高中数学《分类加法计数原理与分步乘法计数原理》说课稿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《分类加法计数原理与分步乘法计数原理》说课稿
一、本课教学内容的本质、地位、作用分析
分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广。从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤”,先对每个步骤进行细致分析,再整合为一个完整的过程。这样做的目的是为了分解问题、简化问题。可见,理解和掌握两个计数原理,是学好本章内容的关键。
二、教学目标分析
1.知识目标
使学生熟练掌握两个原理的内容、区别,能够灵活的应用两个原理解决常见的计数问题。2.能力目标
在教学过程中,凸显两个原理发现的原始过程,使学生深刻理解由特殊到一般的归纳推理思维,在应用原理解决问题时,体会一般到特殊的演绎推理思维,从而培养学生的抽象概括能力、逻辑思维能力以及解决实际问题时主动应用数学知识的能力。
3.德育渗透目标
通过探索与发现的过程,使学生亲历数学研究的成功和快乐,感悟数学朴实无华的内在美,学会提出问题、分析问题、解决问题、推广结论进而完善结论的数学应用意识,激发学生勇于探索、敢于创新的精神,优化学生的思维品质。
三、教学问题诊断
两个原理的获得过程对于学生来讲并不难,学生已经具备了由具体问题抽象概括、总结归纳的能力,对于两个原理的应用,尤其是分类、分步的区别是认识上的难点,事实上,经验表明:有些学生一直到高考前都难以准确的区分好两个原理,教学始终牢牢把握这一难点也是重点展开。
四、本节课的教学特点以及预期效果分析
《普通高中数学课程标准》指出:高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程。新课程标准的价值取向是要求教师成为决策者而不是执行者,要求教师创造出班级气氛、创造出某种学习环境、设计相应教学活动并表达自己的教育理念等等。
基于以上思想,本节课采用问题式教学为主线,辅以启发式、探究式、自主式、讨论式教学方式。教学内容以2010年南非世界杯相关问题背景为主线展开,辅以大量的实际例子,形成学生对于两个原理的发现、归纳、总结、应用、推广、再认识的过程。
具体而言,设置以下几个环节:
【创设情境、设疑激趣】
引入采用世界杯总场数的设问,引导学生发现逐个列举所有场数不易操作,从而引出研究计数问题的必要性并给出计数问题的含义。给出课题,指明探究方向。
【问题导学、研究分类加法计数原理】
先用世界杯网络测试的背景作为引例,启发学生放飞思维,联系生活实际,举类似的例子;再引导学生充分讨论,深入探究,寻求例子的共性,归纳、概括出分类加法计数原理;接着为了加深对于原理的认识,给出“原理”的含义,并进一步对原理的内容进行解释,强调“完成一件事”“分类”“加法”三个关键词;再通过实例引导学生推广原理;最后依然用世界杯的背景例子启发学生归纳出分类的基本原则:“不重不漏”。
【类比研究、研究分步乘法计数原理】
完全类比分类加法计数原理的研究思路,充分讨论,层层设问,得出原理,延伸推广,强调分步注意“步骤完整,步步相依”。
【典型例题、区分两个原理】
把课本上的书架三层有三种书分别若干本的例子,改编为三问:第一问求任取一本书的取法数,直接用分类加法计数原理即可解决;第二问求每层各取一本书的方法数,直接用分步乘法计数原理;第三问求取两本不同学科的书的方法数,需要先分类,再分步,体现了两个原理的综合应用。本题旨在同一背景下认识两个原理,区分两个原理,尤其区分“类”和“步”。然后先讨论,再和学生一起归纳出两个原理的联系和区别,填充表格。
【课下讨论探究】
设计了两个小题,分别是参赛、夺冠两个极易混淆的背景,需要学生课下充分讨论、探究,深思熟虑再解决,是课堂教学的延伸。
【布置作业、反思小结】
布置课后作业,小结内容,提炼归纳出利用两个原理解决计数问题的一般思路。最后指出:细微的生活中往往蕴涵着深刻的数学思想方法,利用数学工具研究缤纷多彩的世界充满了无限的乐趣!这就是数学的魅力!最后预祝大家都能学好数学、用好数学、欣赏数学、热爱数学!
通过以上设计,预期达到以下效果:使学生在对于两个原理的发现过程中,体会由特殊到一般的归纳推理思维;在应用原理解决实际问题的过程中,体会主动应用数学的意识;通过大量的老师举例、学生举例、典型例题,使学生熟练两个原理的应用,体会两个原理的广泛应用。
新的课程改革的理念侧重以下四个环节:以人为本;树立开放的大课程观;树立师生交往互动的平等观;强调整合构建新的课堂教学目标体系。本节课围绕以上四个环节紧密展开,力求通过对于两个原理的探究,提高学生数学素养,增强学习兴趣,优化学习习惯,提高数学能力。