 1)( x 2)2(a) ( - 1, 0) (b) (0, 1) (c) (1, 2) (d) (2, 3)1时, 函数x 21 4. 当 x1e x 1 的极限x 15. 极限lim352n12 的值是122222n2( n1)n23(a) 0(b) 1(c) 2(d)不存在( x1)95 ( ax1)56. 设lim2508 ,则a的值为x( x1)(a) 1(b) 2(c) 58(d) 均不对7.设lim ( x 1)( x 2)( x3)( x 4)( x 5)x(3x2), 则,的数值为(a)= 1,1(b)= 5,1(c)1(d) 均不对=== 5, =33358. 设f ( x) 2x3x 2 ,则当x0 时(a) f(x) 是 x 的等价无穷小(b) f(x) 是 x 的同阶但非等价无穷小(c) f(x) 比 x 较低价无穷小(d) f(x) 比 x 较高价无穷小9.设lim (1 x)(12x)(13x)a 6 ,则a的值为x 0x(a)-1(b) 1(c) 2(d) 310. 设lim a tan x b(1 cos x)22,其中 a2c20 ,则必有x 0cln( 1 2x) d(1 e x)(a) b = 4d(b) b = - 4d(c) a = 4c(d) a =-4c三. 计算题1.求下列极限1(1)lim (x e x ) xx(2)lim (sin2cos1) x x x x1tan x1 lim x3(3)x 01sin x2.求下列极限(1)lim ln(1 3x1)(2) lim1 cot2 x x 0x 23. 求下列极限 (1) limn(n n 1)nln n1 e nx (2)lim nx n 1 eannn b(3) lim, 其中 a > 0, b > 0n22(1 cosx)x 0x 2 4.f (x) 1x1 x2 dt x 0x costf (x) 在x0 的 性与可 性 .5. 求下列函数的 断点并判 型1(1) f ( x)2 x 112 x 1x(2 x)x2 cos x(2) f (x)1sinx 021xx sin 1x 06. 函数 f ( x)xxe x在 x = 0 的 性 .7. f(x) 在 [a, b] 上 , 且 a < x 1 < x 2 < ⋯ < x n < b, c i (I = 1, 2, 3, ⋯ , n) 任意正数 , 在 (a, b) 内至少存在一个, 使f ( )c 1 f (x 1 ) c 2 f ( x 2 )c ncn .c 1 c 28. f(x) 在 [a, b]上 , 且 f(a) < a, f(b) > b, 在 (a, b)内至少存在一个 , 使 f( ) = .9. 设 f(x) 在 [0, 1] 上连续 , 且 0 f(x) 1, 试证在 [0, 1] 内至少存在一个, 使 f( ) = .10. 设 f(x), g(x) 在[a, b] 上连续 , 且 f(a) < g(a), f(b) > g(b),试证在(a, b)内至少存在一个, 使f( ) = g( ).11.证明方程x5-3x-2 = 0 在(1, 2) 内至少有一个实根 .12. 设 f(x) 在 x = 0 的某领域内二阶可导, 且lim sin 3x f ( x)0 ,求f (0), f ' (0), f ' '(0)及limf (x)3 x3x2x2.x 0x 0第二章导数与微分一. 填空题1 . 设lim f ( x0k x) f ( x0 )1f '( x0 ) ,则 k = ________.x0x32.设函数 y = y(x) 由方程e xy cos(xy)0确定 ,则 dy______.dx3.已知 f(- x) =-f(x), 且f ' (x0 )k ,则 f ' ( x0 )______.4.设 f(x) 可导 ,f ( x0m x) f (x0n x)_______.则 limxx05. f ( x)1x ,则 f ( n ) ( x) = _______.1x6.已知df11, 则f '1_______. dx x2x27.设 f 为可导函数 ,y sin{ f [sindy_______.f ( x)]} ,则dx8.设 y = f(x) 由方程e2 x y cos( xy )e1所确定 , 则曲线 y = f(x) 在点 (0, 1)处的法线方程为 _______.二. 选择题1.已知函数 f(x) 具有任意阶导数 , 且f ' (x)[ f (x)] 2,则当 n 为大于 2 的正整数时 , f(x) 的 n 阶导数是(a) n![ f ( x)]n1(b)n[ f ( x)] n 1(c)[ f (x)] 2n(d)n![ f ( x)] 2n2.设函数对任意x 均满足 f(1 + x) = af(x),且 f ' (0)b,其中 a, b 为非零常数 , 则(a) f(x) 在 x = 1处不可导(b) f(x) 在 x = 1处可导 ,且 f ' (1) a(c) f(x) 在 x = 1处可导 , 且f ' (1) b(d) f(x) 在 x = 1处可导 , 且f ' (1)ab3.设 f ( x)3x3x 2| x |,则使 f ( n)(0) 存在的最高阶导数n 为(a) 0(b) 1(c) 2(d) 34.设函数 y = f(x) 在点 x 0处可导 , 当自变量 x 由 x 0增加到 x0 +y dyx 时 , 记 y 为 f(x) 的增量 , dy 为 f(x) 的微分 , lim等于x 0xx2 sin 1x05. 设f ( x)x x0ax b在 x = 0 处可导 , 则(a) a = 1, b = 0(b) a = 0, b 为任意常数(c) a = 0, b = 0(d) a = 1, b 为任意常数三. 计算题1.y ln[cos( 103x 2 )],求 y'2. 已知 f(u) 可导 ,y f [ln( x a x2 )],求 y'3.已知y e t 2dt x2costdt sin y2,求 y' .004.设 y 为 x 的函数是由方程ln x 2y2arctan y确定的 , 求y' . x四. 已知当 x0 时, f( x) 有定义且二阶可导 ,问 a, b, c 为何值时F ( x)f ( x)x0二阶可导 . ax2bx c x0五. 已知f ( x)x 2,求 f(n ) ( 0) .1x2六. 设y xln x ,求f( n) (1) .第三章一元函数积分学 (不定积分 )一. 求下列不定积分 : 1.1 2 ln 1 xdx 1 x 1 x1 1 x 1 x 1 x 1 1 22.x 1 x 2arctandx arctand arctanx 2arctanc1 x1 x1 1 x3.cos x sin x1 1 sin x dx(1 cos x)21 cos x4.dx x( x 8 1)1 111 sin x(1 sin x cosx)(sin x cosx)5.dx 222dx1 sin x cosx1 sin x cosx二. 求下列不定积分 :dx1.( x 1)2 x 2 2 x 2dx 2.x 4 1 x 23.dx1) 1 x 2(2x 2x 2dx 4.(a > 0)a 2 x 25.(1 x 2 ) 3 dx6.x 21dxx 4x 17.dxx2x21三. 求下列不定积分:e3x e xdx 1.e2xe4 x1dx2.2x (1 4 x)四. 求下列不定积分:x51.( x2)100dxdx2.x 1 x4五. 求下列不定积分:1.x cos2 xdx2.sec3 xdx3.(ln x)3dxx 24.cos(ln x)dxx cos4x1x cos4x1x1x sin 2x1sin 2xdx5.2dxx2dx xd sin 2sin 3 x8sin3 3 x828282cos221x sin 2 x1sin 2 x d x1x sin2x1cotxc824228242六. 求下列不定积分 :x ln( x1x 2 )2.x arctan x dx1x23.arctan e x dxe2 x七.x ln(1x 2 ) 3x0设 f ( x)22x 3)e x x, 求 f (x)dx .( x0八.设 f ' (e x ) a sin x b cos x, (a, b为不同时为零的常数), 求 f(x).九. 求下列不定积分:1.3x23x (2x3)dx32.(3x 22x5) 2(3x1) dx3.ln( x 1 x2 )dx1x2xdx4.(1 x2x21) ln(1x 21)十. 求下列不定积分:x arctan x1.(1x2)dx2.arcsinxdx 1 xarcsinx1x2 3.2dxx1x 2arctan x4.2(1x 2dxx)十一 . 求下列不定积分: 1.x34x 2 dxx2a22.x3.e x (1e x ) dx1e2 x4.xxdx (a > 0) 2a x十二 . 求下列不定积分:dx1.sin x 1cos x2.2sin x2dxcos x3.sin x cos x dxsin x cos x十三 . 求下列不定积分:x1.dx1 x x2.e x 1dxe x 13.x 1arctan x 1 dxx第三章一元函数积分学 (定积分 )b0 ,则f(x) 0.一.若 f(x) 在[a, b]上连续 , 证明 : 对于任意选定的连续函数(x), 均有f (x) ( x)dxa二. 设为任意实数 , 证明 :I21dx=21.0 1(tan x)0 1dx (cot x)4三.已知 f(x) 在 [0, 1]上连续 , 对任意 x, y 都有 |f(x) - f(y)| < M|x-y|, 证明f ( x)dx1n f k M1n k n2n01四.设 In4 tan n xdx , n为大于1的正整数,证明:1I n1.02(n1)2(n1)五. 设 f(x) 在[0, 1] 连续 , 且单调减少 , f(x) > 0,证明:对于满足0 << < 1 的任何, , 有f ( x)dx f ( x)dx六. 设 f(x) 在[a, b] 上二阶可导 , 且 f ' ' ( x) < 0,证明 :b f (x)dx (b a) fa ba2七. 设 f(x) 在[0, 1] 上连续 , 且单调不增 , 证明 : 任给 (0, 1), 有1 f ( x)dxf ( x)dx八. 设 f(x) 在[a, b] 上连续 ,f ' ( x) 在 [a, b]内存在而且可积 , f(a) = f(b) = 0, 试证 :| f ( x) |1b2 | f ' (x) | dx , (a < x < b)a九. 设 f(x) 在[0, 1] 上具有二阶连续导数f ' ' ( x) , 且 f (0) f (1) 0, f ( x) 0 , 试证 :1f ' ' ( x)dx 4f ( x)十. 设 f(x) 在[0, 1] 上有一阶连续导数 , 且 f(1) -f(0) = 1,试证 :1 2dx 1[ f ' (x)] 022十一 . 设函数 f(x) 在 [0, 2] 上连续 , 且f (x)dx = 0,xf ( x)dx = a > 0. 证明 :[0, 2], 使 |f( )| a.0 0第三章一元函数积分学(广义积分 )一. 计算下列广义积分:x2edx(1)10 (e x1)31(2)0( x21)( x24)dx(3)dx3 (1 x2 ) 21(4)sin(ln x)dx11dx (5)2 x x21 (6)arctan x3dx(1 x2 ) 2第四章 微分中值定理一. 设函数 f(x) 在闭区间 [0, 1] 上可微 , 对于 [0, 1] 上每一个 x, 函数 f(x) 的值都在开区间(0, 1)内 , 且 f ' ( x) 1, 证明 : 在 (0, 1)内有且仅有一个 x, 使 f(x) = x.1f ( x) dxf (0) . 证明 : 在(0, 1)内存在一个, 使 f ' ( ) 0 .二. 设函数 f(x) 在[0, 1] 上连续 , (0, 1) 内可导 , 且 3 2 3三.设函数 f(x) 在[1, 2] 上有二阶导数 , 且 f(1) = f(2) = 0,又 F(x) =(x - 1)2f(x), 证明 : 在(1, 2)内至少存在一个 , 使 F ' ' ( ) 0 .四. 设 f(x)在 [0, x](x > 0) 上连续 , 在 (0, x)内可导 , 且 f(0) = 0, 试证 : 在(0, x) 内存在一个, 使f ( x) (1 ) ln(1 x) f ' ( ) .五. 设 f(x)在 [a, b]上可导 , 且 ab > 0, 试证 : 存在一个 (a, b), 使1b n a n [nf ( ) f '()] n 1f (b)b a f (a)六. 设函数 f(x), g(x), h(x)在 [a, b] 上连续 , 在(a, b)内可导 , 证明 :存在一个(a, b), 使f (a) g(a) h(a)f (b)g( b) h(b) 0f ' ( )g' ( )h' ( )七. 设 f(x)在 [x1, x2] 上二阶可导 , 且 0< x1 < x2 , 证明 : 在( x1 , x2)内至少存在一个, 使1e x1e x2 e x1e x2 f ( x1 )f ( ) f ' ( )f ( x2 )八. 若 x1x2 > 0, 证明 : 存在一个(x1, x2)或( x2, x1 ), 使x1e x2x2 e x1(1)e (x1x2 )九 .设f(x), g( x) 在 [a, b] 上连续 ,在(a,b) 内可导 ,且f( a) = f(b) = 0, g(x)0,试证:至少存在一个(a, b),使f ' ( ) g( ) g' ( ) f ( )十. 设 f(x) 在 [a, b] 上连续(0 a b) ,在(a, b)内可导,证明在(a, b)存在,2f ' ()使 f ' ( )ab.第五章一元微积分的应用一. 选择题1. 设 f(x) 在 (-, + )内可导 , 且对任意x1, x2 , x1 > x2时, 都有 f(x 1) > f(x 2), 则(a) 对任意 x, f '( x) 0(b) 对任意 x, f '( x)0(c) 函数 f( - x)单调增加(d) 函数- f(- x)单调增加1x 2x 1的渐近线有2. 曲线y e x2arctan( x 1)( x2)(a) 1 条(b) 2 条(c) 3 条(d) 4 条3. 设 f(x) 在 [- , + ] 上连续 , 当 a 为何值时 , F (a)[ f (x) a cosnx ]2 dx 的值为极小值.(a) f ( x) cos nxdx(b)(c)2(d)f ( x) cosnxdx4. 函数 y = f(x)具有下列特征 :1f ( x) cosnxdx 1f ( x) cosnxdx 2f(0) = 1; f ' (0)0 ,当x0 时, f '( x)0x00 ; f '' ( x)x, 则其图形00(a)(b)(c)(d)11115. 设三次函数y f ( x) ax3bx 2cx d ,若两个极值点及其对应的两个极值均为相反数, 则这个函数的图形是(a) 关于 y 轴对称(b) 关于原点对称(c) 关于直线 y = x 轴对称(d) 以上均错6.曲线 y x( x 1)(2 x) 与x轴所围图形面积可表示为21)( 2x)dx11)( 2x) dx21)( 2x)dx(a)x( x(b)x( x x( x00111)( 2x)dx21)(2x)dx21)(2x)dx(c)x(x x(x(d)x( x010二. 填空题x11. 函数F ( x)2dt (x > 0)的单调减少区间______.1t2. 曲线y x3x 与其在x13. 二椭圆x2y 21,x2y 21( a > b > 0)之间的图形的面积______. a2b2b2 a 24. x2+ y2= a2绕 x =-b(b > a > 0) 旋转所成旋转体体积_______.(5) 求心脏线= 4(1+cos ) 和直线= 0, =围成图形绕极轴旋转所成旋转体体积_____.2三. 证明题xtf (t )dt0 时函数( x)01. 设 f(x) 为连续正值函数 , 证明当 x单调增加 .xf (t )dt2. 设 f(x)在[ a, b]上连续 , 在(a, b)内f ' ' ( x)f ( x) f (a)0 ,证明 ( x)在 (a, b)内单增 .x a3. 设 f(x)在[ a, b]上连续 , 在(a, b)内可导且f ' ( x)0 ,求证:F ( x)1xf (t )dt 在(a, b)内也 F ' ( x) 0 . x a a4. 设 f(x)在[ a, b] 上连续 , 且 f(x) > 0,又 F ( x)x x 1f ( t)dt dt .证明:a b f ( t)i. F ' ( x) 2, ii. F(x) = 0在(a, b)内有唯一实根.5. 明方程tan x 1 x 在(0, 1)内有唯一根.6.a1, a2, ⋯ , a n n 个数 , 并足a1a2(1) n 1a n0 .明:方程32n1a1 cos x a2 cos3x a n cos(2n1) x0在 (0,2) 内至少有一根 .四. 算1. 在直 x-y + 1=0 与抛物y x24x 5 的交点上引抛物的法, 求由两法及接两交点的弦所成的三角形的面.22f (x)] 2 dx 最小的直方程.2. 求通点 (1, 1)的直 y = f(x)中 , 使得[ x3. 求函数f ( x)x2(2 t)e t dt 的最大与最小. 04. 已知 (x- b)2 + y2 = a2, 其中 b > a > 0, 求此 y 旋所构成的旋体体和表面.第六章多元函数微分学一. 考虑二元函数的下面 4 条性质( I ) f ( x, y) 在点 (x0 , y0 ) 处连续;( II ) f ( x, y) 在点 ( x0 , y0 ) 处的两个偏导数连续; ( I II) f ( x, y) 在点 (x0 , y0 ) 处可微;( IV ) f (x, y) 在点 (x0 , y0 ) 处的两个偏导数存在;若用 P Q 表示可由性质P推出性质Q,则有( A ) ( C )(II )(III )( I )(III )(IV )( I )( B )( D )( III )(II )( I )(III )(I )( IV )xy2,( x, y)(0,0)二. 二元函数f ( x, y)x2y0) 处在点 (0, 0,(x, y)(0,0)( A ) 连续 , 偏导数存在 ;( B ) 连续 , 偏导数不存在 ; ( C ) 不连续 , 偏导数存在 ;( D ) 不连续 , 偏导数不存在 .三. 设 f, g 为连续可微函数 , u f ( x, xy), v g( x xy) ,求uv . x x四. 设x2z2y z, 其中为可微函数 , 求z .y y五. 设u f ( x, y, z),又 y(x, t ), t( x, z),求u. x六. 求下列方程所确定函数的全微分:1. f ( x y, y z, z x)0,求 dz ;2.z f ( xz, z y),求 dz .七. 设z f ( e x sin y, x2y 2 ) ,其中f具有二阶连续偏导数, 求 2z.x y八.已知 z f (2 x, x ),求 zxx ' ', z yy ' ' . y九. 已知z f (xln,)' ' ,zxy' ' ,zyy' '.y x y ,求 z xx十. 设y y( x), zx y z z20确定 , 求dy dz z(x),由y2z z30, .x dx dx十一 . 设z xf (y)(y),求 x2 2 z2xy 2 z y 2 2 zx x x 2x y y22十二 . 设z f [ x2y, ( xy)] ,其中f(u, v)具有二阶连续偏导数,(u) 二阶可导,求z. x y十三 . 设F ( x, y(x), z(x))P( x, y(x)) Q ( x, y( x)) z( x) ,其中出现的函数都是连续可微的F d F , 试计算.第七章二重积分一. 比较积分值的大小:1. 设I1D 结论正确的是x y x y 3xy{( x, y) | (x 1)2( y1)22},则下列dxdy, I2dxdy, I 3dxdy 其中D4D4D4( A )I 1I 2I 3( B )I 2I 3I 1( C )I 1I 3I 2( D )I 3I 2I 12.设 I ie ( x2y2) dxdy, i1, 2,3, 其中 :D1{( x, y) | x 2y2r 2 } , D2{( x, y) | x2y 22r 2 } ,D iD 3{( x, y) | | x |r , | y |r } 则下列结论正确的是( A )I 1I 2I 3( B )I 2I 3I 1( C ) I1I 3I 2( D ) I3I 2I 13.设I1cos x 2y2,I 2cos(x 2y2 ), I 3cos(x 2y 2 ) 2其中 D{( x, y) | x2y 21} ,则下列D D D结论正确的是( A ) I1I 2I 3( B ) I2I 3I 1( C ) I1I 3I 2( D ) I3I 2I 1二. 将二重积分I f ( x, y)d 化为累次积分(两种形式),其中D给定如下:D1. D: 由y28x 与 x28 y 所围之区域.2. D: 由 x = 3, x = 5, x -2y + 1 = 0 及 x -2y + 7 = 0 所围之区域 .3. D: 由x2y 2 1 , y x 及 x > 0 所围之区域 .4. D: 由 |x| + |y| 1 所围之区域 .三.改变下列积分次序 :a a2x21.dx a2x 2 f ( x, y)dy2a1x 233xf (x, y) dy2.dx0f (x, y)dy dx201002x 2f ( x, y)dy12x23.dxx dxxf ( x, y) dy10四. 将二重积分I f ( x, y)d 化为极坐标形式的累次积分, 其中 :D1.D: a2x2 +y 2b2 , y0, (b > a > 0)2.D: x 2+y2y, x03.D: 0x +y1, 0 x1五. 求解下列二重积分:2x 1.dx1x sinx42dy dx2y2xxsin dy1y 2 x2. dx e 2 dy003.y dxdy , D:由y = x4-x3的上凸弧段部分与x 轴所形成的曲边梯形Dx 64.xydxdy , D: y x及1 x2+ y22 x2y2D六. 计算下列二重积分 :x222y 21.yx 1 .1dxdy , D:22 Da b a b2.ln( x2y 2 )dxdy , D:2x 2y 21 , 并求上述二重积分当0 时的极限 .Dax f ' ( y)3.dxdy(a x)( x y)1 x 2y 24.2 2 dxdy , D: x 2 + y 2 1, x 0, y 0. D1 x y2七. 求证 :f ( xy)dxdy ln 2 f ( u) du , 其中 D 是由 xy = 1, xy = 2, y = x 及 y = 4x(x > 0, y > 0) 所围成之区域 .1Df ( x y)dxdy2 2f (u)du八 . 求证 :2 u x 2y 2121x2y 21t 2e2 dxdy a九 . 设 f(t)是半径为 t 的圆周长 , 试证 : f (t) e 2 dt2x 2 y2 a220m y n dxdy 0十 . 设 m, n 均为正整数 , 其中至少有一个是奇数, 证明xx 2y2 a2十一.设平面区域 D {( x, y) | x 3y 1, 1 x 1}, f (x) 是定义在 [ a, a] (a1) 上的任意连续函数试求: I 2 y[( x 1) f ( x) (x1) f ( x)] dxdyDLy x 3第八章无穷级数一. 填空题x 1n a n1(1) 设有级数a n, 若lim2a n 1, 则该级数的收敛半径为 ______.n 1n3(2) 幂级数n n3)n x2n 1的收敛半径为 ______.n 1 2((3) 幂级数x n的收敛区间为 ______. n 1n 1(4) 幂级数x n 1的收敛区间为 ______. n 1 n2n(5)幂级数(n1)x n的和函数为______.n1二. 单项选择题(1)设 a n0(n1,2,),且a n收敛,常数(0,) ,则级数( 1)n (n tan ) a2 nn 12n 1n(A) 绝对收敛(B) 条件收敛(C)发散(D) 收敛性与有关(2)设 u n( 1)n ln(11) ,则n(A)u n与u n2都收敛. (B)u n与u n2都发散. (C)u n收敛,而u n2发散. (D)u n发散,u n2收敛.n 1n 1n 1n 1n 1n 1n 1n 1(3)下列各选项正确的是(A) 若u n2与v n2都收敛 , 则(u n v n ) 2收敛n 1n 1n 1(B) 若| u n v n | 收敛,则u n2与v n2都收敛n 1n 1n 1u n 1(C) 若正项级数发散 ,则u nn 1n(D) 若级数u n收敛,且 u n v n ( n 1,2, ) ,则级数v n收敛.sin n1(4) 设为常数 , 则级数nn 1 n2(A)绝对收敛 . (B) 发散 . (C) 条件收敛 . (D) 敛散性与取值有关 .三. 判断下列级数的敛散性:11(1)sinn 1 ln( n 2)n(2)1( a 0) n 1 ( a n 1)( a n)( a n 1)3n n!(3)n 1 n nn2(4)n 1 ( n 1 / n) n( n! )2(5)n1 ( 2n)!(6)(1ln n)nn 1n四. 判断下列级数的敛散性n(1)( 1)n 2n1n 13n1(2)( 1)n n1n 1(n 1) n 1 1(3)sin( n)n 1n(4)( 1)n 1 tan1n 1n n五. 求下列级数的收敛域:( x2x1)n (1)n 1n( n1) (2)( 1)n x2 n 1n 12n 1 (3)2n 1 x2 n 1n 12n( x1)2 n(4)n 1n 9n六. 求下列级数的和:(1)( 1)n 1 x2 n 12n 1n 1(2)n(n 1)xn 1( x1)n (3)n 1n2nn七. 把下列级数展成x 的幂级数 :(1) f ( x)1ln1x1arctan x 21x2x ln(1x)(2) f ( x)x dx第九章常微分方程及差分方程简介一. 填空题1. 微分方程y' y tan x cos x 的通解为_________.2.微分方程 ydx( x24x)dy0的通解为 ________.3.微分方程 y' 'y 2 x 的通解为________.4.微分方程 y' ' 2 y' 2 y e x的通解为________.5.已知曲线 y f ( x) 过点(0,1),且其上任一点 (x, y) 处的切线斜率为x ln(1x2 ) ,则 f ( x) =_______.2二. 单项选择题2 x 1. 若函数 f (x) 满足关系式 f ( x)tf ( )dt ln 2 ,则 f (x) 等于(A)e x ln 2(B)e2 x ln 2(C)e x ln 2(D)e2 x ln 22.微分方程 y' 'y e x1的一个特解应具有形式(式中 a、 b 为常数 )(A)ae x b(B)axe x b (C) ae x bx(D) axe x bx三. 解下列微分方程:dy3( x 1) 2 (1 y 2 )1. dxy| x 012. (1y2 )dx x(1 x) ydy0dy13.1dx x y四. 解下列微分方程:yy1. y' e xx2.xdy ydx x2y 2 dxy y3. ( x y cos )dx x cos dy0x x五. 解下列微分方程:1.y' y cos x e sin x1x2.x2 y' y x2 e x3.xy' ln x y ax(ln x1)4.y' sin x cos x y sin3 x0六. 解下列微分方程:1.y' y tan x sec x, y(0)02.y' y cos x sin x cos x, y(0)13.y' x sin 2 y xe x2 cos2 y, y( 0)4七. 解下列方程 :1.y' ' 2 2 y' 2 y02.y' ' 2 y' 3y03.y' ' 2 y' 3y0八. 解下列方程 :x 23 )e2x 1. y' ' 4 y' 4y (1 x2.y' ' 3 y' 2y cos 2x3.y' ' 2 y' y5xe x4. 2 y' ' 2 y' 3 y x22x 15.y' ' y' x21第十章函数方程与不等式证明11aa n 1a n一. 证明不等式ln a( n 1) 21 1n 1 a n. (a > 1, n 1)n 2二. 若 a0, b 0, 0 < p < 1, 证明( ab) p a p b p三. 设函数 f(x) 在[0, 1] 上有连续导数 , 满足 0f ' ( x) 1且 f (0)0. 求证1 213( x)dxf ( x)dxf四. 求证| a |p | b |p 21 p (| a | | b |) p , (0 < p < 1).五. 求证 : 若 x + y + z = 6,则 x2y 2 z 2 12 , (x 0, y 0, z0).六.证明 : 1 若 f(x) 在[a, b] 上是增加的,且在其上2 若 f(x) 在[a, b] 上是增加的,且在其上f ' ' ( x) 0,则 (b a) f ( a) f ( x) dx (b a)f (a)f (b)ba2f ' ' ( x) 0 ,则 ( b a) f (b) f ( x)dx ( b a) f (a) f (b)ba2x1x2x n x12x22x n2七. 证明 : 1n nx1x2x n nx1 x2x n2n八. 设f ' ' ( x)c[ a, b] , 且f (a)f (b) 0, 求证f (x) dx(b a) 3ba12a x b九. 若 f ' ( x) 在 [0, 2 ] 上连续 , 且 f ' (x)2 2[ f (2 ) f (0)]0, n(正整数 )有f ( x) sin nxdxn十. 设在 [a, b] 上 f ' ' ( x) 0 , a < x 1 < x 2 < b, 0 << 1, 试证 :f ( x 1 ) (1 ) f ( x 2 ) f [ x 1 (1) x 2 ]第十一章微积分在经济中的应用一.生产某产品的固定成本为10, 而当产量为 x 时的边际成本函数为 C ' 40 20 x3x 2, 边际收益为R'32 10x ,试求: ( 1 )总利润函数 ; ( 2 ) 使总利润最大的产量 .二. 设某商品的需求量Q 是单价 P(单位 : 元 )的函数 : Q = 12000 -80P; 商品的总成本 C 是需求量 Q 的函数 : C = 25000 + 50Q; 每单位商品需要纳税 2 元, 试求使销售利润最大的商品单价和最大利润额.三. 一商家销售某种商品的价格满足关系P = 7- 0.2x(万元 / 吨), x 为销售量 ( 单位 :吨 ), 商品的成本函数C3x 1(万元). (1)若每销售一吨商品政府要征税 t ( 万元 ), 求该商家获最大利润时的销售量; (2) t 为何值时 , 政府税收总额最大 .四 . 设某企业每月需要使用某种零件2400 件 , 每件成本为150 元, 每年库存费为成本的 6 , 每次订货费为100 元, 试求每批订货量为多少时, 方使每月的库存费与订货费之和最少, 并求出这个最少费用(假设零件是均匀使用).。
【高等数学习题及解答】第一章 函数与极限
函数与极限
一、极限的求法
1 x
1.
(1) lim(1 kx) ( k 0为常数)
x 0
1 x ( 2) lim( ) 2 x 0 1 x
2
1 2 x sin x
1 x x sin x (3) lim x 1 x ( 4) lim
x 0
1 t an x 1 sin x x 2 ln( 1 x)
x x sin x sin x x cos x ln ln 2 sin x sin x x sin x lim lim lim 2 x 0 sin 2 x x 0 x 0 x 2x 1 sin x x cos x lim 3 x 0 2 x 1 cos x cos x x sin x lim 2 x 0 2 3x 1 1 sin x 1 lim 2 x 0 3 x 6 x sin 2 x lim e6 x 0 sin x
1 1
0 (4)思路分析:这是一道 综合题,且是 型极限, 0 运用洛必达法则去求解 。 t x 0 a t dt 条件 a x 解: lim lim =1 x 0 bx sin x x 0 b cos x
x 2 2
x2 lim 0, lim(b cos x) b 1 0, 即b 1 x 0 x 0 ax x t2 x2 0 a t dt a x 所以, lim lim x 0 bx sin x x 0 1 cos x 1 x2 1 x2 lim lim x 0 a x 1 cos x a x0 1 cos x 1 x2 2 lim 1,得a 4 a x 0 1 x 2 a 2 故a 4, b 1为所求。
高等数学(上)第一章习题
高等数学(上)习题 第一章 函数与极限 习题1-1 映射与函数1、 求下列函数的定义域。
1)11)1arcsin(-+-=x x y 2) y =lg (4x -3)-arcsin (2x -1)3))1ln(1-=x y 4) 2412-+-=x xy5)631arcsin 2--+-=x xx y6)xx y1arctan3+-=7) )6ln(2-+=x x y 8)51arcsin211-+-+=x x y ;2、设)(x f 的定义域为(0,1),求)1(xf ,)(2x f ,)(lg x f 的定义域。
3、判断下列函数的奇偶性。
1))()31()31()(3232+∞<<-∞+--=x x x x f 2))1lg()(2++=x x x f3)242)(x x x f -= 4))1(1)(>-=a ax x f x5))1(11)(>+-=a aa xx f xx 6)xx x f +-=11lg )(4、指出下列函数中的周期函数,并写出其周期。
1)y =sin (2x +5) 2)y =x sin (5x -3)3)y =|sin x | 4)y =sin x +21sin2x5)y=sin x 25、求下列函数的反函数。
1)2101-x -=y 2)⎩⎨⎧<-≥+=0012x ,x x ,x y3)x y 54-=4)31+=x y5)xx y 211211+++-=6)⎪⎭⎫ ⎝⎛<--++=0,21),1ln()1ln(x x x y6、指出下列复合函数的复合过程。
1)9)12(+=x y 2)2sinx e y =。
3)211arctanxy += 4))y 1ln(x22+=5))13(c 2+=x os y 6))ln(ln x y = 7)2tan3x y = 8)x y 31sin +=7、若存在两个实数a ,b ,且a <b ,使f (x )对一切实数 x 满足f (a -x )= -f (a +x ),f (b -x )=f (b +x ),试证明:f (x )是以T=4(b -a )为周期的周期函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学第一章函数与极限试题一. 选择题1.设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A ) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C ) F(x)是周期函数⇔f(x)是周期函数. (D ) F(x)是单调函数⇔f(x)是单调函数 2.设函数,11)(1-=-x xe xf 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点(C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.3.设f (x)=xx 1-,x ≠0,1,则f [)(1x f ]= ( )A ) 1-xB ) x-11C ) X1 D ) x4.下列各式正确的是 ( )A ) lim 0+→x )x1 +1(x=1 B ) lim 0+→x )x1+1(x=eC ) lim ∞→x )x1 1-(x=-e D ) lim ∞→x )x1 +1(x-=e5.已知9)(lim =-+∞→xx ax a x ,则=a ( )。
A.1;B.∞;C.3ln ;D.3ln 2。
6.极限:=+-∞→xx x x )11(lim ( )A.1;B.∞;C.2-e ;D.2e7.极限:∞→x lim 332xx +=( )A.1;B.∞;C.0;D.2.8.极限:xx x 11lim 0-+→=( ) A.0; B.∞; C21; D.2.9. 极限:)(lim 2x x x x -+∞+→=( ) A.0; B.∞; C.2; D.21.10.极限: xx x x 2sin sin tan lim 30-→=( ) A.0; B.∞; C.161; D.16.二. 填空题11.极限12sinlim 2+∞→x xx x = . 12. lim 0→x xarctanx =_______________.13. 若)(x f y =在点0x 连续,则)]()([lim 0→-0x f x f x x =_______________;14. =→xxxx 5sin lim 0___________; 15. =-∞→n n n)21(lim _________________; 16. 若函数23122+--=x x x y ,则它的间断点是___________________17. 绝对值函数 ==x x f )(⎪⎩⎪⎨⎧<-=>.0,;0,0;0,x x x x x()()x x x x f 25lg 12-+-+=其定义域是 ,值域是18. 符号函数 ==x x f sgn )(⎪⎩⎪⎨⎧<-=>.0,1;0,0;0,1x x x其定义域是 ,值域是三个点的集合19. 无穷小量是 20. 函数)(x f y =在点x0 连续,要求函数yf (x) 满足的三个条件是三. 计算题21.求).111(lim 0x ex xx --+-→ 22.设f(e 1-x )=3x-2,求f(x)(其中x>0); 23.求lim 2 x →(3-x)25--x x ;24.求lim ∞→ x (11-+x x )x; 25.求lim x →)3(2tan sin 22x x x x +26. 已知9)(lim =-+∞→xx ax a x ,求a 的值; 27. 计算极限nnnn 1)321(lim ++∞→ 28.求它的定义域。
29. 判断下列函数是否为同一函数:⑴ f(x)=sin 2x +cos 2x g(x)=1⑵ 11)(2--=x x x f 1)(+=x x g⑶ ()21)(+=x x f 1)(+=x x g⑷ ()()21+=x x f 1)(+=x x g ⑸ y =ax 2 s =at 230. 已知函数 f(x)=x 2-1,求f(x+1)、f(f(x))、f(f(3)+2)31. 求 746153lim 22--+-+∞→n n n n n 32. 求 221lim n nn ++++∞→Λ33. 求 )1(lim n n n -++∞→ 34. 求 nn nn n 3232lim +-+∞→ 35. 判断下列函数在指定点的是否存在极限⑴ ⎩⎨⎧<>+=2,2,1x x x x y 2→x ⑵ ⎪⎩⎪⎨⎧><=0,310,sin x x x x y 0→x36. 31lim3+→x x 37. 93lim 23--→x x x38. xx x 11lim--→ 39. 求当x →∞时,下列函数的极限112323+-+-=x x x x y40. 求当x →∞时,下列函数的极限11232+-+-=x x x x y 41.41. x xx 3sin lim→ 42. 20cos 1lim xxx -→ 43. 311lim -∞→⎪⎭⎫⎝⎛+n n n44. nn n 211lim ⎪⎭⎫⎝⎛+∞→45. x x kx)11(lim +∞→ 46. xx x ⎪⎭⎫⎝⎛-∞→11lim 47. ()xx kx 101lim +→48. 研究函数在指定点的连续性⎪⎩⎪⎨⎧=≠=0,10,sin )(x x x xx f x 0=049. 指出下列函数在指定点是否间断,如果间断,指出是哪类间断点。
11)(-=x x f ,x =1 50. 指出下列函数在指定点是否间断,如果间断,指出是哪类间断点。
⎪⎩⎪⎨⎧=≠=0,00,1)(x x xx f ,x =0 51. 指出下列函数在指定点是否间断,如果间断,指出是哪类间断点。
⎩⎨⎧=≠=0,10,)(2x x x x f ,x =0 52. 证明f(x)=x 2是连续函数 53. xx x )1ln(lim0+→54. ⎪⎪⎭⎫ ⎝⎛⋅--→x x x x ln 11lim 21 55. 试证方程2x 3-3x 2+2x -3=0在区间[1,2]至少有一根56. xx x x 2sin sin tan lim 30-→ 57. 试证正弦函数 y = sin x 在(-∞, +∞)内连续。
58. 函数f (x ) = x =⎩⎨⎧<-≥00x x x x ,;,在点x = 0处是否连续? 59. 函数)(x f =⎩⎨⎧≠≠0001sin x x x x ,;, 是否在点0=x 连续?60. 求极限 xa x x 1lim 0-→. 答案: 一.选择题1.A 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).【评注】 函数f(x)与其原函数F(x)的奇偶性、周期性和单调性已多次考查过. 请读者思考f(x)与其原函数F(x)的有界性之间有何关系? 2. D 【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点. 且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;0)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).【评注】 应特别注意:+∞=-+→1lim 1x x x ,.1lim 1-∞=--→x xx 从而+∞=-→+11lim x xx e ,.0lim 11=-→-x xx e3 C4 A5 C6 C7 A8 C∵x →∞时,分母极限为令,不能直接用商的极限法则。
先恒等变形,将函数“有理化”: 原式 = 21111lim )11()11)(11(lim 00=++=++++-+→→x x x x x x x . (有理化法) 9 D 10 C解 原式161821lim )2()cos 1(tan lim 32030=⋅=-=→→x x x x x x x x . ▌ 注 等价无穷小替换仅适用于求乘积或商的极限,不能在代数和的情形中使用。
如上例原式0)2(lim 3=-=→x x x x .二.填空题 11. 2 12. 1 13. 0 14 . 515 . 2-e 16. 2,1=x17 .),(+∞-∞ ),0[+∞ 18. ),(+∞-∞ }1,0,1{-19 . 在某一极限过程中,以0为极限的变量,称为该极限过程中的无穷小量 20 . ① 函数yf (x) 在点x0有定义;② x →x0 时极限)(lim 0x f x x →存在;③ 极限值与函数值相等,即)()(lim 00x f x f x x =→三. 计算题21 . 【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+=2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e 22. f (x)=3lnx+1 x >0 23.e 324.e 225.6126. 3ln ; 27. 328. 解:由x +2≥0解得x ≥-2由x -1≠0解得x ≠1 由5-2x >0解得x <2.5 函数的定义域为{x |2.5>x ≥-2且x ≠1}或表示为(2.5,1)∪(1,-2)29. ⑴、⑸是同一函数,因为定义域和对应法则都相同,表示变量的字母可以不同。
⑵⑶不是同一函数,因为它们的定义域不相同。
⑷不是同一函数,因为它们对应的函数值不相同,即对应法则不同。
30. 解:f(x+1)=(x+1)2-1=x 2+2x ,f(f(x))=f(x 2-1)=(x 2-1)2-1=x 4-2x 2 f(f(3)+2)=f(32-1+2)=f(10)=9931 . 解:222222n 22746153lim 746153lim 746153lim n n n n nn n n n n n n n n n n --+-=--+-=--+-+∞→+∞→+∞→ 210060031lim 71lim 46lim 1lim 1lim53lim 22=--+-=--+-=+∞→+∞→+∞→+∞→+∞→+∞→n n nn n n n n n n32. 解:212lim 2)1(lim 21lim 2222=+=+=++++∞→+∞→+∞→n n n n n n n n n n n Λ 33 . 解: nn n n n n n n n n ++++-+=-++∞→+∞→1)1)(1(lim )1(lim01lim 1lim 1lim111lim11lim =++=++=++=+∞→+∞→+∞→+∞→+∞→n n n n n n n nnn n n n34 . 解:110101lim )32(lim 1lim )32(lim 1)32(1)32(lim 3232lim -=+-=+-=+-=+-+∞→+∞→+∞→+∞→+∞→+∞→n n n n n n n n n n n nnn 35 . 解:⑴因为 3lim ,2lim 22==+-→→y y x x,y y x x +-→→≠22lim lim 所以 函数在指定点的极限不存在。