高中数学《分类加法计数原理与分步乘法计数原理》说课稿
《分类加法计数原理与分步乘法计数原理》教学设计(第一课时)
《分类加法计数原理与分步乘法计数原理》教学设计(第一课时)宁波市第四中学邵春霞一、教学内容分析(一)教材的地位与作用“分类加法计数原理和分步乘法计数原理”(以下简称“两个计数原理”)是人教A版高中数学课标教材选修2-3中“第一章计数原理”第1.1节的内容,本节课为第1课时.两个计数原理是人类在大量的实践体会的基础上归纳出的差不多规律,是解决计数问题的最差不多、最重要的方法,它们不仅是推导排列数、组合数运算公式的依据,而且其差不多思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。
一方面它为后面学习排列、组合、随机变量的概率等内容提供了思想方法和理论依据;另一方面它的结论与其差不多思想方法在解决本章应用问题时有许多直截了当应用。
因此,它理应成为我们重点把握的教学内容。
新旧教材最大区别在于:旧教材是先学习两个计数原理后学习概率,表达由理论到实践的过程。
新教材是在学习了古典概型的基础上提出了本节内容,表达了由实践到理论、再到实践的过程。
学生在具备一定的计数能力(树形图、列举法等)的前提下,能更好更快地明白得并把握这两个差不多原理,在实践中能更灵活地运用两个差不多原理来解决问题。
另外本节课所涉及的分步、分类思想是解决实际问题的最有效的武器,是人们摸索问题的差不多方法。
(二)教学重点与难点教学重点:对两个计数原理的认识与明白得,并能解答简单的应用问题。
教学难点:依照具体问题特点,准确选择分类加法计数原理与分步乘法计数原明白得决实际问题。
(三)教学目标1、知识与技能:(1)正确明白得和把握分类加法计数原理和分步乘法计数原理(2)会利用两个原理分析和解决一些简单的应用问题2、过程与方法:(1) 经历由实际问题推导出两个原理,再回来实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发觉数学、运用数学的过程.(2)在解决实际问题的过程中,进一步体会将问题进行“分类”摸索和“分步”摸索的数学方法。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用计数原理解决实际问题的能力。
3. 引导学生通过合作交流,提高思维能力和创新能力。
二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。
(2)学会运用分类加法计数原理解决问题。
2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。
(2)学会运用分步乘法计数原理解决问题。
三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。
(2)分步乘法计数原理的应用。
2. 教学难点:(1)理解分类加法计数原理的含义。
(2)理解分步乘法计数原理的含义。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 运用实例分析,让学生直观理解计数原理。
3. 组织小组讨论,培养学生合作交流能力。
五、教学准备1. 课件、黑板、粉笔等教学工具。
2. 相关实例和练习题。
教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。
2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。
3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。
二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。
2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。
3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。
2. 讲解分类加法计数原理的概念和步骤。
3. 让学生举例说明并计算。
二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。
2. 讲解分步乘法计数原理的概念和步骤。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。
公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。
公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。
分步乘法计数原理的概念和公式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。
2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。
五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。
2. 讲解分类加法计数原理的公式和应用示例。
3. 讲解分步乘法计数原理的公式和应用示例。
4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。
六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。
2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。
3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。
七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。
【公开课教案】分类加法计数原理与分步乘法计数原理教学设计
自选课题:分类加法计数原理与分步乘法计数原理一、教学设计1.教学内容解析“分类加法计数原理和分步乘法计数原理”(以下简称“两个计数原理”)是人教A版高中数学课标教材选修2-3“第一章计数原理”第1.1节的内容,教学需要安排4个课时,本节课为第1课时.计数就是数数.原理是在大量观察、实践的基础上,经过抽象、归纳、概括而得出具有普遍意义的基本规律.两个计数原理不仅是继续学习排列、组合和二项式定理的理论依据,更是处理计数问题的两种基本思想方法,在本章中是奠基性的知识.从认知基础的角度看,两个计数原理实际上是学生从小学就开始学习的加法运算与乘法运算的拓展应用,是体现加法与乘法运算相互转化的典型例证.从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂的计数问题分解为若干“类别”,再分类解决;运用分步乘法计数原理解决问题则是将一个复杂的计数问题分解为若干“步骤”,先对每个步骤分类处理,再分步完成.综合运用两个计数原理就是将综合问题分解为多个单一问题,再对每个单一问题各个击破.也就是说,两个计数原理的灵魂是划归与转化的思想、分类与整合的思想和特殊与一般的思想的具体化身.从数学本质的角度看,以退为进,以简驭繁,化难为易,化繁为简,是理解和掌握两个计数原理的关键,运用两个计数原理是知识转化为能力的催化剂.因此,本课的主要任务是如何依托学生已有的认知基础总结得出两个计数原理,并能初步领会应用原理简捷地解决计数问题的要领.根据以上分析,本节课的教学重点确定为:教学重点:归纳出两个计数原理,并能初步用其解决一些简单的实际问题.2.学生学情分析计数问题学生并不陌生,在不同的学段都有相应的接触,特别是在高中数学《必修2》中学习“古典概型”时,学生又学会了用列举法解决最简单的计数问题;同时在学习和生活中,学生已经不自觉地会使用“分类”和“分步”的方法来思考和解决问题,这些都是学生学习两个计数原理的认知基础.两个计数原理虽简单朴素,易学好懂,但如何让学生借助已有的数学活动经验,抽象概括出两个计数原理,并领悟其中重要的数学思想方法,实现认知的飞跃,则是本课必须要突破的难点所在.为此,抓住以下两个要点尤为重要:一是要通过典型丰富的实例来帮助学生完成归纳提炼的过程,加强学生应用两个计数原理解决问题的意识——这是有效提升学生抽象概括能力的契机;二是要在解决问题的过程中,始终突出两个计数原理的核心要素,即弄清“完成一件事”的含义和区分“分步”与“分类”的特征——这是如何选择两个计数原理的关键.根据以上分析,本节课的教学难点确定为:教学难点:根据实际问题的具体特征,正确理解“完成一件事”的含义;准确区分“分类”和“分步”.3.教学目标设置(1)通过给出的具体实例,学生经历两个计数原理的抽象概括的发现过程,能归纳出两个计数原理,并能说出两个计数原理的联系与区别,体会从特殊到一般的思维过程;(2)根据具体的问题情境,学生能描述“完成一件事”的具体含义,说出“分类”与“分步”的区别,总结出应用两个计数原理的基本步骤;(3)通过变式练习、引例探究和列举实例,学生会正确选择和应用两个计数原理解决一些简单的实际问题,领悟运用两个计数原理所包含的划归与转化、分类与整合和特殊与一般的思想方法,以及以退为进的思维策略.4.教学策略分析本节课是概念原理课的教学典范.拟定采取以退为进的教学策略,采用“情景引入—问题诱导—实例探究—抽象概括—原理应用—归纳总结—拓展铺垫”的探究发现式教学方法,紧紧围绕如何抽象、怎样概括、如何归纳和怎么应用等问题展开,通过典型丰富的实例引导学生归纳出两个计数原理,并能学会初步应用.具体教学策略分成如下五个环节:第一环节:创设情境,提出问题.从“神十的身份证号码”出发,引出“人造天体的编号问题”,通过问题设疑,引导学生在不断思考中获取两个计数原理的发现过程;第二环节:实例探究,归纳原理.从以退为进的实例出发,通过先“两类”后“多类”,先“分类”后“分步”,先“加法”后“乘法”的逐步过渡,引导学生在加法与乘法相互转化的过程中提炼归纳两个计数原理;第三环节:演练反馈,巩固提升.从选择两个原理解决计数问题的关键出发,通过“各取”“任取”等关键词的辨别,引导学生真正弄清“完成一件事”的具体含义,领会准确区分“分步”和“分类”的操作要领;第四环节:归纳小结,认知升华.从放手让学生自主小结出发,通过提纲挈领的表格式小结,引导学生进一步加深对两个计数原理本质的认识;第五环节:课后检测,拓展铺垫.从引发学生进一步思考出发,通过设置有关高考科目改革的热点思考题,为后继学习排列组合做好铺垫,激发学生进一步学习的欲望.其教学流程如下:二、课堂实录1.创设情境,提出问题开场白:中国梦,航天梦.近年来,我国科技发展突飞猛进,“神十”的发射更是让世人瞩目,下面我们就一起来回顾这令人激动的时刻.视频:“神十”升天,飞入太空.画外音:“神十”升天,国人欢呼,世界瞩目.你知道他的“身份证号码”吗?它的国际编号为2013-029A.人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).按照这样的编号规则,2013年的人造天体所有可能的编码有多少种?师:欣赏完激动人心的视频,我们来看看这个问题的设问方式,“按照这样的编号规则,2013年的人造天体所有可能的编码有多少种?”这就是一个典型的计数问题.所谓计数就是数数.其实类似的问题有很多:幼儿园时我们数有多少个鸭子?我们班有多少同学?甚至我们穿校服上衣和裤子有多少种不同的搭配种数等等,我们将这种方法数的计算问题都称之为计数问题.师:小时候,我们是怎么数的呀?生:一个一个的数.师:刚才这个问题“一个一个的去数”可以吗?比较复杂.看来我们有必要探究更有效的计数方法.这个问题研究四位编码比较复杂,怎么办?我们不妨先退回来研究一位、两位的情形,从中探索出规律,从而解决四位的情形.【评析】以学生关心的知识背景切入本节课,以视频演示烘托气氛,提高了学生主动参与学习的积极性,同时点题:如何有效的计数.2.实例探究,归纳原理(1)师生共同探究,得出分类加法计数原理问题1:如果用一个大写的英文字母或一个阿拉伯数字给卫星编号,那么总共能够编出多少种不同的号码?生:26+10=36种师:对的.这就是加法运算.问题2:从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有26班,汽车有10班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?生:一共有26+10=36种不同的走法.师:对,那这两个计数问题有什么共同特点呢?生:这两个问题告诉我们,计数是可以分类的:问题1按英文字母和阿拉伯数字分成两类,问题2按交通工具分成两类.将每类的方法数相加就得到了问题的答案.师:梳理同学们的总结,我们列成表格,将共性总结成一个命题,即如果完成一件事有两类不同方案,在第一类方案中有种不同的方法,在第二类方案中有种不同的方法,那么完成这件事共有N m n=+种不同的方法.根据特点给它起个名字,就叫分类加法计数原理.原理是在大量观察的基础上经过归纳、概括而得出的基本规律.同学们还要特别注意:这里的关键词是完成一件事,分类,加法,每类中的任一种方法都能独立完成这件事.【评析】让学生体会知识获得的过程,通过独立思考、自主探究、合作交流归纳出原理.师:同学们试一试,能用自己得到的原理解决具体的问题吗?例1 在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?生:这名同学可以选择A,B两所大学中的一所,而且只能选择一个专业,又由于A大学有5种不同的选择,B大学有4种不同的选择,所以共有5+4=9种不同的选择.师:对.如果还有C大学呢?变式:在填写高考志愿时,一名高中毕业生了解到,A,B,C三所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学 C大学生物学数学新闻学化学会计学金融学医学信息技术学人力资源学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?生:5+4+3=12.师:看来加法原理不仅对完成一件事有两类不同方案适用,也对分三类方案适用,对分n类同样适用.生:一般地,如果完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类中有2m 种不同的方法…,在第n 类中有n m 种不同的方法,那么完成这件事共有种12n N m m m =+++不同方法.【评析】例题及变式训练由易到难,循序渐进,而且为学生自主生成加法原理的一般形式做好了铺垫.师:下面,我们看大家能否用这个原理解决更复杂的问题!(2)类比转化探究,得出分步乘法计数原理问题3:如果用前六个大写英文字母中的一个和1~9九个阿拉伯数字中的一个,组成编码形如A 1,B 2的方式给卫星编号,那么总共能编出多少个不同的号码?【评析】承上启下,既巩固加法原理,又为乘法原理做铺垫,然后落脚在“分步,乘法”这两个特征上,有利于原理的主动生成.生:6×9=54.师:请谈谈你的具体想法.生:完成编号这件事我先确定数字,再确定字母.数字有9种选择,字母有6种选择.因而共有96=54(种).师:那你是着眼于完成这件事的过程,先确定数字,再确定字母,需分步,用乘法解决.那交换两个步骤可以吗?显然可以.那54对不对呢?哪位同学能用分类加法计数原理帮他检验一下.生:按照题意,按字母分类:以A 开头有9个,以B 开头有9个,如此类推,以F 开头有9个,所以共有9+9+9+9+9+9=96=54种不同的号码.师:那你是着眼于完成这件事结果,根据首字母不同,分六类,用加法原理解决.看来54是此题的答案确定无疑!师:从此题中我们感觉到“分步相乘”,那类似问题都能这样吗?下面看一个新问题.问题4:从甲地到丙地,要从甲地先乘火车到乙地,再于次日从乙地乘汽车到丙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到丙地共有多少种不同的走法?生:从甲地到丙地需 2 步完成,第一步,由甲地去乙地有 3 种方法;第二步,由乙地去丙地有 2 种方法,所以从甲地到丙地共有3 ×2 = 6种不同的方法.【评析】从加法原理过渡到乘法原理,让学生检验分步相乘的合理性与简洁性.师:类比加法计数原理,归纳问题3和问题4的共同特点,我们可以得到什么结论?生:如果完成一件事需要两个步骤,做第一步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N m n=⨯种不同的方法.师:我们称它分步乘法计数原理.同学们还要特别注意:这里的关键词是完成一件事,分步,乘法,每步中的任一种方法都不能独立的完成这件事,只有各个步骤都完成才算做完这件事情.【评析】让学生从感性体验上升到理性认识,通过独立思考、自主探究、合作交流归纳出原理.师:请用你们得到的原理解决下面的问题.例2 某班有男生30名,女生24名,现要从中选出男、女生各一名代表班级参加公益活动,共有多少种不同的选法?师:你把选代表这件事分成两步,你是先确定男生人选,再确定女生人选,所以分两步用乘法原理.那先确定女生人选,再确定男生人选是否可以呢?生:都可以,只要能达到完成这件事的目的就行.变式:某班有男生30名,女生24名,任课老师10名,现要从中选出男、女生各一名代表班级参加公益活动,还要从中选派1名老师作领队,组成代表队,共有多少种不同选法?生:再乘以10.师:由此你们又可以得到什么结论呢?生:一般地,如果完成一件事要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法…,做第n 步有n m 种不同的方法,那么完成这件事共有种12n N m m m =⨯⨯⨯不同方法.【评析】例题及变式训练由易到难,循序渐进,而且为学生自主生成乘法原理的一般形式做好了铺垫.师:我们已经归纳了两个计数原理,他们的共性是:为了计数.区别是:因为问题特征不同,有时需要分类,有时需要分步.希望以后用原理解决问题时,要清楚的用原理表达完成一件什么事,怎么完成,是分步还是分类呢?下面我们来做几个练习.3.演练反馈,巩固提升练1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架的第1,2,3层各取一本书,有多少种不同取法?(2)从书架中任取1本书,有多少种不同的取法?变式:从书架中取2本不同种类的书,有多少种不同的取法?【评析】设问循序渐进,突出强调解题时,弄清完成一件事的要求至关重要,只有这样才能正确区分“分类”和“分步”(区分的关键是对“完成一件事”的理解).师:还记得人造天体编号的问题吗?请同学们试一试,我们现在能解决了吗?练2 【引例回放】“神十”的国际编号为2013-029A.人造天体的编号规则:①发射年份+四位编码;②四位编码前三位为阿拉伯数字,第四位为英文字母;③前三位数字不能同时为0;④英文字母不得选用I,O(I易与1混淆,O易与0混淆).这样的编号规则,2013年的人造天体所有可能的编码有多少种?生:(1010101)2423976.⨯⨯-⨯=师:同学们很好的解决了这个问题.随着科技的发展,以后人造天体更多了,超过了23976,怎么解决呢?生:可增加位数.生:还可以增加每一位的选择.师:非常棒.【评析】呼应引例,开放探究,巩固两个计数原理.师:计数原理有广泛的应用,在生活中需要计数,在科学实践中也需要计数,那么大家想一想:你在生活中学习中遇到哪些分类计数问题和分步计数问题呢?练3 【应用访谈】你能举出生活中或其它学科中的运用两个原理的计数问题吗?生:武汉市的汽车牌照以鄂A开头,后面有五位.我分5步,第一步确定第一位,第二步确定第二位,…,第五步确定第五位,又因为每一步既可以选择字母,又可以选择数字,由加法原理有26+10=36种选择,再由乘法原理共有5363636363636⨯⨯⨯⨯=种不同的选择.生:身份证后4位是随机数,就可以分成4步完成,第1,2,4位上有0~9十种选择,第3位上有5种选择,所以共有⨯⨯⨯=种不同的选择.10105105000生:开运动会时,有5个同学要报四个体育项目,每位同学只能报其中一种,每位同学有4种选法,所以共有5⨯⨯⨯⨯=种不同的444444选法.生:氢元素有3种同位素,氯元素有2种同位素,所以HCl的分子质量共有3×2=6种.生:…师:大家举得例子漂亮极了.看来数学来自生活,又应用于生活,数学是有用的!同学们,生活丰富多彩,世界奥秘无穷,在知识的天空里,让我们借助数学的力量,像“神十”一样展翅飞翔吧!师:这节课同学们举出了很多实例,老师也给出了一些实例,根据以上的计数实例,我们收获了什么?4.归纳小结,认知升华生:在计数问题中,有的是用分类加法计数原理,有的是用分步乘法计数原理,而有的是既用分类加法计数原理,又用分步乘法计数原理.生:当我们遇到复杂问题时,先把复杂的问题化为一些简单的问题,然后通过一系列的简单问题得到一些规律,然后用规律解决复杂问题.生:经过小组讨论,我们总结了两点.第一是今天学到了计数问题的解决办法:列举法和两个计数原理.在应用这两个计数原理的时要小心审题,正确选择原理.第二是我们不仅学到知识本身,还学到了研究问题的方法,我们先是从实际问题中归纳出原理,然后再运用于实际之中,让我们感受生活中处处有数学.生:…师:我们今天探讨了一个问题就是如何计数?得出了计数方法的两个原理.这两个计数原理是怎么来的?是我们从实际生活中归纳出来的.那么应用这两个计数原理的关键是什么?就是关注它们的应用场合:有的要分类,有的要分步,有的既要分类又要分步.这两个计数原理的不同点是:分类加法原理中每类中的任一种方法都能独立的完成这件事.分步乘法计数原理中,每步中的任一种方法都不能独立的完成这件事,只有各个步骤都完成才算做完这件事情.它们的异同点如下表:【评析】学生在谈收获的同时,就是学生主动建构知识的过程,加深了对本章知识的理解和思想方法的掌握.5.课后检测,拓展铺垫附:板书设计1.1 分类加法计数原理与分步乘法计数原理⎧⎪⎧⎨⎨⎪⎩⎩列举法计数问题分类加法计数原理两个计数原理分步乘法计数原理三、课后反思1.可取之处(1)情境线、知识线、数学思想线三线交融,构建有效课堂.通过创设情境,引导学生探究知识,并在探究的过程中,促进学生数学思维的养成和发展.我感悟到:只有发挥数学的内在力量,教给学生数学的思想,才能为学生谋取长远利益.(2)好实例,好导引,好舞台三好合一,促进学生自主发展.教师精选实例,精心设计变式,通过问题引导,给学生展示思想的舞台.特别值得一提的是,深挖问题三的功能,让学生在发现、验证、探究、升华的过程中快乐学习,进而实现教学的自然衔接与自然生成.我感悟出:经典的实例,巧妙的设问是促进学生自主发展的有效方法.(3)从数学、生活、学科三个角度看两个原理,拓展了学生的科学视野.开放探究的过程,极大的调动了学生的积极性.我感悟出:生活、学科中的数学问题,能将学生的思维引入更广阔的空间.课堂的生成、学生的参与意识、应用意识超过我的想象.2.改进之处遗憾的是对学生的回答和交流,有些地方的定评不是很到位;受课堂45分钟的时间限制,很多同学还想发言交流,意犹未尽,怎么利用它?这将是我要进一步探索的.。
高考数学复习-分类加法计数原理与分步乘法计数原理教案(说课赛课)
高考数学分类加法计数原理与分步乘法计数原理教学目的 1了解学习本章的意义,激发学生的兴趣.2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力.3.会利用两个原理分析和解决一些简单的应用问题.教学重点分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解教 具多媒体、实物投影仪教学过程一、引入课题今天我们来学习两个计数原理:分类加法计数原理和分类乘法计数原理。
这两个原理不仅是我们解决计数问题的依据,也是我们学习排列组合和概率论的基础。
二、引出两个原理问题1: 重庆的王先生欲回老家广州过年,从重庆到广州可以乘坐火车或者汽车,一天中,火车有3班,汽车有2班,问从重庆到广州共有多少种不同的走法?分析:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从重庆到广州,所以,共有3+2=5种不同的走法。
由问题1引出分类加法计数原理:完成一件事情,有两类办法,在第1类办法中有m 种不同的方法,在第2类办法中有n 种不同的方法,那么完成这件事共N=m+n 种不同的方法.(也称加法原理)(板书)追问:如果完成一件事情有 n 类不同方案,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.那么完成这件事共多少种不同的方法?.(口述)回答:有n m m m N +⋅⋅⋅++=21种方法。
问题2:王先生在广州过完年后要去北京拜访朋友.第一天他必须乘火车去天津办一件事,然后次日再乘汽车到北京。
一天中,广州到天津的火车有3班,天津到北京的汽车有2班,问王先生从广州到北京一共有多少种走法?分析:因为乘火车有3种走法,乘汽车有2种走法,所以,从广州到天津需乘一次火车再接着乘一次汽车就可以了,共有错误!未找到引用源。
种不同走法由问题2引出分步乘法计数原理:完成一件事情,需要分成两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法.那么完成这件事共有N=m+n 种不同的方法.(也称乘法原理)(板书)追问:如果完成一件事需要n 个步骤,做第1步有 错误!未找到引用源。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、分类加法计数原理教案主旨: 学习分类加法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明有3个红色球和4个蓝色球,他想穿一双颜色相同的球,有多少种可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分类加法计数原理的概念: 分类加法计数原理是指在一个问题中,通过将问题进行分类,然后对每个分类进行计数,最后将各个分类的计数结果相加,得到最终的解决方案。
2. 给出示例问题: 一个篮球队有5个队员,一个足球队有6个队员,现在要选出两个队员进行混合比赛,有多少种可能性?三、讲解 (15分钟)1. 分类: 将问题分为篮球队员和足球队员两类。
2. 计数: 分别计算篮球队员和足球队员的可能性,篮球队员有C(5,2)种组合方式,足球队员有C(6,2)种组合方式。
3. 合并: 将篮球队员和足球队员的组合数相加得到最终的解。
四、练习 (15分钟)1. 分发练习册,让学生完成相关练习。
2. 教师巡视督促学生的练习过程,提供必要的帮助和指导。
五、总结 (5分钟)1. 总结分类加法计数原理的步骤:分类、计数、合并。
2. 强调分类加法计数原理在解决实际问题中的应用。
3. 回顾学生在课堂练习中的解题思路和结果。
二、分步乘法计数原理教案主旨: 学习分步乘法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明喜欢穿不同颜色的T恤和裤子,他有3种不同颜色的T恤和4种不同颜色的裤子,他有多少种穿搭可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分步乘法计数原理的概念: 分步乘法计数原理是指在一个问题中,将问题分为多个独立的步骤,然后计算每个步骤的可能性,并将各个步骤的可能性相乘,得到最终的解决方案。
2. 给出示例问题: 一个密码锁有3个拨轮,每个拨轮上分别有0-9的数字,求密码锁的可能组合数。
高中数学选择性必修三 6 1分类加法计数原理与分步乘法计数原理教案
6.1分类加法计数原理与分步乘法计数原理教学设计法.根据分步乘法计数原理,共有4×3×2=24种. 课堂练习:1、完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有( C )A.5种B.4种C.9种D.20种2、我校教学楼共有5层,每层均有两个楼梯,由一楼到五楼共有( B )种走法A.10种B.16种C.25种D.32种3、某公司利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲乙不参加同一项,则不同的报名方法种数为_____54________.4、现有5种不同的颜色要对图形中(如图)的四个部分涂色,要求有公共边的两部分不能用同一颜色,则不同的涂色方法有__180__种.拓展提高一:5、现某学校共有34人自愿组成数学建模社团,其中高一年级13人,高二年级12人,高三年级9人.(1)选其中一人为负责人,共有多少种不同的选法?(2)每个年级选一名组长,有多少种不同的选法?(3)选两人作为代表,要求这两人来自不同的年级,有多少种不同的选法?答:(1) 13+12+9=34(2) 13×12×9=1404(3)分三种情况讨论:①若选出的是高一、高二学生,有13×12=156种情况;②若选出的是高一、高三学生,有13×9=117种情况;③若选出的是高二、高三学生,有12×9=108种情况.由分类加法原理可得,共有156+117+108=381种选法链接高考:6、(2020 全国高三模拟)某城市地铁公司为鼓励人们绿色出行,决定按照乘客经过地铁站的数量实施分段优惠政策,不超过9站的地铁票价如下表所示,现有小华、小李两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过9站,且他们各自在每个站下地铁的可能性是相同的.乘坐站数0<x≤3 3<x≤6 6<x≤9票价(元) 2 3 4(1)若小华、小李两人共付费5元,则小华、小通过课堂练习,检验学生对本节课知识点的掌握程度,同时加深学生对本节课知识点的掌握及运用.通过练习,巩固基础知识,发散学生思维,培养学生思维的严谨性和对数学的探索精神.。
分类加法计数原理与分步乘法计数原理教学设计
分类加法计数原理与分步乘法计数原理教学设计一、教学目标通过本节课的学习,学生应能:1.掌握分类加法计数原理的基本概念与计算方法;2.理解分步乘法计数原理的基本概念与计算方法;3.能够灵活运用分类加法计数原理与分步乘法计数原理解决实际问题。
二、教学重难点1.分类加法计数原理与分步乘法计数原理的理解与运用;2.引导学生学会灵活运用计数原理解决实际问题。
三、教学准备多媒体教学设备、教学课件、题目练习资料。
四、教学过程1.情境导入(5分钟)教师通过引入生活中的实际问题,比如:小明有两张红色的贴纸和三张绿色的贴纸,他把这些贴纸都收集在一个盒子里,请问他一共有多少张贴纸?引导学生思考该问题。
2.引入分类加法计数原理(10分钟)老师引导学生将红色的贴纸和绿色的贴纸分别进行分类,并进行计数,然后通过分类加法计数原理,将两个分类中的数量相加,得到总数。
师生共同完成示例题目。
3.分类加法计数原理的运用(10分钟)教师给出一组题目,鼓励学生自己尝试用分类加法计数原理解决。
同时教师巡视指导,及时纠正学生解题错误。
4.引入分步乘法计数原理(10分钟)教师通过引导学生思考生活中实际问题,如不重复的选择一件上衣和一条裤子,共有几种搭配方式。
引导学生发现选择上衣和选择裤子的方式是分步的,然后通过分步乘法计数原理,计算有多少种搭配方式。
5.分步乘法计数原理的运用(15分钟)教师给出一组题目,鼓励学生自己尝试用分步乘法计数原理解决。
同时教师巡视指导,及时纠正学生解题错误。
6.计数原理的综合运用(20分钟)教师给出综合性应用题,要求学生结合分类加法计数原理与分步乘法计数原理进行综合运用,解决实际问题。
7.总结与扩展(10分钟)教师梳理本节课的重点知识,对分类加法计数原理与分步乘法计数原理进行总结。
然后教师布置课后作业,拓展学生的思维。
五、教学延伸1.老师可以引导学生思考计数原理在日常生活中的应用,如超市货物的分类与计数、人物影视剧中演员的选择等。
分类加法计数原理与分步乘法计数原理1 全国高中青年数学教师参赛优秀教案
普通高中课程标准实验教科书选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理教学设计说明一、本课教学内容的本质、地位、作用分析分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。
返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广。
从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤”,先对每个步骤进行细致分析,再整合为一个完整的过程。
这样做的目的是为了分解问题、简化问题。
可见,理解和掌握两个计数原理,是学好本章内容的关键。
二、教学目标分析1、知识目标:使学生熟练掌握两个原理的内容、区别,能够灵活的应用两个原理解决常见的计数问题。
2、能力目标:在教学过程中,凸显两个原理发现的原始过程,使学生深刻理解由特殊到一般的归纳推理思维,在应用原理解决问题时,体会一般到特殊的演绎推理思维,从而培养学生的抽象概括能力、逻辑思维能力以及解决实际问题时主动应用数学知识的能力。
3、德育渗透目标:通过探索与发现的过程,使学生亲历数学研究的成功和快乐,感悟数学朴实无华的内在美,学会提出问题、分析问题、解决问题、推广结论进而完善结论的数学应用意识,激发学生勇于探索、敢于创新的精神,优化学生的思维品质。
三、教学问题诊断两个原理的获得过程对于学生来讲并不难,学生已经具备了由具体问题抽象概括、总结归纳的能力,对于两个原理的应用,尤其是分类、分步的区别是认识上的难点,事实上,经验表明:有些学生一直到高考前都难以准确的区分好两个原理,教学始终牢牢把握这一难点也是重点展开。
四、本节课的教学特点以及预期效果分析《普通高中数学课程标准》指出:高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程。
分类加法计数原理、分步乘法计数原理说课稿 教案
分类加法计数原理、分步乘法计数原理问题1.1:从温州到杭州,可以乘汽车,也可以乘火车,一天之中,火车有2班,汽车有3班,那么一天中,乘坐这些交通工具从温州到杭州共有几种不同的走法?问题1.2:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?探究:你能说说以上两个问题的特征吗?分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有N=m+n种不同的方法.问题1.3:在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学生物学数学化学会计学医学信息技术学物理学法学工程学那么,这名同学可能的专业选择共有多少种?变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?分类加法计数原理完成一件事,有n 类不同方案,在第1类方案中有m1 种不同方法,在第2类方案中有m2 种不同的方法,‥‥‥在第n类方案中有mn 种不同的方法,那么完成这件事共有N种不同的方法:N=m1+m2+‥‥‥+mn 。
问题2.1:从温州到绍兴,没有直达的火车。
但可以先乘火车到缙云,再搭汽车到绍兴。
一天之中,从温州到缙云的火车有3班(在中午之前),从缙云到绍兴的汽车有4班(在午后),那么一天中,乘坐这些交通工具从温州到绍兴共有几种不同的走法?问题2.2:用前6个大写英文字母和1—9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?探究:你能说说这个问题的特征吗?分步乘法计数原理完成一件事需要分二个步骤,在第1步中有m种不同的方法,在第2步中有n种不同的方法. 那么完成这件事共有N=m+n种不同的方法.问题2.3:书架上有不同的数学书3本,不同的语文书2本,不同的英语书4本,从书架上拿数学书、语文书、英语书各一本,共有多少种不同的拿法?探究:如果完成一件事需要三个步骤,做第1步有m11种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,‥‥‥做第n步有mn种不同的方法,那么完成这件事共有N种不同的方法。
(完整版)分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理(第一课时)知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:①通过对两个原理概念的学习培养学生的理解能力、归纳概括能力和类比分析能力;②通过对两个原理的应用,提高学生对数学知识的应用能力;情感态度与价值观:①了解学习本章的意义,激发学生的学习兴趣②引导学生形成“自主学习”与“合作学习”等良好的学习方式.教学重点理解两个原理,并能运用它们来解决一些简单的问题.教学难点弄清楚“一件事”指的是什么,分清是“分类”还是“分步”. 教学方法启发式教具准备多媒体教学过程一、引入课题引例:从甲地到乙地有3条路,从乙地到丁地有2条路;从甲地到丙地有3条路,从丙地到丁地有4条路,问:从甲地到丁地有多少种走法?决问题.设计意图:从贴近学生实际生活的实例出发,让学生明白本节课的教学内容,激发学生学习兴趣。
师生互动:老师提问学生回答。
二、讲授新课:1、分类加法计数原理问题1:(多媒体展示)十一你打算从甲地到乙地旅游,假设可以乘汽车和火车.一天中,汽车有3班,火车有2班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种坐交通工具的方法?有3+2=5种方法探究1:(多媒体展示)你能说说以上问题的特征吗?(分析要完成的“一件事”是什么.)完成一件事有两类不同方案,在第1类方案中有3种不同的方法,在第2类方案中有2种不同的方法. 那么完成这件事共有3+2=5种方法。
一件事就是从甲地到乙地的一种乘坐交通工具的方式。
发现新知:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.(也称加法原理) 设计意图:由特例到定义的设计思路让学生理解加法原理的概念,体现了一般存在于特殊之中的辩证法思想,便于让学生理解概念。
分类加法计数原理与分步乘法计数原理的一等奖说课稿3篇
1、分类加法计数原理与分步乘法计数原理的一等奖说课稿我说课的题目是《分类加法计数原理与分步乘法计数原理》,接下来我将从教材分析、教学目标、教学对象、教法学法和教学过程设计分析这几个方面进行说课。
一、教材分析:1、教材地位:本节课是高中数学选修2-3(北师大版)第一章计数原理中§1分类加法计数原理与分步乘法计数原理,本小节共需2课时,这节课是第一课时。
先说本章及本节的教材地位。
计数问题是数学中的重要研究对象之一,也是人们了解客观世界的一种最基本的方法。
分类加法计数原理、分步乘法计数原理这两个计数原理是人们在大量实践的基础上归纳出来的基本规律。
它们不仅是推导本章排列与组合中排列数、组合数计算公式的依据,也是求解排列、组合问题的基本思想,且教材将排列、组合及二项式定理的研究都作为两个计数原理的典型应用而设置的。
可见,其基本思想方法贯穿本章内容的始终,因而,它们是学好本章内容的关键。
另一方面,这两个计数原理也是学生今后学习概率及今后进一步学习高等数学有关分支的预备知识。
因此,理解和掌握两个计数原理应该是最基本而重要的。
2 教学目标知识与技能:①通过实例,总结两个基本计数原理;正确理解“完成一件事情”的含义;②初步学会区分“分类”和“分步”;③会利用两个原理分析和解决一些简单的应用问题。
过程与方法:①通过典型的、学生熟悉的实例(座位编号问题),得出解答后,利用“探究”引导学生分析问题的本质,然后再抽象概括出基本原理;②通过简单应用使学生初步熟悉原理;③最后通过“探究”引导学生将原理推广到更加一般的情形;④初步学会区分“分类”和“分步”。
情感目标:①体会数学来源生活,并为生活服务,以此激发学生学习本章的兴趣;②使学生通过概括两个基本原理及推广,进一步加深特殊与一般的关系;③通过“分类”和“分步”让学生初步学会将复杂问题进行分解,将综合问题化解为单一问题的组合,再对单一问题各个击破,达到化难为易,化繁为简。
分类加法计数原理与分步乘法计数原理(1)说课稿
课题:分类加法计数原理与分步乘法计数原理(1)教学设计新疆石河子第二中学祝永华各位同仁,大家好!此教学设计的内容是“分类加法计数原理与分步乘法计数原理”第一课时,现就教材、教法、学法、教学程序、板书五个方面进行教学设计说明。
恳请各位同行批评指正。
一、说教材1、教材的地位、作用及编写意图《分类加法计数原理与分步乘法计数原理》出现在高中数学选修2—3第一章第一节内容。
两个计数原理是人们在大量实践经验的基础上归纳出来的基本规律。
它们不仅仅是推导排列数、组合数计算公式的依据,而且其思想方法贯穿内容的始终。
事实上,从发思想方法的角度看,运用分类加法计数原理解决问题就是讲一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理则是将一个复杂的问题分解为若干“步骤”,先对每一个步骤进行细致的分析,在整合为一个完整的过程。
这样做的目的都是为了分解问题、简化问题。
由于排列、组合及二项式定理的研究都是作为两个计数原理的典型应用而设计的,因此,理解和掌握两个计数原理,是学好本章内容的关键。
本节课要学的内容分类加法计数原理与分步乘法计数原理指的是分类加法计数原理的定义、分步乘法计数原理的定义、两个原理应用,其核心是两个计数原理,理解它关键就是要体会两个计数原理的基本思想及其应用方法。
学生已经学过加法、乘法,本节课的内容要与之建立相关联系,将其加以推广。
教学的重点是两个计数原理,解决重点的关键是结合实例阐述两个计数原理的基本内容,分析原理的条件和结论,特别是要注意使用对比的方法,引导学生认识它们的异同。
在人教版教材中本课题预设约4课时,对于两个计数原理中的多类、多步问题由学生自己探究感觉不是很妥。
在北师大版教材中将分类加法计数原理与分步乘法技术原理想讲授1课时,再综合运用1课时,感觉可取,但两个版本案例相对来讲偏少,偏大,在第一课时不利于学生理解、巩固、加深。
所以在教学设计中还是以比较贴近学生生活的实际问题展开教学。
分类加法计数原理与分步乘法计数原理说课稿
分类加法计数原理与分步乘法计数原理说课稿、说教材分析:1、教材地位:本节课是高中数学选修2-3 第一章计数原理中 1.1 分类加法计数原理与分步乘法计数原理,本小节共需4 课时,这节课是第一课时。
先说本章及本节的教材地位。
计数问题是数学中的重要研究对象之一,也是人们了解客观世界的一种最基本的方法。
分类加法计数原理、分步乘法计数原理这两个计数原理是人们在大量实践的基础上归纳出来的基本规律。
它们不仅是推导本章1.2 排列与组合中排列数、组合数计算公式的依据,也是求解排列、组合问题的基本思想,且教材将排列、组合及项式定理的研究都作为两个计数原理的典型应用而设置的。
可见,其基本思想方法贯穿本章内容的始终,因而,它们是学好本章内容的关键。
另一方面,这两个计数原理也是学生今后学习概率及今后进一步学习高等数学有关分支的预备知识。
因此,理解和掌握两个计数原理应该是最基本而重要的。
由于本节课是本章的第一节课,虽然正确运用两个计数原理是本章的重点,但由于学生要达到会用的境界,需要经过定的应用性训练的。
且《数学教育学》告诉我们,在定理、原理的教学中,尽量先让学生通过对具体实例的观察、测量、计算等实践活动,来归纳猜想具体的内容,这样做有利于学生对他们的理解。
依据这个来设计本节教学目标与重点、难点。
2 教学目标知识与技能:①通过实例,总结两个基本计数原理;正确理解完成一件事情的含义;②初步学会区分分类和分步③会利用两个原理分析和解决一些简单的应用问题。
过程与方法:①通过典型的、学生熟悉的实例(座位编号问题),得出解答后,利用探究引导学生分析问题的本质,然后再抽象概括出基本原理;②通过简单应用使学生初步熟悉原理③最后通过探究引导学生将原理推广到更加一般的情形④初步学会区分分类和分步。
情感态度与价值观:①体会数学来源生活,并为生活服务,以此激发学生学习本章的兴趣;②使学生通过概括两个基本原理及推广,进一步加深特殊与般的关系;③通过分类和分步让学生初步学会将复杂问题进行分解,将综合问题化解为单一问题的组合,再对单一问题各个击破,达到化难为易,化繁为简。
分类加法计数原理和分步乘法计数原理教学设计
分类加法计数原理和分步乘法计数原理教学设计教学设计:分类加法计数原理和分步乘法计数原理一、教学目标1.了解分类加法计数原理和分步乘法计数原理的概念和应用;2.能够运用分类加法计数原理和分步乘法计数原理解决实际问题;3.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1.分类加法计数原理的基本概念和应用;2.分步乘法计数原理的基本概念和应用;三、教学过程第一节:分类加法计数原理1.导入(5分钟)-引入生活中的例子,例如:一把铲子可以分为“红色”和“蓝色”两类,一双筷子可以分为“金属”和“木质”两类等。
-引出问题:如果有一个包里有3只红色的铲子和2只蓝色的铲子,这个包里一共有几只铲子?如何快速求解?2.概念解释(10分钟)-解释分类加法计数原理的概念:当一个集合可以分为若干互不相交的类别时,集合的元素个数等于各个类别元素的个数的和。
-通过教师提供的实例,进一步让学生理解概念。
3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分类加法计数原理的基本公式写出来,即:总数=类别1数目+类别2数目+类别3数目+...+类别n数目-以问题解决的方式,将公式的应用过程演示给学生。
4.练习应用(15分钟)-给学生发放习题册,让学生结合自己的实际情况完成其中的练习题。
-教师巡回指导,解答学生提出的问题。
第二节:分步乘法计数原理1.复习(5分钟)-复习分类加法计数原理的概念和应用,让学生回答一些与分类加法计数原理相关的问题。
-引出问题:如果有3件相同的红色上衣和2件相同的蓝色上衣,这些上衣一共有几种穿法?如何快速求解?2.概念解释(10分钟)-解释分步乘法计数原理的概念:当一个事件需要分为若干个步骤进行时,每一步的选择数目乘积等于总方案数。
-通过教师提供的实例,进一步让学生理解概念。
3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分步乘法计数原理的基本公式写出来,即:总方案数=第一步选择数目×第二步选择数目×第三步选择数目×...×第n步选择数目-以问题解决的方式,将公式的应用过程演示给学生。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 引导学生通过观察、分析、归纳和推理,形成数学概念。
二、教学内容1. 分类加法计数原理:通过实例让学生理解分类加法计数原理,即在计数时,将事物按照某种特征进行分类,将各类别的事物数量相加。
2. 分步乘法计数原理:通过实例让学生理解分步乘法计数原理,即在计数时,将一个复杂的问题分解成几个简单的步骤,将每一步的数量相乘。
三、教学重点与难点1. 教学重点:让学生掌握分类加法计数原理和分步乘法计数原理的概念及应用。
2. 教学难点:引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析、归纳和推理,形成数学概念。
2. 利用实例讲解,让学生在实际问题中体验和理解分类加法计数原理和分步乘法计数原理。
3. 设计练习题,让学生巩固所学知识,提高解决问题的能力。
五、教学准备1. 教学课件:制作课件,展示实例及练习题。
2. 教学素材:准备相关实例,如水果、动物等分类计数问题,以及需要分步解决的问题,如制作午餐、完成作业等。
3. 练习题:设计分类加法计数原理和分步乘法计数原理的练习题。
六、教学过程1. 导入新课:通过一个简单的实例,如计数教室里的学生,引出分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:展示实例,让学生观察并分析,引导学生归纳出分类加法计数原理。
3. 讲解分步乘法计数原理:展示实例,让学生观察并分析,引导学生归纳出分步乘法计数原理。
5. 总结:对本节课的内容进行总结,强调分类加法计数原理和分步乘法计数原理的应用。
七、课堂练习a) 班级里有男生20人,女生15人,一共有多少人?b) 水果店里有苹果、香蕉和橙子,苹果有10个,香蕉有5个,橙子有8个,一共有多少个水果?a) 小明做作业,一共需要完成3个任务,每个任务需要1小时,一共需要多少小时?b) 小华准备午餐,需要炒菜、煮饭和洗碗,炒菜需要10分钟,煮饭需要30分钟,洗碗需要15分钟,一共需要多少分钟?八、课后作业a) 学校里有小学生、初中生和高中生,小学生有180人,初中生有200人,高中生有150人,一共有多少人?b) 动物园里有鸟类、哺乳动物和爬行动物,鸟类有100只,哺乳动物有200只,爬行动物有50只,一共有多少只动物?a) 小红要做家务,需要打扫卫生、洗衣服和整理房间,打扫卫生需要30分钟,洗衣服需要1小时,整理房间需要45分钟,一共需要多少分钟?b) 小刚准备参加篮球比赛,一共需要进行3场比赛,每场比赛需要40分钟,一共需要多少分钟?九、教学反思1. 反思本节课的教学内容,是否清晰易懂,学生是否掌握分类加法计数原理和分步乘法计数原理。
分类加法计数原理和分步乘法计数原理 说课稿 教案 教学设计
分类加法计数原理与分步乘法计数原理知识与技能分类加法计数原理和分步乘法计数原理的应用.过程与方法通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力.教学重点:分类加法计数原理和分步乘法计数原理的应用.教学难点:分类加法计数原理和分步乘法计数原理的应用.教学过程复习回顾提出问题1:某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?提出问题2:有一个班共有46名学生,其中男生有21名.(1)现要选派一名学生代表本班参加学校的学代会,则有多少种不同的选派方法?(2)若要选派男、女学生各一名代表本班参加学校的学代会,则有多少种不同的选派方法?活动设计:请同学分析思路和解法依据,并由另外的同学补充.活动成果:1.要完成领带和衬衣的搭配可以分两个步骤:第一步,选择一条领带,有4种不同的选择;第二步,选择一件衬衣,有6种不同的选择.根据分步乘法计数原理,共有4×6=24种不同的搭配方法.2.(1)要选派一名学生代表本班参加学校的学代会有两类不同的选法:第一类,选男生,有21种不同的选择;第二类,选女生,有25种不同的选择.根据分类加法计数原理,共有21+25=46种不同的选择.(2)要选派男、女学生各一名代表本班参加学校的学代会,可以分成两个步骤:第一步,选男生,共有21种不同的选择;第二步,选女生,共有25种不同的选择.根据分步乘法计数原理,共有21×25=525种不同的选法.设计意图:通过以上两个简单的问题,引导学生回顾分类加法计数原理和分步乘法计数原理.提出问题3:上一节课我们学习了分类加法计数原理和分步乘法计数原理,并将两个原理进行了推广,请同学们回忆我们推广的两个原理的内容,并回忆两个原理的区别与联系.活动设计:教师提问,学生回答,请不同的同学补充.活动成果:1.分类加法计数原理:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别与联系:(1)相同点:都是回答有关完成一件事的不同方法种数的问题.(2)不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:检查学生对两个原理的掌握情况,为本节课的学习提供知识基础和方法提示.典型示例例1给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9,问最多可以给多少个程序命名?思路分析:要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,选中间字符;第三步,选最后一个字符.而首字符又可以分为两类.解:第一步,先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13种不同的选法.第二步,中间字符和末位字符各有9种不同的选法.根据分步乘法计数原理,最多可以有13×9×9=1 053种不同的选法,即最多可以给1 053个程序命名.例2核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有4个不同的碱基,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子由100个碱基组成,那么能有多少种不同的RNA分子?思路分析:用100个位置表示由100个碱基组成的长链,每个位置都可以从A、C、G、U中任选一个来占据.第1位第2位第3位第100位↑↑↑↑4种4种4种4种解:100个碱基组成的长链共有100个位置,如上图所示.从左到右依次在每个位置中,从A、C、G、U中任选一个来填入,每个位置有4种填充方法.根据分步计数原理,长度为100的所有可能的RNA分子种数为.例3电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?思路分析:由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.解:(1)用下图来表示一个字节.第1位第2位第3位第8位↑↑↑↑2种2种2种2种一个字节共有8位,每位上有2种选择.根据分步乘法计数原理,一个字节最多可以表示2×2×2×2×2×2×2×2=28=256个不同的字符.(2)由(1)知,用一个字节所能表示的字符不够6 763个,我们就考虑用2个字节能够表示多少个字符.前一个字节有256种不同的表示方法,后一个字节也有256种表示方法.根据分步乘法计数原理,2个字节可以表示256×256=65 536个不同的字符,这已经大于汉字国标码包含的汉字个数6 763.所以要表示这些汉字,每个汉字至少要用2个字节表示.理解新知提出问题:分析以上三个例题,总结这三个例题的共同特点.活动设计:先独立思考,后分组讨论,最后学生总结.活动成果:这三个问题的解决都是分步完成的,在计算每一步的方法时都采用了分类加法计数原理.由此可知,在解决计数问题时,往往要两个原理一起使用.重要的是,在解决时,是先分步还是先分类.【巩固练习】1.乘积(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4+c5)展开后共有几项?2.某商场有6个门,如果某人从其中的任意一个门进入商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?【答案】1.45 2.30【拓展实例】三个比赛项目,六人报名参加.(1)每人参加一项有多少种不同的方法?(2)每项1人,每人参加的项数不限,有多少种不同的方法?(3)每项1人,且每人至多参加一项,有多少种不同的方法?思路分析:(1)可以分成六个不同的步骤完成,每个人选择一个项目为一个步骤;(2)可以分成三个不同的步骤,每项选择一个人报为一个步骤;(3)可以分成三个不同的步骤,每项选择一个人报为一个步骤,但每步所选之人不同.解:(1)完成这件事可以分成六个不同的步骤:第一步,第一个人报一个项目,有3种不同的选择;第二步,第二个人报一个项目,有3种不同的选择;第三步,第三个人报一个项目,有3种不同的选择;第四步,第四个人报一个项目,有3种不同的选择;第五步,第五个人报一个项目,有3种不同的选择;第六步,第六个人报一个项目,有3种不同的选择.根据分步乘法计数原理共有3×3×3×3×3×3=36种不同的方法.(2)完成这件事可以分成三个不同的步骤:第一步,第一个项目选择一个人报,有6种不同的选择;第二步,第二个项目选择一个人报,有6种不同的选择;第三步,第三个项目选择一个人报,有6种不同的选择.根据分步乘法计数原理,共有6×6×6=63种不同的方法.(3)完成这件事可以分成三个不同的步骤:第一步,第一个项目选择一个人报,有6种不同的选择;第二步,第二个项目从剩下的5个人中选择一个人报,有5种不同的选择;第三步,第三个项目从剩下的4个人中选择一个人报,有4种不同的选择.根据分步乘法计数原理,共有6×5×4=120种不同的方法.点评:在使用两个原理解决计数问题时,一定要从完成这件事的角度考虑,以此作为分类和分步的依据.【变式演练】将3种作物种植在如图所示的4块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?(三种作物必须都种植)解法一:可以分4个步骤完成这件事:每一步种一块地.种第一块,有3种作物可供选择;种第二块地,有2种作物可供选择;种第三块地,有2种作物可供选择;种第四块地,有2种作物可供选择;根据分步乘法计数原理,可得共有3×2×2×2=24种不同的种法.但是在所有的种法中,包含了只种两种作物的情况,应该去掉.若只种两种作物,可以分4个步骤完成这件事:每一步种一块地.种第一块,有3种作物可供选择;种第二块地,有2种作物可供选择;种第三块地,有1种作物可供选择;种第四块地,有1种作物可供选择;根据分步乘法计数原理,可得共有3×2×1×1=6种不同的种法.综上,满足条件的种法共有24-6=18种.解法二:分两大类完成这件事:第一类,第三块地和第一块地种植作物一样,分成四个步骤:第一步,种第一块地,有3种作物可供选择;第二步,种第二块地,有两种选择;第三步,种第三块地,有一种选择;第四步,种第四块地,只能种剩下的一种作物,有一种选择.根据分步乘法计数原理,这一类共有3×2×1×1=6种不同的种法.第二类,第三块地和第一块地种植作物不一样,分成四个步骤:第一步,种第一块地,有3种作物可供选择;第二步,种第二块地,有两种选择;第三步,种第三块地,有一种选择;第四步,种第四块地,有2种作物可供选择.根据分步乘法计数原理,这一类共有3×2×1×2=12种不同的种法.然后将这两类相加,共有6+12=18种不同的种法.点评:完成这件事的计数,必须两个原理结合使用,可以先分类再分步,也可以先分步再分类.无论采用哪种方法,都要做到:“考虑全面,不重不漏.”达标检测1.将5封信投入3个邮筒,不同的投法共有()A.53种B.35种C.3种D.15种2.由数字2,3,4,5可组成______个三位数,______个四位数,______个五位数.3.某中学的一幢5层教学楼共有3处楼梯,问从1楼到5楼共有多少种不同的走法?【答案】1.B 2.434445 3.34课堂小结1.知识收获:分类加法计数原理和分步乘法计数原理的初步应用.2.方法收获:解决计数问题时先分步后分类的方法.3.思维收获:化归思想.。
计数原理说课稿
《分类加法计数原理与分步乘法计数原理》说课稿 鹿邑县高中:朱常青各位领导,老师、大家好:今天我说课的课题是:《分类加法计数原理与分步乘法计数原理》下面我将从教材分析、教法分析、学法分析,教学过程分析,板书设计五个方面来对本课进行说明。
一、教材分析1、教材的地位与作用《分类加法计数原理与分步乘法计数原理》,是高中数学人教A版选修2-3第一章第一节课。
分类加法计数原理和分步乘法计数原理是排列、组合的基础,学生对这两个原理的理解,掌握和运用,成为学好本章的一个关键。
2、教学目标(1)知识目标掌握计数的两个基本原理,并能正确的用它们分析和解决一些简单的问题.(2)能力目标通过计数基本原理的理解和运用,提高学生分析问题和解决问题的能力,开发学生的逻辑思维能力.(3)情感目标培养学生勇于探索、勇于创新的精神,面对现实生活中复杂的事物和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,提高实际的应变能力。
3、重点、难点重点:是分类计数原理与分步计数原理难点:是正确运用分类计数原理与分步计数原理二、教法分析 科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法:是启发诱导,学生讨论相结合的方法,这样可以充分调动学生的积极性,增强同学们的参与机会,让学生在学中思,在思中学,培养学生的数学观察猜想能力,启迪学生的探索灵感。
让学生有一个直观的感受,然后在教师的引导下让学生形成感性认识。
通过设问,让学生充分进行讨论,逐步引导学生形成概念。
三、学法指导“授人与鱼,不如授人与渔”。
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索 ,运用观察分析讨论总结的学习方法。
四、教学过程设计提出课题引入新课观察归纳形成概念比较归纳深化概念任务后延自主探究总结反思提高认识学以致用培养能力布置作业知识拓展布置作业知识拓展学以致用培养能力1、提出课题――引入新课首先,提出本节课的课题:分类加法计数原理与分步乘法计数原理。
高中数学11《分类加法计数原理和分步乘法计数原理》教案
分类加法计数原理和分步乘法计数原理执教人:陈金宇教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理②会利用两个原理分析和解决一些简单的应用问题过程与方法:培养学生的归纳概括能力情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的应用授课类型:新授课课时安排:1课时教具:多媒体教学过程:一、情景引入:问题1:元旦放假老师准备去旅游,他列出南京感兴趣的景点6处,上海感兴趣的景点9处,如果他只能选一个景点,那么他共有多少种选择?问题2:从南京到上海,可以乘火车,也可以乘汽车。
一天中,火车有3班,汽车有2班。
那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?思考1:你能说出这两个问题的共同特征吗?二、新知探究:1、分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有nmN+=种不同的方法.说明:(1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理(2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数.例1:在填写高考志愿表时,一名高中毕业生了解到,A,B,C三所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学C大学生物学数学机械制造化学会计学建筑学医学信息技术学广告学物理学法学汉语言文学工程学韩语如果这名同学只能选一个专业,那么他共有多少种选择呢?思考2:如果完成一件事情有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事情有多少种不同的方法?思考3:如果完成一件事情有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,……在第n类方案中有mn种不同的方法,那么完成这件事情有多少种不同的方法?问题3:从南京到上海,要从南京先乘火车到杭州,再于次日从杭州乘汽车到上海。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《分类加法计数原理与分步乘法计数原理》说课稿
一、本课教学内容的本质、地位、作用分析
分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。
返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广。
从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤”,先对每个步骤进行细致分析,再整合为一个完整的过程。
这样做的目的是为了分解问题、简化问题。
可见,理解和掌握两个计数原理,是学好本章内容的关键。
二、教学目标分析
1.知识目标
使学生熟练掌握两个原理的内容、区别,能够灵活的应用两个原理解决常见的计数问题。
2.能力目标
在教学过程中,凸显两个原理发现的原始过程,使学生深刻理解由特殊到一般的归纳推理思维,在应用原理解决问题时,体会一般到特殊的演绎推理思维,从而培养学生的抽象概括能力、逻辑思维能力以及解决实际问题时主动应用数学知识的能力。
3.德育渗透目标
通过探索与发现的过程,使学生亲历数学研究的成功和快乐,感悟数学朴实无华的内在美,学会提出问题、分析问题、解决问题、推广结论进而完善结论的数学应用意识,激发学生勇于探索、敢于创新的精神,优化学生的思维品质。
三、教学问题诊断
两个原理的获得过程对于学生来讲并不难,学生已经具备了由具体问题抽象概括、总结归纳的能力,对于两个原理的应用,尤其是分类、分步的区别是认识上的难点,事实上,经验表明:有些学生一直到高考前都难以准确的区分好两个原理,教学始终牢牢把握这一难点也是重点展开。
四、本节课的教学特点以及预期效果分析
《普通高中数学课程标准》指出:高中数学课程应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程。
新课程标准的价值取向是要求教师成为决策者而不是执行者,要求教师创造出班级气氛、创造出某种学习环境、设计相应教学活动并表达自己的教育理念等等。
基于以上思想,本节课采用问题式教学为主线,辅以启发式、探究式、自主式、讨论式教学方式。
教学内容以2010年南非世界杯相关问题背景为主线展开,辅以大量的实际例子,形成学生对于两个原理的发现、归纳、总结、应用、推广、再认识的过程。
具体而言,设置以下几个环节:
【创设情境、设疑激趣】
引入采用世界杯总场数的设问,引导学生发现逐个列举所有场数不易操作,从而引出研究计数问题的必要性并给出计数问题的含义。
给出课题,指明探究方向。
【问题导学、研究分类加法计数原理】
先用世界杯网络测试的背景作为引例,启发学生放飞思维,联系生活实际,举类似的例子;再引导学生充分讨论,深入探究,寻求例子的共性,归纳、概括出分类加法计数原理;接着为了加深对于原理的认识,给出“原理”的含义,并进一步对原理的内容进行解释,强调“完成一件事”“分类”“加法”三个关键词;再通过实例引导学生推广原理;最后依然用世界杯的背景例子启发学生归纳出分类的基本原则:“不重不漏”。
【类比研究、研究分步乘法计数原理】
完全类比分类加法计数原理的研究思路,充分讨论,层层设问,得出原理,延伸推广,强调分步注意“步骤完整,步步相依”。
【典型例题、区分两个原理】
把课本上的书架三层有三种书分别若干本的例子,改编为三问:第一问求任取一本书的取法数,直接用分类加法计数原理即可解决;第二问求每层各取一本书的方法数,直接用分步乘法计数原理;第三问求取两本不同学科的书的方法数,需要先分类,再分步,体现了两个原理的综合应用。
本题旨在同一背景下认识两个原理,区分两个原理,尤其区分“类”和“步”。
然后先讨论,再和学生一起归纳出两个原理的联系和区别,填充表格。
【课下讨论探究】
设计了两个小题,分别是参赛、夺冠两个极易混淆的背景,需要学生课下充分讨论、探究,深思熟虑再解决,是课堂教学的延伸。
【布置作业、反思小结】
布置课后作业,小结内容,提炼归纳出利用两个原理解决计数问题的一般思路。
最后指出:细微的生活中往往蕴涵着深刻的数学思想方法,利用数学工具研究缤纷多彩的世界充满了无限的乐趣!这就是数学的魅力!最后预祝大家都能学好数学、用好数学、欣赏数学、热爱数学!
通过以上设计,预期达到以下效果:使学生在对于两个原理的发现过程中,体会由特殊到一般的归纳推理思维;在应用原理解决实际问题的过程中,体会主动应用数学的意识;通过大量的老师举例、学生举例、典型例题,使学生熟练两个原理的应用,体会两个原理的广泛应用。
新的课程改革的理念侧重以下四个环节:以人为本;树立开放的大课程观;树立师生交往互动的平等观;强调整合构建新的课堂教学目标体系。
本节课围绕以上四个环节紧密展开,力求通过对于两个原理的探究,提高学生数学素养,增强学习兴趣,优化学习习惯,提高数学能力。