5.3 平行线的性质 检测题3

合集下载

2022-2023学年人教版七年级数学下册《5-3平行线的性质》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-3平行线的性质》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.3平行线的性质》同步练习题(附答案)一.选择题1.如图,AB∥EC,则下列结论正确的是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠ACE D.∠B=∠ACB 2.如图,已知AB∥EF,DE∥BC,则与∠1相等的角有()A.1个B.2个C.3个D.4个3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,直线a∥b,直线c与a、b相交,∠1=55°,则∠2=()6.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°7.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A.20°B.25°C.30°D.40°8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是66°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B是()A.87°B.93°C.39°D.109°9.一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()10.一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=()A.40°B.43°C.45°D.47°二.填空题(共6小题)11.如图,已知AB∥CD,CE平分∠ACD,交AB于点B,∠ABE=150°,则∠A为.12.如图,AB∥DE,FC⊥CD于点C,∠ABC=107°,∠CDE=130°,点G在BC的延长线上,则∠FCG的度数是.13.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.14.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°),按如图所示放置,若∠1=55°,则∠2的度数为.15.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.16.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.三.解答题(共6小题)17.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.18.如图,MN∥BC,BD⊥DC,∠1=∠2=60°.(1)AB与DE平行吗?请说明理由;(2)若DC是∠NDE的平分线.①试说明∠ABC=∠C;②试说明BD是∠ABC的平分线.19.如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠P AB与∠PCD的关系.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.22.如图,已知AB∥ED,∠C=90°,∠ABC=∠DEF,∠D=130°,∠F=100°,求∠E的大小.参考答案一.选择题1.解:∵AB∥EC,∴∠A=∠ACE,∠B=∠ECD.故选:B.2.解:如图所示,与∠1相等的角有∠B、∠DEF、∠EFC共3个,故选:C.3.解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.4.解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选:B.5.解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:A.6.解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.7.解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故选:A.8.解:如图:过B作直线b平行于拐弯之前的道路a,由平行线的传递性得a∥b∥c,∵a∥b,∴∠A=∠1=66°,∵b∥c,∴∠2=180°﹣∠C=180°﹣153°=27°,∴∠ABC=∠1+∠2=66°+27°=93°.故选:B.9.解:根据题意,得AE∥BF,AM∥CN;∠A=63°,∠FBC=27°.∵AE∥BF,∴∠1=∠A=63°.∵AM∥CN,∴∠DCN=∠DBM=∠1+∠FBC=63°+27°=90°.故选:C.10.解:方法1:如图,∵∠1=47°,∠4=45°,∴∠3=∠1+∠4=92°,∵矩形对边平行,∴∠5=∠3=92°,∵∠6=45°,∴∠2=180°﹣45°﹣92°=43°.方法2:如图,作矩形两边的平行线,∵矩形对边平行,∴∠3=∠1=47°,∵∠3+∠4=90°,∴∠4=90°﹣47°=43°∴∠2=∠4=43°.故选:B.二.填空题11.解:∠ABC=180°﹣∠ABE=180°﹣150°=30.∵AB∥CD,∴∠BCD=∠ABC=30°.∵CE平分∠ACD,∴∠ACD=2∠BCD=60°.∴∠A=180°﹣∠ACD=180°﹣60°=120°.故答案为:120°.12.解:过点C作CH∥AB∴∠GCH=∠ABC=107°∴∠HCD+∠CDE=180°∴∠HCD=180°﹣130°=50°∴∠GCD=∠GCH﹣∠HCD=107°﹣50°=57°∴∠FCG=90°﹣57°=33°.故答案为33°.13.解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.14.解:∵∠1=55°,∠A=60°,∴∠3=∠4=65°,∵a∥b,∴∠4+∠2=180°,∴∠2=115°.故答案为:115°.15.解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案为:20°.16.解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.三.解答题17.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.18.解:(1)AB∥DE,理由如下:∵MN∥BC,(已知)∴∠ABC=∠1=60°.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∴∠ABC=∠2.(等量代换)∴AB∥DE.(同位角相等,两直线平行);(2)①∵MN∥BC,∴∠NDE+∠2=180°,∴∠NDE=180°﹣∠2=180°﹣60°=120°.∵DC是∠NDE的平分线,∴∠EDC=∠NDC=∠NDE=60°.∵MN∥BC,∴∠C=∠NDC=60°.∴∠ABC=∠C.②∠ADC=180°﹣∠NDC=180°﹣60°=120°,∵BD⊥DC,∴∠BDC=90°.∴∠ADB=∠ADC﹣∠BDC=120°﹣90°=30°.∵MN∥BC,∴∠DBC=∠ADB=30°.∴∠ABD=∠DBC=∠ABC.∴BD是∠ABC的平分线.19.解:图1:∠APC=∠P AB+∠PCD.理由:过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠1=∠A,∠2=∠C,∴∠APC=∠1+∠2=∠P AB+∠PCD,即∠APC=∠P AB+∠PCD;图2:∠APC+∠P AB+∠PCD=360°.理由:过点P作PE∥AB.∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠APC+∠P AB+∠PCD=360°;图3:∠APC=∠PCD﹣∠P AB.理由:延长DC交AP于点E.∵AB∥CD,∴∠1=∠P AB(两直线平行,同位角相等);又∵∠PCD=∠1+∠APC,∴∠APC=∠PCD﹣∠P AB;图4:∴∠P AB=∠APC+∠PCD.理由:∵AB∥CD,∴∠1=∠P AB(两直线平行,内错角相等);又∵∠1=∠APC+∠PCD,∴∠P AB=∠APC+∠PCD.20.解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.21.证明:∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FP A=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).22.解:延长DC、AB交于G,∵ED∥AB,∠D=130°,∴∠G=50°,又∵∠BCD=90°,∠BCD=∠G+∠CBG,∴∠CBG=40°,∴∠ABC=140°,∴∠E=∠ABC=140°.。

七年级数学下册 5.3平行线的性质(八大题型)(解析版 )

七年级数学下册 5.3平行线的性质(八大题型)(解析版 )

七年级下册数学《第五章相交线与平行线》5.3平行线的性质平行线性质定理性质定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠3(两直线平行,同位角相等).性质定理2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠4.(两直线平行,内错角相等).性质定理3:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.几何语言表示:∵a∥b(已知),∴∠1+∠2=180°(同旁内角互补,两直线平行).平行线的判定与性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别:区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.概念:判断一件事情的语句,叫做命题.【注意】(1).只要对一件事情作出了判断,不管正确与否,都是命题.(2).如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.命题的组成每个命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【注意】在改写成“如果……那么……”的形式时,需对命题的语序进行调整或增减词语,使句子完整通顺,但不改变原意.真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.【注意】判断一个命题是假命题,只要举出一个反例,它符合命题的题设,但不满足结论就可以了.定理:经过推理证实的真命题叫做定理,定理可以作为继续推理论证的依据.【拓展】数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.如直线公理:两点确定一条直线.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).【注意】(1)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.(2).定理一定是真命题,但真命题不一定是定理.证明的一般步骤:①根据题意画出图形;②依据题设、结论,结合图形,写出已知、求证;③经过分析,找出由已知条件推出结论的方法,或依据结论探寻所需要的条件,再由题设进行挖掘,寻求证明的途径;④书写证明过程.是()A.40°B.50°C.60°D.70°【分析】由垂线可得∠ACB=90°,从而可求得∠B的度数,再结合平行线的性质即可求∠BCD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,∵∠A=50°,∴∠B=180°﹣∠ACB﹣∠A=40°,∵CD∥AB,∴∠BCD=∠B=40°.故选:A.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.解题技巧提炼两直线平行时,应联想到平行线的三个性质,由两条直线平行的位置关系得到两个相关角的数量关系,由角的关系求相应角的度数.【变式1-1】(2023秋•简阳市期末)如图,a∥b,∠1=40°,∠2=∠3,则∠4=()A.70°B.110°C.140°D.150°【分析】先根据a∥b,∠1=40°得出∠2+∠3的度数,由平角的定义得出∠5的度数,再由∠2=∠3得出∠2的度数,再得出∠2+∠5的度数,进而可得出结论.【解答】解:∵a∥b,∠1=40°,∴∠2+∠3=180°﹣40°=140°,∴∠5=180°﹣140°=40°,∵∠2=∠3,∴∠2=70°,∴∠2+∠5=70°+40°=110°,∴∠4=∠2+∠5=110°.故选:B.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.【变式1-2】(2022春•五莲县期末)如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数为()A.10°B.15°C.20°D.35°【分析】由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF﹣∠DCF可求.【解答】解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.故选:C.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;两直线平行,同旁内角互补.【变式1-3】(2021秋•霍州市期末)如图,如果AB∥EF、EF∥CD,若∠1=50°,则∠2+∠3的和是()A.200°B.210°C.220°D.230°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可得出答案.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,∴∠2+∠3=180°+∠1=180°+50°=230°,故选:D.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.【变式1-4】(2022秋•安岳县期末)已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为.【分析】①图1时,由两直线平行,同位角相等,等量代换和角的和差计算出∠2的度数为40°;②图2时,同两直线平行,内错角相等,两直线平行,同旁内角互补,等量代换和角的和差计算出∠2的度数为140°.【解答】解:①若∠1与∠2位置如图1所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠2=40°;②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°∴∠2=180°﹣∠1=180°﹣40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.【点评】本题综合考查了平行线的性质,角的和差,等量代换,邻补角性质,对顶角性质等相关知识点,重点掌握平行线的性质,难点是两个角的两边分别平行是射线平行,分类画出符合题意的图形后计算.【变式1-5】(2022春•海淀区月考)如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD 平分∠ACM.当∠DCM=60°时,求∠O的度数.【分析】根据角平分线的定义,即可得到∠ACM的度数,进而得出∠OCB的度数,再依据平行线的性质,即可得到∠O的度数.【解答】解:∵CD平分∠ACM,∴∠ACM=2∠DCM.∵∠DCM=60°,∴∠ACM=120°.∵直线AB与OM交于点C,∴∠OCB=∠ACM=120°(对顶角相等),∵AB∥ON,∴∠O+∠OCB=180°(两直线平行,同旁内角互补),∴∠O=60°.【点评】本题主要考查了角的计算,平行线的性质以及角平分线的定义.解题的关键是熟练掌握平行线的性质:两直线平行,同旁内角互补.【变式1-6】(2023秋•海门区期末)如图,直线CE,DF相交于点P,且CE∥OB,DF∥OA.(1)若∠AOB=45°,求∠PDB的度数;(2)若∠CPD=45°,求∠AOB的度数;(3)像(1)(2)中的∠AOB,∠CPD称四边形PCOD的一组“对角”,则该四边形的另一组对角相等吗?请说明理由.【分析】(1)根据两直线平行,同位角相等即可求得答案;(2)根据两直线平行,同位角相等及两直线平行,内错角相等即可求得答案;(3)根据两直线平行,同旁内角互补即可证得结论.【解答】解:(1)∵DF∥OA,∠AOB=45°,∴∠PDB=∠AOB=45°;(2)∵CE∥OB,∴∠CPD=∠PDB,∵DF∥OA,∴∠PDB=∠AOB,∴∠AOB=∠CPD,∵∠CPD=45°,∴∠AOB=45°;(3)相等,理由如下:∵CE∥OB,DF∥OA,∴∠OCP+∠AOB=180°,∠CPD+∠ODP=180°,∵∠AOB=∠CPD,∴∠OCP=∠ODP.【点评】本题考查平行线性质,熟练掌握并利用平行线的性质是解题的关键.【变式1-7】(2021春•黄冈期中)如图,DB∥FG∥EC,A是FG上的一点,∠ADB=60°,∠ACE=36°,AP平分∠CAD,求∠PAG的度数.【分析】根据平行线的性质,可以得到∠DAG和∠CAG度数,然后根据AP平分∠CAD,即可得到∠PAG 的度数.【解答】解:∵DB∥FG∥EC,∴∠BDA=∠DAG,∠ACE=∠CAG,∵∠ADB=60°,∠ACE=36°,∴∠DAG=60°,∠CAG=36°,∴∠DAC=96°,∵AP平分∠CAD,∴∠CAP=48°,∴∠PAG=12°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-8】(2023秋•原阳县校级期末)如图,已知AB∥CD,BE平分∠ABC.BE垂直于CE,求证:CE平分∠BCD.【分析】过E作EF∥AB交BC于点F,根据平行线的性质可求得∠ABC+∠BCD=180°,再结合垂线的定义可得∠ABE+∠DCE=90°,∠EBC+∠ECB=90°,再利用角平分线的定义可证明结论.【解答】证明:过E作EF∥AB交BC于点F,∴∠ABE=∠FEB,∵AB∥CD,∴EF∥CD,∠ABC+∠BCD=180°,∴∠DCE=∠FEC,∵BE⊥CE,∴∠BEF+∠CEF=∠ABE+∠DCE=90°,∴∠EBC+∠ECB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DCE=∠BCE,∴CE平分∠BCD.【点评】本题主要考查平行线的性质,角平分线的定义,垂线的定义,证明∠ABE+∠DCE=90°,∠EBC+∠ECB=90°是解题的关键.【例题2】已知,如图所示,四边形ABCD中,∠B=90°,DE平分∠ADC,CE平分∠DCB,∠1+∠2=90°,试说明DA⊥AB.【分析】由角平分线的定义和条件可得∠ADC+∠BCD=180°,可证明DA∥BC,再由平行线的性质可得到∠A=90°,可证明DA⊥AB.【解答】证明:∵DE平分∠ADC,CE平分∠DCB,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC,∴∠A+∠B=180°,∴∠A=180°﹣∠B=90°,∴DA⊥AB.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.解题技巧提炼准确识别图形,理清图中各角度之间的关系是解题的关键,再综合角平分线的定义、对顶角的性质及邻补角的定义求解.【变式2-1】(2022春•龙岗区期末)已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.【分析】先根据垂直的定义得出∠BHF=90°,再由∠1=∠ACB得出DE∥BC,故可得出∠2=∠BCD,根据∠2=∠3得出∠3=∠BCD,所以CD∥FH,由平行线的性质即可得出结论.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角相等)∴CD⊥AB.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.【变式2-2】如图,已知DA⊥AB,DE平分∠ADC,CE平分∠DCB,且∠1+∠2=90°,试说明BC⊥AB.【分析】过E作EF∥AD,交CD于F,求出∠FEC=∠2=∠BCE,根据平行线的判定推出BC∥EF,即可得出答案.【解答】解:过E作EF∥AD,交CD于F,则∠ADE=∠DEF,∵DE平分∠ADC,∴∠1=∠ADE,∴∠1=∠DEF,∵∠1+∠2=90°,∴∠DEC=90°,∴∠DEF+∠FEC=90°,∴∠2=∠FEC,∵CE平分∠DCB,∴∠2=∠BCE,∴∠FEC=∠BCE,∴BC∥EF,∴BC∥AD,∵DA⊥AB,∴BC⊥AB.【点评】本题考查了平行线的性质和判定,三角形内角和定理,角平分线定义的应用,能正确作出辅助线,并综合运用定理进行推理是解此题的关键.【变式2-3】(2022春•海淀区校级月考)如图,AD∥BE,∠B=∠D,∠BAD的平分线交BC的延长线于点E,CF平分∠DCE.求证:CF⊥AE.【分析】由AD∥BE,∠B=∠D,可推出∠B+∠BAD=180°,∠B=∠DCE,AB∥CD,再由角平分线定义可得:∠BAE=12∠BAD,∠FCG=12∠DCE,进而得出:∠CGF=12∠BAD,∠FCG=12∠B,可推出:∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,根据三角形内角和为180°,可得∠CFG=90°,由垂直定义可证得结论.【解答】证明:∵AD∥BE,∴∠DCE=∠D,∠B+∠BAD=180°,∵∠B=∠D,∴∠B=∠DCE,∴AB∥CD,∴∠CGF=∠BAE,∵AE平分∠BAD,∴∠BAE=12∠BAD,∴∠CGF=12∠BAD,∵CF平分∠DCE,∴∠FCG=12∠DCE,∴∠FCG=12∠B,∴∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,∴∠CFG=180°﹣(∠CGF+∠FCG)=180°﹣90°=90°,∴CF⊥AE.【点评】本题考查了平行线的性质和判定,角平分线定义,垂直定义,三角形内角和定理等知识,解题的关键是掌握平行线判定定理和性质定理.【例题3】(2023秋•深圳期末)太阳灶、卫星信号接收锅、探照灯及其他很多灯具都与抛物线有关.如图,从点O照射到抛物线上的光线OB,OC反射后沿着与PO平行的方向射出,已知图中∠ABO=44°,∠BOC=133°,则∠OCD的度数为()A.88°B.89°C.90°D.91°【分析】依题意得AB∥OP∥CD,进而根据平行线的性质得∠BOP=∠ABO=44°,∠OCD=∠POC,从而可求出∠POC=∠BOC﹣∠BOP=89°,进而可得∠OCD的度数.【解答】解:∵AB∥OP∥CD,∠ABO=44°,∴∠BOP=∠ABO=44°,∠OCD=∠POC,∵∠BOC=133°,∴∠POC=∠BOC﹣∠BOP=133°﹣44°=89°,∴∠OCD=∠POC=89°.故选:B.【点评】此题主要考查了平行线的性质,准确识图,熟练掌握平行线的性质是解决问题的关键.解题技巧提炼给出一个实际问题,联系平行线的性质解答实际问题,有时需要通过作辅助线构造平行线,同时还会综合运用平行线的判定和性质.【变式3-1】如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B 两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是千米.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣48°﹣42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故答案为:8.【点评】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.【变式3-2】(2022春•沧县期中)某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向左拐45°,第二次向左拐45°C.第一次向左拐60°,第二次向右拐120°D.第一次向左拐53°,第二次向左拐127°【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:D.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.【变式3-3】如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?【分析】根据平行线的性质结合条件可得∠1=∠2=∠3=∠4,可证得∠5=∠6,可证明l∥m,据此填空即可.【解答】解:∵AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(平角定义),即:∠5=∠6(等量代换),∴l∥m.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.【变式3-4】(2023秋•市南区期末)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,当前支架OE与后支架OF正好垂直,∠ODC=32°时,人躺着最舒服,则此时扶手AB与靠背DM的夹角∠ANM=.【分析】由AB∥CD可求得∠BOD的度数,再根据OE∥DM即可求出∠ANM的度数.【解答】解:∵AB∥CD,∠ODC=32°,∴∠BOD=∠ODC=32°.∵OE⊥OF,∴∠EOF=90°,∴∠EOB=90°+32°=122°.∵OE∥DM,∠ANM=∠EOB=122°.故答案为:122°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解答本题的关键.【变式3-5】(2023秋•东莞市校级期末)如图为某椅子的侧面图,∠DEF=120°.DE与地面平行,∠ABD=50°,则∠ACB=.【分析】根据平行得到∠ABD=∠EDC=50°,再利用外角的性质和对顶角相等,进行求解即可.【解答】解:由题意得:DE∥AB,∴∠ABD=∠EDC=50°,∵∠DEF=∠EDC+∠DCE=120°,∴∠DCE=70°,∴∠ACB=∠DCE=70°,故答案为:70°.【点评】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.【变式3-6】(2022•小店区校级开学)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°【分析】过点F作FM∥CD,因为AB∥CD,所以AB∥CD∥FM,再根据平行线的性质可以求出∠MFA,∠EFA,进而可求出∠EFM,再根据平行线的性质即可求得∠DEF.【解答】解:如图,过点F作FM∥CD,∵AB∥CD,∴AB∥CD∥FM,∴∠DEF+∠EFM=180°,∠MFA+∠BAG=180°,∴∠MFA=180°﹣∠BAG=180°﹣150°=30°.∵CG∥EF,∴∠EFA=∠AGC=80°.∴∠EFM=∠EFA﹣∠MFA=80°﹣30°=50°.∴∠DEF=180°﹣∠EFM=180°﹣50°=130°.故选:C.【点评】本题考查平行线的性质,解题关键是结合图形利用平行线的性质进行角的转化和计算.【变式3-7】(2023春•岱岳区期末)如图,EF,MN分别表示两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经镜面EF反射后的反射光线为CD,此时∠3=∠4,试判断AB与CD的位置关系,并说明理由.【分析】先根据MN∥EF得出∠2=∠3,再由∠1=∠2,∠3=∠4可得出∠1=∠2=∠3=∠4,故可得出∠1+∠2=∠3+∠4,再由∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),故可得出∠ABC=∠BCD,据此得出结论.【解答】解:AB∥CD.理由:∵MN∥EF,∴∠2=∠3,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4,∴∠1+∠2=∠3+∠4,∵∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),∴∠ABC=∠BCD,∴AB∥CD.【点评】本题考查的是平行线的判定与性质,熟知两直线平行,内错角相等是解题的关键.【例题4】(2022春•秦淮区校级月考)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°,∠ACB =90°)按如图所示的方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°.则∠2的度数是()A.38°B.45°C.52°D.58°【分析】根据已知易得∠DAC=52°,然后利用平行线的性质即可解答.【解答】解:如图:∵∠1=22°,∠BAC=30°,∴∠DAC=∠1+∠BAC=52°,∵直线a∥b,∴∠2=∠DAC=52°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.【变式4-1】(2022秋•琼海期中)如图,将三角板的直角顶点按如图所示摆放在直尺的一边上,则下列结论不一定正确的是()A.∠1=∠2B.∠2+∠3=90°C.∠3+∠4=180°D.∠1+∠2=90°【分析】根据平行线的性质定理求解.【解答】解:∵两直线平行,同位角相等,∴∠1=∠2,故选项A不符合题意;∠1+∠2不一定等于90°,故D符合题意;由题意可得:90°+∠2+∠3=180°,∴∠2+∠3=90°,故选项B不符合题意;∵两直线平行,同旁内角互补,∴∠3+∠4=180°,故选项C不符合题意;故选:D.【点评】本题主要考查平行线的性质,解题关键是熟练掌握平行线的性质定理.【变式4-2】(2023秋•榆树市校级期末)把一副三角板按如图所示摆放,使FD∥BC,点E落在CB的延长线上,则∠BDE的大小为度.【分析】由题意可得∠EDF=45°,∠ABC=60°,由平行线的性质可得∠BDF=∠ABC=60°,从而可求∠BDE的度数.【解答】解:由题意得:∠EDF=45°,∠ABC=60°,∵FD∥BC,∴∠BDF=∠ABC=60°,∴∠BDE=∠BDF﹣∠EDF=15°.故答案为:15.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【变式4-3】(2023秋•新野县期末)如图,直线m∥n,且分别与直线l交于A,B两点,把一块含60°角的三角尺按如图所示的位置摆放,若∠2=98°,则∠1=.【分析】先根据平角的定义求出∠4的度数,再根据角平分线的性质即可得出答案.【解答】解:由已知可得,∠3=30°,∵∠2=98°,∴∠4=180°﹣∠2﹣∠3=52°,∵m∥n,∴∠1=∠4=52°.故答案为:52°.【点评】本题主要考查了平行线的性质,解题的关键是牢记平行线的性质.【变式4-4】(2022•大渡口区校级模拟)将一副直角三角板按如图所示的方式叠放在一起,若AC∥DE.则∠BAE的度数为()A.85°B.75°C.65°D.55°【分析】由题意得∠E=60°,∠DAE=∠B=90°,∠BAC=45°,由平行线的性质可求得∠CAE=120°,从而可求得∠CAD=30°,则∠BAD=15°,即可求∠BAE的度数.【解答】解:由题意得:∠E=60°,∠DAE=∠B=90°,∠BAC=45°,∵AC∥DE,∴∠E+∠CAE=180°,∴∠CAE=180°﹣∠E=120°,∴∠CAD=∠CAE﹣∠DAE=30°,∴∠BAD=∠BAC﹣∠CAD=15°,∴∠BAE=∠DAE﹣∠BAD=75°.故选:B.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.【变式4-5】(2022秋•绿园区校级期末)如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°【分析】将∠AEG,∠GEF的度数,代入∠AEF=∠AEG+∠GEF中,可求出∠AEF的度数,由AB∥CD,利用“两直线平行,内错角相等”,可求出∠DFE的度数,再结合∠HFD=∠DFE﹣∠EFH,即可求出∠HFD 的度数.【解答】解:∵∠AEG=20°,∠GEF=45°,∴∠AEF=∠AEG+∠GEF=20°+45°=65°.∵AB∥CD,∴∠DFE=∠AEF=65°,∴∠HFD=∠DFE﹣∠EFH=65°﹣30°=35°.故选:B.【点评】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.【变式4-6】(2023秋•盐城期末)将一副三角板按如图所示的方式摆放,其中∠ACB=∠ECD=90°,∠A=45°,∠D=60°.若AB∥DE,则∠ACD的度数为.【分析】过点C作CF∥AB,则有AB∥CF∥DE,从而可得∠ACF=∠A=45°,∠DEF=∠D=60°,即可求∠ACD的度数.【解答】解:过点C作CF∥AB,如图,∵AB∥DE,∴AB∥CF∥DE,∴∠ACF=∠A=45°,∠DEF=∠D=60°,∴∠ACD=∠ACF+∠DCF=105°.故答案为:105°.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【例题5】如图所示,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG的度数()A.58°B.64°C.72°D.60°【分析】由平行线的性质得∠DEF=∠1=58°,由折叠的性质得∠GEF=∠DEF=58°,再由平角定义求出∠AEG即可.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=58°,由折叠的性质得:∠GEF=∠DEF=58°,∴∠AEG=180°﹣58°﹣58°=64°;故选:B.【点评】本题考查了平行线的性质、翻折变换的性质、长方形的性质以及平角定义;熟练掌握平行线的性质和翻折变换的性质是解题的关键.【变式5-1】(2022秋•陈仓区期末)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°【分析】依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=26°,∴∠DEG=180°﹣26°=154°,由折叠可得,∠α=12∠DEG=12×154°=77°,故选:A.【点评】本题主要考查了平行线的性质,折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【变式5-2】(2023•台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为.【分析】利用平行线的性质和各角之间的关系即可求解.【解答】解:如图,标注三角形的三个顶点A、B、C.∠2=∠BAC=180°﹣∠ABC﹣∠ACB.∵图案是由一张等宽的纸条折成的,∴AB=AC,∴∠ABC=∠ACB.又∵纸条的长边平行,∴∠ABC=∠1=20°,∴∠2=∠BAC=180°﹣2∠ABC=180°﹣2∠1=180°﹣2×20°=140°.故答案为:140°.【点评】本题比较简单,主要考查了平行线的性质的运用.【变式5-3】(2022秋•昭阳区期中)如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE;若∠B=50°,则∠BDF的度数为()A.40°B.50°C.80°D.100°【分析】首先利用平行线的性质得出∠ADE=50°,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵BC∥DE,若∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.【点评】此题主要考查了折叠问题与平行线的性质,利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF是解决问题的关键.【变式5-4】(2023秋•阳城县期末)将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=.【分析】证明∠2=∠4,再利用三角形的外角的性质解决问题.【解答】解:如图,∵a∥b,∴∠2=∠5,由翻折变换的性质可知∠4=∠5,∴∠4=∠2,∵∠1=∠2+∠4=110°,∴∠2=∠4=55°,故答案为:55°.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是理解翻折变换的性质,属于中考常考题型.【变式5-5】(2022•沭阳县模拟)已知长方形纸条ABCD,点E,G在AD边上,点F,H在BC边上.将纸条分别沿着EF,GH折叠,如图,当DC恰好落在EA'上时,∠1与∠2的数量关系是()A.∠1+∠2=135°B.∠2﹣∠1=15°C.∠1+∠2=90°D.2∠2﹣∠1=90°【分析】根据折叠的性质和平角的定义解答即可.【解答】解:∵DC恰好落在EA'上,∴∠ED′G=90°,∴∠D′EG+∠D′GE=90°,∴∠A′EA+∠D′GD=360°﹣90°=270°,由折叠得,∠1=12∠A′EA,∠2=12∠D′GD,∴∠1+∠2=135°,故选:A.【点评】本题考查折叠的性质和角平分线的定义,由折叠的性质得到∠1=12∠A′EA,∠2=12∠D′GD是解题关键.【变式5-6】如图,长方形ABCD中,沿折痕CE翻折△CDE得△CD′E,已知∠ECD′被BC分成的两个角相差18°,则图中∠1的度数为()A.72°或48°B.72°或36°C.36°或54°D.72°或54°【分析】设∠FCD'=α,则∠BCE=α+18°或α﹣18°,分两种情况进行讨论:①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,分别根据∠BCD=90°列式计算即可.【解答】解:如图,设∠FCD'=α,则∠BCE=α+18°或α﹣18°,①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,∵∠BCD=90°,∴α+18°+2α+18°=90°,解得α=18°,∴∠CFD'=90°﹣18°=72°=∠1;②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,∵∠BCD=90°,∴α﹣18°+2α﹣18°=90°,解得α=42°,∴∠CFD'=90°﹣42°=48°=∠1;综上所述,图中∠1的度数为72°或48°,故选:A.【点评】本题主要考查了折叠问题,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【例题6】(2023秋•仁寿县期末)如图,在△ABC中,AD⊥BC,EF∥BC,EC⊥CF,∠EFC=∠ACF,则下列结论:①AD⊥EF;②CE平分∠ACB;③∠FEC=∠ACE;④AB∥CF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【分析】根据平行线的性质得到AD⊥EF,故①符合题意;∠CEF=∠BCE,根据余角的性质得到∠CEF =∠ACE,故③符合题意;根据角平分线的定义得到CE平分∠ACB,故②符合题意;根据已知条件无法证明AB∥CF,故④不符合题意.【解答】解:∵AD⊥BC,EF∥BC,∴AD⊥EF,故①符合题意;∵EF∥BC,∴∠CEF=∠BCE,∵EC⊥CF,∴∠ECF=90°,∴∠CEF+∠F=∠ACE+∠ACF=90°,∵∠EFC=∠ACF,∴∠CEF=∠ACE,故③符合题意;∴∠ACE=∠BCE,∴CE平分∠ACB,故②符合题意;∵EC⊥CF,要使AB∥CF,则CE⊥AB,∵CE平分∠ACB,但AC不一定与BC相等,∴无法证明AB∥CF,故④不符合题意,故选:C.【点评】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.【变式6-1】(2023秋•浚县期末)如图a∥b,c与a相交,d与b相交,下列说法:①若∠1=∠2,则∠3=∠4;②若∠1+∠4=180°,则c∥d;③∠4﹣∠2=∠3﹣∠1;④∠1+∠2+∠3+∠4=360°,正确的有()A.①③④B.①②③C.①②④D.②③【分析】根据平行线的性质和判定逐一进行判断求解即可.【解答】解:①若∠1=∠2,则a∥e∥b,则∠3=∠4,故此说法正确;②若∠1+∠4=180°,由a∥b得到,∠5+∠4=180°,则∠1=∠5,则c∥d;故此说法正确;③由a∥b得到,∠5+∠4=180°,由∠2+∠3+∠5+180°﹣∠1=360°得,∠2+∠3+180°﹣∠4+180°﹣∠1=360°,则∠4﹣∠2=∠3﹣∠1,故此说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故此说法错误.故选:B.【点评】此题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【变式6-2】(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.【点评】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.【变式6-3】(2023春•镇江期中)如图,AB∥CF,∠ACF=80°,∠CAD=20°,∠ADE=120°.(1)直线DE与AB有怎样的位置关系?说明理由;(2)若∠CED=71°,求∠ACB的度数.【分析】(1)根据平行线的性质,得出∠BAC=∠ACF=80°,根据∠CAD=20°,求出∠BAD=60°,根据∠BAD+∠ADE=180°,即可得出结论;(2)根据平行线的性质得出∠B=∠CED=71°,根据三角形内角和定理求出∠ACB=29°.【解答】解:(1)DE∥AB;理由如下:∵AB∥CF,∠ACF=80°,∴∠BAC=∠ACF=80°,∵∠CAD=20°,∴∠BAD=∠BAC﹣∠DAC=60°,∵∠ADE=120°,∴∠BAD+∠ADE=60°+120°=180°,∴DE∥AB.(2)DE∥AB,∠CED=71°,∴∠B=∠CED=71°,∵∠BAC=80°,∴∠ACB=180°﹣∠B﹣∠BAC=180°﹣71°﹣80°=29°.【点评】本题主要考查了平行线的判定和性质,三角形内角和定理的应用,解题的关键是熟练掌握平行线的判定.【变式6-4】(2022春•舞阳县期末)如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB并交BD于H,且∠EHD+∠HBF=180°.(1)若∠F=30°,求∠ACB的度数;(2)若∠F=∠G,求证:DG∥BF.【分析】(1)由对顶角相等、同旁内角互补,两直线平行判定BF∥EC,则同位角∠ACE=∠F,再根据角平分线的性质即可求解;(2)结合已知条件,角平分线的定义,利用等量代换推知同位角∠BCE=∠G,则易证DG∥BF.【解答】(1)解:∵∠EHD+∠HBF=180°,∠EHD=∠BHC,∴∠BHC+∠HBF=180°,∴BF∥EC,∴∠ACE=∠F=30°,又∵CE平分∠ACB,∴∠ACB=2∠ACE=60°.故∠ACB的度数为60°;(2)证明:∵CE平分∠ACB,∴∠BCE=∠ACE,∵∠ACE=∠F,∠F=∠G,∴∠BCE=∠G,∴DG∥EC,又∵BF∥EC,∴DG∥BF.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.【变式6-5】(2022春•温江区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.。

5.3平行线的性质同步测试卷及答案

5.3平行线的性质同步测试卷及答案

5.3平行线的性质同步测试卷及答案一、选择题1. 下列命题正确的是 ( )A.两直线与第三条直线相交,同位角相等 B.两直线与第三条直线相交,内错角相等 C.两直线平行,内错角相等 D.两直线平行,同旁内角相等2.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是()A.23° B.22° C.37° D.67°3. 如图所示,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为()A.20° B.70° C.100° D.110°4.如图,AB=AC, AD∥BC,∠BAC=100°,则∠CAD的度数是()A.30° B.35° C.40° D.50°5.如图,已知AB∥CD,EA是∠CEB的平分线,若∠BED=40°,则∠A的度数是()A.40° B.50° C.70° D.80°6.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40° B.45° C.50° D.60°7.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30° B.45° C.60° D.75°8. 如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70° B.100° C.140° D.170°9.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3 B.∠2+∠3=180° C.∠2+∠4<180° D.∠3+∠5=180°10.如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A.45° B.40° C.35° D.30°11. 如图,点D是△ABC的边AB的延长线上一点,BE∥AC,若∠C=50°,∠DBE=60°,则∠CBD的度数等于()A.120° B.110° C.100° D.70°12.如图,AB∥ED,则∠A+∠C+∠D=( )A.180° B.270° C.360° D.540°二、填空题13. 如图,已知AB//DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为.14.如图,已知AD∥BE,∠DAC=29°,∠EBC=45°,则∠ACB= °.15.如图,已知AB∥CD,∠1=130°,则∠2= .16.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF= °.三、解答题17. 如图:BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.,求证:.18.如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.19. 如图,已知AB//CD,分别写出下列四个图形中,∠P与∠A、∠C的关系,请你从所得的四个关系中任选一个加以证明.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.G解:∵∠1=∠2(已知),∠2=∠DGF()∴∠1=∠DGF∴BD∥CE()∴∠3+∠C=180º()又∵∠3=∠4(已知)∴∠4+∠C=180º∴∥(同旁内角互补,两直线平行)∴∠A=∠F()20.答案:一选择题 1C.2 C .3D.4C.5C. 6C. 7D.8C.9D.10D.11B. 12C.二填空题13.答案: 45°.解析:根据两直线平行,内错角相等以及三角形外角和定理即可解答.试题解析:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=75°,∴∠CMD=180°-∠BMD=105°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE-∠CMD=150°-105°=45°.考点:平行线的性质.14.答案: 74.解析:根据平行线的性质得出∠DAC+∠CAB+∠ABC+∠EBC=180°,求出∠CAB+∠ABC=106°,根据三角形内角和定理得出∠ACB=180°-(∠CAB+∠ABC),代入求出即可:∵AD∥BE,∴∠DAC+∠CAB+∠ABC+∠EBC=180°.∵∠DAC=29°,∠EBC=45°,∴∠CAB+∠ABC=106°.∴∠ACB=180°-(∠CAB+∠ABC)=180°-106°=74°.考点:平行线的性质.15.答案: 50°.解析:如图:∵∠1=130°,∴∠3=180°∠1=180°130°=50°,∵AB∥CD,∴∠2=∠3=50°.考点:平行线的性质.16.答案: 32°.解析:根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.试题解析:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD= ∠EFD= ×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.考点:平行线的性质.17.答案:证明见解析.解析:先证明FG∥BD,再利用角平分线的性质知∠2=∠ABD利用平行线的性质即得∠1=∠2.∵∠BHC=∠DHF,且∴∴FG∥BD∴∠1=∠ABD∵BD平分∠ABC∴∠ABD=∠2∴∠1=∠2.考点:1.平行线的性质2.角平分线的性质.18.答案:证明见解析.解析:利用两直线平行,同位角相等和角平分线的定义进行即可.∵AD∥BC(已知)∴∠B=∠EAD(两直线平行,同位角相等)∠DAC=∠C(两直线平行,内错角相等)又∵∠B=∠C(已知)∴∠EAD=∠DAC(等量代换)∴AD平分∠CAE(角平分线的定义).考点:1,平行线的性质2.角平分线的定义.19.答案:(1)∠A+∠C+∠P=360;(2)∠A+∠C=∠P;(3)∠A+∠P=∠C;(4)∠C+∠P=∠A.理由见解析.解析:本题考查的是平行线的性质以及平行线的判定定理.(1),(2)都需要用到辅助线利用两直线平行,内错角相等的定理加以证明;(3),(4)是利用两直线平行,同位角相等的定理和三角形外角的性质加以证明.(1)∠A+∠C+∠P=360;(2)∠A+∠C=∠P;(3)∠A+∠P=∠C;(4)∠C+∠P=∠A.说明理由(以第三个为例):已知AB∥CD,根据两直线平行,同位角相等及三角形的一个外角等于两不相邻内角之和,可得∠C=∠A+∠P.考点:1.平行线的性质;2.三角形的外角性质.20答案:(对顶角相等)、(同位角相等,两直线平行)、(两直线平行,同旁内角互补)、DF、AC、(两直线平行,内错角相等)解析:根据平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系,分别分析得出即可.试题解析:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等),∴∠1=∠DGF,∴BD∥CE,(同位角相等,两直线平行),∴∠3+∠C=180°,(两直线平行,同旁内角互补),又∵∠3=∠4(已知)∴∠4+∠C=180°∴DF∥AC(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等).考点:平行线的判定与性质.G。

5.3.1 平行线的性质(3)--

5.3.1 平行线的性质(3)--

例1:指出下列命题的题设,结论. 指出下列命题的题设,结论. 1,两直线平行,内错角相等; ,两直线平行,内错角相等; 题设: 结论: 题设:两直线平行 结论:内错角相等 2,若∠A=∠B,∠B=∠C,则∠A=∠C. A=∠B, B=∠C, A=∠C. , 题设: 结论: 题设:∠A=∠B,∠B=∠C 结论:∠A=∠C ∠ , ∠ ∠ 3,如果一个角的两边分别平行于另一个角的两 , 那么这两个角相等或互补. 边,那么这两个角相等或互补. 题设: 题设:一个角的两边分别平行于另一个角的两边 结论:这两个角相等或互补 结论: 命题的题设(条件)部分,有时也可能用"已知…" 命题的题设(条件)部分,有时也可能用"已知…" 或者"若…"等形式表述;命题的结论部分,有时也 或者" …"等形式表述;命题的结论部分, 等形式表述 可用"求证…" …"或 …"等形式表述 等形式表述. 可用"求证…"或"则…"等形式表述.
商品有伪劣,可是命题也有真假, 商品有伪劣,可是命题也有真假,什么是真 命题?什么又是假命题呢? 命题?什么又是假命题呢?
1,如果题设成立,那么结论一定成立, 如果题设成立,那么结论一定成立, 这样的命题叫做真命题 真命题. 这样的命题叫做真命题. 由题设成立,不能保证结论总是正确的, 由题设成立,不能保证结论总是正确的, 这样的命题叫做假命题 假命题. 这样的命题叫做假命题. 2,正确的命题叫做真命题. 正确的命题叫做真命题. 真命题 错误的命题叫做假命题. 错误的命题叫做假命题. 假命题 真命题要经过严格的推理. 要经过严格的推理 3,真命题要经过严格的推理. 假命题只要举一个反例. 假命题只要举一个反例. 只要举一个反例

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

5.3 平行线的性质(三)同步作业(含答案)

5.3 平行线的性质(三)同步作业(含答案)

5.3 平行线的性质(三)◆典型例题【例1】下列语句是不是命题.(1)画∠AOB的角平分线;(2)平面上有几个点;(3)两点之间,线段最短;(4)若a≠b,则|a|≠|b|.【解析】(1)是操作性的语句;(2)是问句;(3)、(4)是判定语句.【答案】(1)、(2)不是命题;(3)、(4)是命题.【例2】指出下列命题的题论、结论:(1)如果两条直线相交,那么它们只有一个交点.(2)两条直线被第三条直线所截,如果同旁内角互补,即这两条直线平行.(3)两条平行平行线被第三条直线所截,内错角相等.(4)若∠1=∠2,∠2=∠3,则∠1=∠3.【解析】每个命题都是由题设、结论两部分组成,题设是知事项,结论是由已知事项推出的事项,命题常写成“如果…,那么…”的形式,具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.【答案】(1)题设:两条直线相交;结论:它们只有—个交点;(2)题设:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行.(3)因为这个命题可以改写成:“如果两条平行线被第三条直线所截,那么内错角相等”;也可以简写成“如果两直线平行,那么内错角相等”,所以可以简单说成,题设:两直线平行,结论:内错角相等.(4)题设:∠1=∠2,∠2=∠3,结论:∠1=∠3.◆课前热身1.每个命题都由____________和____________两部分组成.2.命题“对顶角相等”的题设是____________,结论________________________.◆课上作业3.命题“同位角相等”改写成“如果…,那么…”的形式是____________________________.4.请用“如果…,那么…”的形式写一个命题______________5.一个命题,如果题设成立,结论一定成立,这样的命题是_____________命题;如果题设成立,结论不成立或不一定成立,这样的命题叫_______命题(填“真”、“假”).6.以下四个命题:①一个锐角与一个钝角的和为180°;②若m不是正数,则m一定小于零;③若ab>0,则a>0,b>0;④如果一个数能被2整除,那么这个数一定能被4整除.真命题有_______个.◆课下作业一、填空题7.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是____________________________________________.8.“垂线段最短”的题设是_____________________,结论是____________________.9.命题“a、b是有理数,若a>b,则a2>b2”,若结论保持不变,怎样改变条件,命题才是真命题.请你写出一种改法:_______________________________________________10.对于同一平面的三条直线a、b、c,给出以下五个结论:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c以其中两个为题设,一个为结论,组成一个正确的命题______________________.二、选择题11.唐伯虎点秋香的故事家喻户晓了,现在来玩个游戏:“唐伯虎点秋香”【规则】下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香.友情提示:这四个人分别是∶春香、夏香、秋香、冬香【所给人物】A、B、C、D①A不是秋香,也不是夏香;②B不是冬香,也不是春香;③如果A不是冬香,那么C不是春香;④D既不是夏香,也不是春香;⑤C不是春香,也不是冬香若上面的命题都是真命题,问谁是秋香?A.AB.BC.CD.D12.下列命题正确的是( )A.两直线与第三条直线相交,同位角相等;B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等;D.两直线平行,同旁内角相等三、解答题13.阅读以下两小题后作出相应的解答:(1)“同位角相等,两直线平行”,“两直线平行,同位角相等”,这两个命题的题设和结论在命题中的位置恰好对凋,我们把其中一命题叫做另一个命题的逆命题,请你写出命题“角平分线上的点到角两边的距离相等的逆命题,并指出逆命题的题设和结论;(2)根据以下语句作出图形,并写出该命题的文字叙述.已知:过直线AB上一点O任作射线OC,OM、ON分别平分∠AOC、∠BOC,则OM⊥ON.14.如图5-122,给出下列论断:(1)AB∥DC;(2)AD∥BC;(3)∠A+∠B=180°;(4)∠B+∠C=180°,以其中一个作为题设,一个作为结论,写出一个真命题.想一想,若连接BD,你能自已写出一个真命题吗?试写出—个真命题并写出推理过程.图5-122参考答案◆课下作业一、填空题7.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是____________________________________________.答案:④8.“垂线段最短”的题设是_____________________,结论是____________________.答案:连接直线外一点与直线上一点的所有线段中;垂线段最短9.命题“a、b是有理数,若a>b,则a2>b2”,若结论保持不变,怎样改变条件,命题才是真命题.请你写出一种改法:_______________________________________________答案:答案不唯一,如:a>b>0,|a|>|b|等10.对于同一平面的三条直线a、b、c,给出以下五个结论:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c以其中两个为题设,一个为结论,组成一个正确的命题______________________.答案:下列答案任选其一:①若a∥b,b∥c则a∥c②若a∥b,a∥c则b∥c;③若a∥c,b∥c,则a∥b④若a⊥b,a⊥c,则b∥c⑤若a⊥c,b∥c,则a⊥b;⑥若a⊥b,b∥c,则a⊥c二、选择题11.唐伯虎点秋香的故事家喻户晓了,现在来玩个游戏:“唐伯虎点秋香”【规则】下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香.友情提示:这四个人分别是∶春香、夏香、秋香、冬香【所给人物】A、B、C、D①A不是秋香,也不是夏香;②B不是冬香,也不是春香;③如果A不是冬香,那么C不是春香;④D既不是夏香,也不是春香;⑤C不是春香,也不是冬香若上面的命题都是真命题,问谁是秋香?A.AB.BC.CD.D答案:D12.下列命题正确的是( )A.两直线与第三条直线相交,同位角相等;B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等;D.两直线平行,同旁内角相等答案:C三、解答题13.阅读以下两小题后作出相应的解答:(1)“同位角相等,两直线平行”,“两直线平行,同位角相等”,这两个命题的题设和结论在命题中的位置恰好对凋,我们把其中一命题叫做另一个命题的逆命题,请你写出命题“角平分线上的点到角两边的距离相等的逆命题,并指出逆命题的题设和结论;(2)根据以下语句作出图形,并写出该命题的文字叙述.已知:过直线AB上一点O任作射线OC,OM、ON分别平分∠AOC、∠BOC,则OM⊥ON.答案:(1)到角两边距离相等的点在这个角的平分线上;题设是到角两边距离相等的点,结论是该点在这个角的平分线上(2)图略;邻补角的平分线互相垂直14.如图5-122,给出下列论断:图5-122(2)AB∥DC;(2)AD∥BC;(3)∠A+∠B=180°;(4)∠B+∠C=180°,以其中一个作为题设,一个作为结论,写出一个真命题.想一想,若连接BD,你能自已写出一个真命题吗?试写出—个真命题并写出推理过程.答案:(1)(4)、(2)(3)、(4)(1)、(3)(2)中任选一个;AD∥BC则∠ADB=∠CBD或∠ADB=∠CBD则AD∥BC.略。

平行线的性质练习题

平行线的性质练习题

.《平行线的性质》练习题1.如图,a∥b,a、b被c所截,得到∠1=∠2的依据是()A.两直线平行,同位角相等 B.两直线平行,内错角相等C.同位角相等,两直线平行 D.内错角相等,两直线平行2.如图,AB∥CD,那么()A.∠1=∠4 B.∠1=∠3 C.∠2=∠3 D.∠1=∠53.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°4.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°6. 下列说法中,错误的是()A.在同一平面内,直线a∥b,若c与a相交,则b与c也相交B.直线a与b相交,c与a相交,则b∥cC.直线a∥b,b∥c,则a∥cD.直线AB与CD平行,则AB上所有点都在CD同侧7.下列语句中不是命题的有()(1)两点之间,直线最短;(2)不许大声讲话;(3)连接A、B两点;(4)花儿在春天开放. A.1个 B.2个 C.3个 D.4个8.下列命题中,正确的是()A.在同一平面内,垂直于同一条直线的两条直线平行; B.相等的角是对顶角;C.两条直线被第三条直线所截,同位角相等; D.和为180°的两个角叫做邻补角。

9. 下列说法中,正确的个数是()①两条不相交的直线是平行线;②过一点有且只有一条直线与已知直线平行;③同一平面内的三条直线,它们的交点个数可能是0或1或2或3;④在同一平面内,和第三条直线都不相交的两条直线平行;⑤过两条相交直线外一点A,能作一直线m与这两条直线都平行;⑥在同一平面内不相交的两条射线必平行。

A.1个 B.2个C.3个 D.4个10.如图,已知AB∥CD,直线L分别交AB、CD•于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()A.60° B.70° C.80° D.90°11. 已知:如图,AB∥DE,∠E=65°,则∠B+∠C•的度数是()A.135° B.115° C.65° D.35°12.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定13.如图,AB∥EF,BC∥DE,则∠E+∠B的度数为________.14. 如图所示:EF在同一平面内,直线l1与l2满足下列条件,写出其对应的位置关系:(1)l1与l2没有公共点,则l1与l 2 ;(2)l1与l2有且只有一个公共点,则l1与l2;(3)l1与l2有两个公共点,则l1与l 2 。

第03讲 平行线的性质(知识解读+达标检测)(原卷版)

第03讲 平行线的性质(知识解读+达标检测)(原卷版)

第03讲平行线的性质【题型1 利用平行线性质求角度】【题型2 利用平行线性质解决三角板问题】【题型3 利用平行线性质解决折叠问题】【题型4 平行线性质的实际应用】【题型5 利用平行线的判定与性质的综合】【题型6 命题的判定】【题型7 真假命题的判断】【题型8 命题的改写】【题型9 命题的证明过程】考点1:平行线性质性质(1):两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

几何语言:∵a∥b∴∠1=∠5(两直线平行,同位角相等)性质(2):两条平行线被第三条直线所截,内错角相等。

简单说成:两直线平行,内错角相等。

几何语言:∵a∥b∴∠3=∠5(两直线平行,内错角相等)性质(3):两条平行线被第三条直线所截,同旁内角互补。

简单说成:两直线平行,同旁内角互补。

几何语言:∵a∥b∴∠3+∠6=180°(两直线平行,同旁内角互补)【题型1 利用平行线性质求角度】【典例1】(2023秋•涟源市期末)如图,直线m∥n,点A在直线n上,点B在直线m上,连接AB,过点A作AC⊥AB,交直线m于点C.若∠1=50°,则∠2的度数为( )A.20°B.30°C.40°D.50°【变式1-1】(2022秋•芮城县期末)抖空竹是我国的传统体育,也是国家级非物质文化遗产之一.明代《帝京景物略》一书中就有空竹玩法和制作方法的记述,明定陵亦有出土的文物为证,可见抖空竹在民间流行的历史至少在600年以上.如图,通过观察抖空竹发现,可以将某一时刻的情形抽象成数学问题:AB∥CD,∠BAE=94°,∠E=28°,则∠DCE的度数为( )A.122°B.120°C.118°D.115°【变式1-2】(2022秋•白银期末)一杆古秤在称物时的状态如图所示,已知∠1=85°,则∠2=( )A.15°B.85°C.95°D.115°【变式1-3】(2023秋•前郭县期中)如图,把一根铁丝折成图示形状后,AB∥DE,若∠D=30°,∠DCB=80°,则∠B等于( )A.60°B.80°C.100°D.130°【题型2 利用平行线性质解决三角板问题】【典例2】(2023•新城区校级一模)如图,直线m∥n,含有45°角的三角板的直角顶点O 在直线m上,点A在直线n上,若∠1=20°,则∠2的度数为( )A.15°B.25°C.35°D.45°【变式2-1】(2022秋•新绛县期末)将等腰直角三角形和直尺按图中方式叠放在一起,若∠1=76°,则∠2的度数为( )A.14°B.31°C.36°D.76°【变式2-2】(2022秋•邓州市期末)如图,将三角尺的直角顶点放在直尺的一边上,若∠1=60°15′,则∠2的大小为( )A.60°15′B.39°45′C.29°85′D.29°45′【变式2-3】(2022秋•淇县期末)如图,将直尺与含45°角的直角三角形叠放在一起,若∠2=35°,则∠1的度数为( )A.35°B.45°C.55°D.65°【题型3 利用平行线性质解决折叠问题】【典例3】(2023秋•蕲春县期中)如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E.若∠CBD=35°,则∠ADE的度数为( )A.15°B.20°C.25°D.30°【变式3-1】(2023秋•长治期中)如图,把一张对边互相平行的纸条折叠,EF是折痕,若∠EFB=32°,则∠BFD′的度数为( )A.112°B.116°C.138°D.148°【变式3-2】(2023秋•临渭区期中)如图,将正方形纸片ABCD折叠,使点D落在边AB上的点D′处,点C落在点C′处,若∠AD′M=50°,则∠MNB的度数为( )A.40°B.70°C.80°D.100°【变式3-3】(2023秋•桥西区期中)如图,矩形纸片ABCD,M为AD边的中点将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=32°,则∠BMC=( )A.74°B.106°C.122°D.148°【题型4 平行线性质的实际应用】【典例4】(2023•广西)如图,一条公路两次转弯后又回到与原来相同的方向,∠A=130°,那么∠B的度数是( )A.160°B.150°C.140°D.130°【变式4-1】(2023春•鸡西期中)如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=130°,第二次拐角∠B=150°.第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,求∠C的度数( )A.160°B.150°C.140°D.135°【变式4-2】(2023春•西安期末)如图是自来水公司安装的一条自来水管道,已知AB∥DE,∠ABC=80°,∠CDE=140°,∠BCD等于( )A.45°B.40°C.35°D.30°【变式4-3】(2023春•渠县校级期末)如图是中国机器人创意设计大赛中一参赛队员设计的机器人比赛时行走的路径;机器人从A点出发,到达B点,第一次拐的∠B是140°,第二次拐的∠C是100°,第三次拐的角是∠D,这时机器人行走的路径恰好和出发时行走的路径平行,那么∠D的度数是( )A.100°B.120°C.140°D.90°【题型5 利用平行线的判定与性质的综合】【典例5】(2023秋•文山市期末)如图,已知∠BAD=∠BDA,AD平分∠BDC.(1)求证:AB∥CD;(2)若AD⊥AC,∠C=70°,求∠B的度数.【变式5-1】(2022秋•汝州市期末)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)请说明:AB∥CD;(2)若∠EHF=80°,∠D=30°,求∠AEM的度数.【变式5-2】(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【变式5-3】(2023秋•香坊区校级期中)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)AD与EC平行吗?请说明理由.(2)若DA平分∠BDC,DA⊥FA于点A,∠1=76°,求∠FAB的度数.考点2::命题【题型6 命题的判定】【典例6】(2022秋•白银期末)下列语句是命题的是( )A.你喜欢数学吗?B.小明是男生C.大庙香水梨D.加强体育锻炼【变式6-1】(2022秋•耒阳市期末)下列语句中不是命题的是( )A.两点之间线段最短B.连接ABC.锐角都相等D.两条直线不是相交就是平行【变式6-2】(2022秋•余姚市期末)下列语言叙述是命题的是( )A.画两条相等的线B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等【题型7 真假命题的判断】【典例7】(2023春•翁源县期末)下列各命题的逆命题是假命题的是( )A.两直线平行,同旁内角互补B.若两个数a+b=0,则这两个数为相反数C.对顶角相等D.如果a2=b2,那么a=b【变式7-1】(2022秋•项城市期末)下列四个命题中,真命题有( )①两条直线被第三条直线所截,同位角相等;②实数与数轴上的点是一一对应的;③三角形的一个外角大于任何一个内角;④平面内点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.A.1个B.2个C.3个D.4个【变式7-2】(2023秋•农安县期末)在下列各命题中,是假命题的是( )A.在一个三角形中,等边对等角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等角的补角相等【变式7-3】(2022秋•鄄城县期末)下列四个命题中,是真命题的是( )A.两条直线被第三条直线所截,内错角相等B.如果∠1和∠2是对顶角,那么∠1=∠2C.三角形的一个外角大于任何一个内角D.无限小数都是无理数【变式7-4】(2022秋•金安区期末)下列命题是真命题的是( )A.若a<b,b>c,则a<c B.若a<b,则ac<bcC.若a≠b,则ac≠bc D.若a>b,则a﹣c>b﹣c【题型8 命题的改写】【典例8】(2022秋•辉县市期末)把命题“全等三角形对应边的高相等”改写成“如果…那么…”的形式是 .【变式8-1】(2023•零陵区模拟)命题“等边对等角”的逆命题是“ ”.【变式8-2】(2023秋•成武县期中)将命题“两个锐角的和是钝角”改写成“如果……那么……”的形式是 .【变式8-3】(2023秋•蜀山区期中)已知命题:“对顶角相等.”写出它的逆命题: .【题型9 命题的证明过程】【典例9】(2022秋•新田县期末)如图,已知点A、D、C、F在同直线上,有下列关系式:①AB=DE,②BC=EF,③AD=CF,④∠B=∠E.(1)请从中选择三个作为已知条件,余下一个作为结论,写出一个真命题:如果 ,那么 .(填写序号)(2)证明(1)中命题的正确性.【变式9-1】(2022秋•川汇区期末)如图,在△ABC中,点D在边BC的延长线上,射线CE在∠DCA的内部.给出下列信息:①AB∥CE;②CE平分∠DCA;③AC=BC.请选择其中的两条信息作为条件,余下的一条信息作为结论组成一个命题.试判断这个命题是否正确,并说明理由.【变式9-2】(2023春•西华县期末)命题:在同一平面内,垂直于同一条直线的两条直线互相平行.(1)请将此命题改写成“如果……,那么……”的形式: .(2)如下给出了不完整的“已知”和“求证”,请补充完整,并写出证明过程(注明理由).已知:如图,a⊥l, .求证: .【变式9-3】(2023春•宿迁期末)如图,点F、D在△ABC的边BC上,点E、G分别在AB、AC上.请你从三个选项:①∠1+∠2=180°,②∠DGC=∠BAC,③EF∥AD中任选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.一.选择题(共10小题)1.(2023•城中区校级开学)下列命题中正确的是( )A.在同一平面内,过一点有且只有一条直线和已知直线垂直B.互补的两个角是邻补角C.在同一平面内,如果a⊥b,b⊥c,则a⊥cD.两直线平行,同旁内角相等2.(2023秋•沙坪坝区校级期中)如图,直线AB,CD被直线EF所截,AB∥CD,∠1=65°,则∠2的度数为( )A.135°B.125°C.115°D.65°3.(2023春•凤城市期中)下列说法:①在同一平面内,不相交的两条直线叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有( )个.A.1B.2C.3D.4 4.(2023•柘城县模拟)如图,∠ECD=50°,点M是EC上一点,过点M作AB∥CD,若MF平分∠AME,则∠AMF的度数为( )A.60°B.55°C.70°D.65°5.(2023春•房山区期末)下列图形中,由AB∥CD,能得到∠1=∠2的是( )A.B.C.D.6.(2023•枣庄二模)把一副三角板按如图所示摆放,使FD∥BC,点E恰好落在CB的延长线上,则∠BDE的大小为( )A.10°B.15°C.25°D.30°7.(2023•林州市模拟)如图,直线DE∥BF,Rt△ABC的顶点B在BF上,若∠CBF=25°,则∠ADE为( )A.75°B.55°C.65°D.60°8.(2023春•龙岗区校级期末)将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有( )A.5个B.4个C.3个D.2个9.(2023春•古田县期中)若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x ﹣20)°,则∠α的度数为( )A.70°B.70°或86°C.86°D.30°或38°10.(2023春•兴业县期中)将一副三角板按如图放置,则下列结论:①如果∠2=30°,则AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=60°;④如果∠CAD=150°,必有∠4=∠C.正确的有( )A.①②③B.①②④C.①③④D.①②③④二.填空题(共6小题)11.(2022秋•尧都区期末)如图,学生使用的小刀,刀身是长方形,刀片的上下边沿是平行的,刀片转动时会形成∠1和∠2,则∠1+∠2= .12.(2023秋•农安县期末)“若ab>0,则a>0,b>0” 命题(选填“是”或“不是”).13.(2022秋•邳州市校级期末)如图,D为△ABC中BA延长线上一点,AE∥BC,若∠1=∠2,∠BAC=36°,则∠B= °.14.(2023春•宣恩县期中)命题“内错角相等,两直线平行”是 (填“真”或“假”)命题.15.(2023秋•江都区期中)如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m、n于点B,C,连接AB,BC.若∠1=40°,则∠ABC = °.16.(2022秋•城关区期末)如图a,已知长方形纸带ABCD,将纸带沿EF折叠后,点C、D 分别落在H、G的位置,再沿BC折叠成图b,若∠DEF=72°,则∠GMN= °.三.解答题(共3小题)17.(2022秋•汉台区期末)如图,AB∥EF,点G在EF上,B、C、G三点在同一条直线上,且∠1=60°,∠2=60°.求证:CD∥EF.18.(2023秋•长春期末)【感知】已知:如图①,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.将下列证明过程补充完整:证明:∵CE平分∠ACD(已知),∴∠2=∠ (角平分线的定义),∵∠1=∠2(已知),∴∠1=∠ (等量代换),∴AB∥CD( ).【探究】已知:如图②,点E在AB上,且CE平分∠ACD,AB∥CD.求证:∠1=∠2.【应用】如图③,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠ABC:∠BAE=4:5,直接写出∠E的度数.19.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB 上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.。

5.3.1《平行线的性质》重难点专项练习【六大题型】(解析版)

5.3.1《平行线的性质》重难点专项练习【六大题型】(解析版)

5.3.1《平行线的性质》重难点题型专项练习考查题型一 两直线平行同位角相等的应用典例1.(2022秋·重庆铜梁·七年级校考阶段练习)如图,直线a ,b 被直线c 所截,若a b ∥,2110Ð=°,则1Ð的度数为( )A .70°B .75°C .80°D .85°【答案】A【分析】由a b ∥,根据两直线平行,同位角相等,即可求得3Ð的度数,又由邻补角的定义即可求得1Ð的度数.【详解】解:如图:∵a b ∥,2110Ð=°,∴32110Ð=Ð=°,∵13180Ð+Ð=°,∴170=°∠.故选:A .【点睛】此题考查了平行线的性质与邻补角的定义.解题的关键是熟练掌握平行线的性质,正确运用数形结合思想.变式1-1.(2022·四川德阳·模拟预测)如图,直线//a b ,将三角尺的直角顶点放在直线b 上,如果260Ð=°,那么1Ð的度数为( )A .30°B .40°C .50°D .60°【答案】A【分析】根据平行线的性质求出3Ð,由平角性质可知1180390ÐÐ=°--°即可得出结论.【详解】如图://a b Q ,2360\Ð=Ð=°,1180903180906030\Ð=°-°-Ð=°-°-°=°,故选:A .【点睛】本题考查了平行线的性质,熟练运用平行线的性质推理是解题的关键.变式1-2.(2022·宁夏固原·校考模拟预测)如图,把一个三角尺的直角顶点放在直尺的一边上,如果123Ð=°,那么2Ð的大小为( )A .23°B .46°C .57°D .67°【答案】D【分析】根据余角的定义求出3Ð,再根据两直线平行,同位角相等可得23ÐÐ=.【详解】解:∵123Ð=°,∴3902367°°Ð=-=°,∵直尺的两边互相平行,∴2367Ð=Ð=°.故选:D .【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式1-3.(2022秋·陕西西安·七年级校考期中)如图,将直尺与30°角的三角尺叠放在一起,若165Ð=°,则2Ð的大小是( )A .45°B .55°C .65°D .75°【答案】B【分析】由30°三角尺可知360Ð=°,由平角可求4Ð,再根据平行线的性质可知24ÐÐ=.【详解】解:如图:由30°三角尺可知360Ð=°,∵1+3+4180ÐÐÐ=°,∴418013180656055Ð=°-Ð-Ð=°-°-°=°,由平行线的性质可知2455Ð=Ð=°.故选:B .【点睛】本题考查了平行线的性质及直角三角形的性质,充分运用三角板和直尺的几何特征是解题的关键.考查题型二 两直线平行内错角相等的应用典例2.(2021·新疆乌鲁木齐·校考一模)如图,直线12l l ∥,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若135Ð=°,则2Ð的度数是( )A .65°B .55°C .45°D .35°【答案】B【分析】先根据角的和差求出3Ð的度数,然后根据平行线的性质求解即可.【详解】解:如图,135Ð=°Q ,90ACB Ð=°,390155\Ð=°-Ð=°,又12l l ∥,2355\Ð=Ð=°.故选:B .【点睛】本题考查了平行线的性质,掌握两直线平行,内错角相等是解题的关键.变式2-1.如图,AB CD P ,40B Ð=°,则ECD Ð的度数为( )A .160°B .140°C .50°D .40°【答案】B【分析】利用平行线的性质先求解DCB Ð,再利用邻补角的性质求解ECD Ð即可.【详解】解:∵AB CD P ,40B Ð=°,∴40DCB B Ð=Ð=°,∴180140ECD DCB Ð=°-Ð=°,故选B .【点睛】本题考查的是平行线的性质,邻补角的性质,熟知两直线平行,内错角相等是解题的关键.变式2-2.(2022·河南洛阳·统考一模)如图,ACD Ð是ABC V 的外角,AB CE ∥,80BAC Ð=°,35DCE Ð=°,则ACB Ð的度数为( )A .55°B .65°C .75°D .85°【答案】B【分析】由80AB CE BAC Ð=°,∥可得80ACE Ð=°,进而即可求ACB Ð;【详解】∵80AB CE BAC Ð=°,∥,∴80BAC ACE Ð=Ð=°,∵35DCE Ð=°,∴()18065ACB ACE DCE Ð=°-Ð+Ð=°.故选:B.【点睛】本题主要考查平行线的性质,掌握“两直线平行,内错角相等”定理是解题的关键.变式2-3.如图,直线AB ,CD 被直线DE 所截,AB CD ∥,140Ð=°,则D Ð的度数为( )A .20°B .40°C .50°D .140°【答案】B【分析】根据两直线平行内错角相等可得出答案.【详解】解:∵AB CD ∥,140Ð=°,∴140D Ð=Ð=°,故选:B .【点睛】本题考查了平行线的性质,熟知两直线平行,内错角相等是解本题的关键.考查题型三 两直线平行同旁内角互补的应用典例3.(2022春·黑龙江哈尔滨·七年级校考阶段练习)如图,已知直线AB CD ∥,130GEF Ð=°,135EFH Ð=°,则12Ð+Ð的度数为( )A .35°B .45°C .65°D .85°【答案】D【分析】由130GEF Ð=°,135EFH Ð=°可得1324265°Ð+Ð+Ð+Ð=,由AB CD P 得34180Ð+Ð=°,进而可求出12Ð+Ð的度数.【详解】解:如下图所示,∵130GEF Ð=°,∴13130°Ð+Ð=,∵135EFH Ð=°,∴24135°Ð+Ð=,∴1324265°Ð+Ð+Ð+Ð=∵AB CD P ,∴34180Ð+Ð=°,∴121324(34)26518085°Ðа+Ð=Ð+Ð+Ð+Ð-+Ð=°=-,故选:D .【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.变式3-1.如图,已知直线a b ∥,把三角板的直角顶点放在直线b 上.若140Ð=°,则2Ð的度数为( )A .140°B .130°C .120°D .110°【答案】B【分析】根据互余计算出3904050Ð=°-°=°,再根据平行线的性质由a b ∥得到21803130Ð=°-Ð=°.【详解】解:∵1+3=90Ðа,∴3904050Ð=°-°=°,∵a b ∥,∴23180Ð+Ð=°.∴218050130°°=Ð=-°.故选:B .【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式3-2.(2022秋·福建福州·七年级校考期中)如图,AB CD P ,170=°∠,则2Ð=( )A .70°B .80°C .110°D .120°【答案】C【分析】先利用对顶角相等,再利用两直线平行,同旁内角互补得出答案.【详解】解:170Ð=°Q ,3170\Ð=Ð=°,//AB CD Q ,2180318070110\Ð=°-Ð=°-°=°.故选:C .【点睛】此题主要考查了平行线的性质,对顶角相等,熟练掌握性质是解答题的关键.变式3-3.如图,AC BD ∥,AE 平分BAC Ð交BD 于点E ,若166а=,则2Ð= ( )A .123°B .128°C .132°D .142°【答案】A【分析】如图:根据平角的定义及角平分线的性质求得3Ð的度数,再根据平行线的性质求解即可.【详解】解:如图:∵166Ð=°,∴180118066114BAC Ð=°-Ð=°-°=°,∵AE 平分BACÐ∴1131145722BAC °°Ð=Ð=´=,∵AC BD ∥,∴23180Ð+Ð=°,∴2180318057123Ð=°-Ð=°-°=°.故选:A .【点睛】本题主要考查了平行线的性质、角平分线的定义等知识点,灵活运用平行线的性质是解答本题的关键.考查题型四 根据平行线的性质探究角的关系典例4.(2022秋·重庆铜梁·七年级校考期中)如图,已知AB DE ∥,且∠C=110°,则∠1与∠2的数量关系为__________________ .【答案】2170Ð=Ð+°【分析】过点C 作CF AB ∥,则CF AB DE ∥∥,根据平行线的性质可得角之间的关系,从而∠1与∠2的数量关系即可求解.【详解】解:过点C 作CF AB ∥,如图:则CF AB DE ∥∥,∴1BCF Ð=Ð,2180DCF Ð+Ð=°,∵110BCD Ð=°,∴1101101DCF BCF Ð=°-Ð=°-Ð,∴11012180°-Ð+Ð=°,∴2170Ð=Ð+°.故答案为:2170Ð=Ð+°.【点睛】本题考查了平行线的性质,解题的关键是作出平行线,利用平行线的性质得出角之间的关系.变式4-1.(2022·浙江杭州·杭州绿城育华学校校考模拟预测)如图,已知AB CD ∥,CE BF ∥,则B C Ð+Ð= ______ .【答案】180°##180度【分析】根据两直线平行,同位角相等与两直线平行,同旁内角互补,得到EHB C Ð=Ð,180EHB B Ð+Ð=°,等量代换即可求得B C Ð+Ð的值.【详解】解:如图,设AB 与CE 交于点H ,∵AB CD ∥,CE BF ∥,∴EHB C Ð=Ð,180EHB B Ð+Ð=°,∴180B C Ð+Ð=°.故答案为:180°.【点睛】此题考查了平行线的性质.解题的关键是注意两直线平行,同位角相等与两直线平行,同旁内角互补定理的应用,注意数形结合思想的应用.变式4-2.(2022秋·内蒙古乌海·七年级校考期中)如图,AB ∥EF ,则∠A ,∠C ,∠E 满足的数量关系是______.【答案】360A C E Ð+Ð+Ð=°【分析】根据两直线平行,同旁内角互补可直接得到答案.【详解】如下图所示,过点C 作//CD AB ,∵//CD AB ,∴180A ACD Ð+Ð=°(两直线平行,同旁内角互补),∵//AB EF ,//CD AB ,∴//CD EF ,∴180E DCE Ð+Ð=°(两直线平行,同旁内角互补),∴360A ACD E DCE Ð+Ð+Ð+Ð=°,∴360A ACE E Ð+Ð+Ð=°,∴在原图中360A C E Ð+Ð+Ð=°,故答案为:360A C E Ð+Ð+Ð=°.【点睛】本题考查平行直线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.变式4-3.(2022秋·山东青岛·七年级统考期末)如图,直线AB//CD ,∠AEM =2∠MEN ,∠CFM =2∠MFN ,则∠M 和∠N 的数量关系是________.【答案】∠EMF=23∠ENF【分析】利用平行线的性质以及已知条件解决问题即可.【详解】解:过点M 作MJ ∥AB ,过点N 作NK ∥AB .∵AB ∥CD ,∴MJ ∥AB ∥CD ,NK ∥AB ∥CD ,∴∠EMJ=∠AEM ,∠FMJ=∠CFM ,∠ENK=∠AEN ,∠FNK=∠CFN ,∴∠EMF=∠AEM+∠CFM ,∠ENF=∠AEN+∠CFN ,∵∠AEM=2∠MEN ,∠CFM=2∠MFN ,∴∠AEM+∠CFM=23(∠AEN+∠CFN ),即∠EMF=23∠ENF .故答案为:∠EMF=23∠ENF .【点睛】本题考查平行线的性质,解题的关键是学会探究规律的方法,属于中考常考题型.考查题型五 利用平行线的性质求角的度数典例5.(2022秋·北京西城·七年级期中)如图,若AB CD ∥,EF 与AB ,CD 分别相交于点E ,F ,EP EF ^,EFD Ð平分线与EP 相交于点P ,20BEP Ð=°,则PFD Ð=__________°.【答案】35°【分析】由题可求出BEF Ð,然后根据两直线平行,同旁内角互补可知DFE Ð,根据角平分线的定义可得到结果.【详解】∵EP EF ^,∴90PEF Ð=°,∵20BEP Ð=°,∴110BEF PEF BEP Ð=Ð+Ð=°,∵AB CD P ,∴18070EFD BEF Ð=°-Ð=°,∵FP 平分EFD Ð,∴1352PFD EFD Ð=Ð=°.【点睛】本题考查了平行线的性质与角平分线的定义,以及三角形的内角和定理,注意数形结合思想是解题关键.变式5-1.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,已知AB EF ∥,BC DE ∥,若70B Ð=°,则E Ð=________°.【答案】110【分析】先根据“两直线平行,内错角相等”得出BGE Ð,再根据“两直线平行,同旁内角互补”得出答案.【详解】如图所示.∵AB EF ∥,∴70B B G E Ð=Ð=°.∵BC DF ∥,∴180BGE E Ð+Ð=°,∴180110E B G E Ð=°-Ð=°.故答案为:110.【点睛】本题主要考查了平行线的性质,灵活选择平行线的性质是解题的关键.变式5-2.如图,AB CD ∥,若40A Ð=°,26C Ð=°,则∠E=______.【答案】66°##66度【分析】如图所示,过点E 作EF AB ∥,则AB CD EF ∥∥,根据两直线平行内错角相等分别求出4026AEF CEF =°=°∠,∠,则66AEC AEF CEF =+=°∠∠∠.【详解】解:如图所示,过点E 作EF AB ∥,∵EF AB AB CD ∥,∥,∴AB CD EF ∥∥,∴4026AEF A CEF C ==°==°∠∠,∠∠,∴66AEC AEF CEF =+=°∠∠∠,故答案为:66°.【点睛】本题主要考查了平行线的性质,正确作出辅助线求出4026AEF CEF =°=°∠,∠是解题的关键.变式5-3.将一块长方形纸折成如图的形状,若已知1=110а,则2Ð=____°.【答案】55【分析】根据平行线的性质以及折叠的性质,即可得到2Ð的度数.【详解】解:如图所示:∵AB CD P ,∴1==110ACD Ðа,∵由折叠可知122ECD ACD Ð=Ð=Ð,∴2=55а,故答案为:55.【点睛】本题主要考查了平行线的性质和折叠的性质,根据题意正确作出辅助线是解答本题的关键.考查题型六 平行线的判定与性质的综合应用典例6.(2022秋·陕西渭南·七年级统考期中)如图,已知点B 、C 在线段AD 的异侧,连接、AB CD ,点E 、F 分别是线段、AB CD 上的点,连接CE BF 、,分别与AD 交于点G ,H ,且AEG AGE Ð=Ð,C DGC Ð=Ð.(1)求证:AB CD ∥;(2)若180AGE AHF °Ð+Ð=,求证:B C Ð=Ð;(3)在(2)的条件下,若117BFC C Ð=Ð,求AHB Ð的度数.【答案】(1)证明见解析(2)证明见解析(3)70°【分析】(1)只需要证明AEG C Ð=Ð即可证明AB CD ∥;(2)先证明HGE AHF =∠∠得到BF CE P 则B AEG =∠∠,再由AEG C Ð=Ð即可证明B C Ð=Ð;(3)根据平行线的性质得到180BFC C Ð+Ð=°,AHB DGC Ð=Ð,再结合已知条件求出C Ð的度数即可得到答案.【详解】(1)证明:∵AEG AGE Ð=Ð,C DGC Ð=Ð,AGE DGC Ð=Ð,∴AEG C Ð=Ð,∴AB CD ∥;(2)证明:∵180180AGE HGE AGE AHF +=°+=°∠∠,∠∠,∴HGE AHF =∠∠,∴BF CE P ,∴B AEG =∠∠,又∵AEG C Ð=Ð,∴B C Ð=Ð;(3)解:由(2)得BF CE P ,∴180BFC C Ð+Ð=°,AHB DGC Ð=Ð,又∵117BFC C Ð=Ð,∴111807C C +=°∠∠,∴70C Ð=°,∴70AHB DGC C ===°∠∠∠.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.变式6-1.(2022秋·广东东莞·七年级统考期中)如图,点B ,C 在线段AD 的异侧,点E ,F 分别是线段AB ,CD 上的点,已知12Ð=Ð,3C Ð=Ð.(1)求证:AB CD ∥;(2)若24180Ð+Ð=°,求证:180BFC C Ð+Ð=°;(3)在(2)的条件下,若3021BFC Ð-°=Ð,求B Ð的度数.【答案】(1)见解析(2)见解析(3)50B Ð=°【分析】(1)已知12Ð=Ð,所以32Ð=Ð,又因为3C Ð=Ð,可以得出1CÐ=Ð即可判定AB CD ∥;(2)已知23ÐÐ=,24180Ð+Ð=°,可以得出//BF EC ,即可得出180BFC C Ð+Ð=°;(3)由(1)(2)可知AB CD ∥,//BF EC ,可以得出1C Ð=Ð,180BFC C Ð+Ð=°;可以得出30212BFC C Ð-°=Ð=Ð,可以得出C Ð,又因为1C B Ð=Ð=Ð,即可求出B Ð的度数.【详解】(1)证明:12Ð=ÐQ ,3C Ð=Ð,23ÐÐ=,1C \Ð=Ð,//AB CD \;(2)证明:24180Ð+Ð=°Q ,23ÐÐ=,34180\Ð+Ð=°,//BF EC \,180BFC C \Ð+Ð=°;(3)180BFC C Ð+Ð=°Q ,30212BFC C Ð-°=Ð=ÐQ ,230BFC C \Ð=Ð+°,230180C C \Ð+°+Ð=°,50C \Ð=°,130BFC \Ð=°,//AB CD Q ,180B BFC \Ð+Ð=°,50B \Ð=°.【点睛】本题考查了对顶角相等,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.变式6-2.如图,已知12AB CD Ð=Ð∥,.(1)求证:EF NP ∥;(2)若FH 平分EFG Ð,交CD 于点H ,交NP 于点O ,且14010FHG Ð=°Ð=°,,求FGD Ð的度数.【答案】(1)见解析(2)60°【分析】(1)根据平行线的性质及等量代换得出1BNP Ð=Ð,即可判定EF NP ∥;(2)过点F 作FM AB ∥,根据平行公理得出AB FM CD ∥∥,根据平行线的性质及角平分线定义得到50GFH EFH Ð=Ð=°,根据三角形外角性质求解即可.【详解】(1)证明:∵AB CD ∥,50GFH EFH Ð=Ð=°∴2BNP Ð=Ð,∵12Ð=Ð,∴1BNP Ð=Ð,∴EF NP ∥;(2)解:如图,过点F 作FM AB ∥,∵AB CD ∥,∴AB FM CD ∥∥,∴14010EFM HFM FHG Ð=Ð=°Ð=Ð=°,,∴50EFH EFM HFM Ð=Ð+Ð=°,∵FH 平分EFG Ð,∴50GFH EFH Ð=Ð=°,∴60FGD GHF HFG Ð=Ð+Ð=°.【点睛】此题考查了平行线的判定与性质,角平分线的定义,熟记平行线的判定与性质是解题的关键.变式6-3.(2022秋·福建福州·七年级校考期中)如图,在ABC V 中,AGF ABC ÐÐ=,12180Ð+Ð=°.(1)求证:DE BF ∥;(2)若DE AC ^,2140Ð=°,求AFG Ð的度数.【答案】(1)见解析(2)50°【分析】(1)由于AGF ABC ÐÐ=,可判断GF BC ∥,则1CBF ÐÐ=,由12180Ð+Ð=°得出2180CBF ÐÐ+=°判断出BF DE ∥;(2)由BF DE ∥,BF AC ^得到DE AC ^,由2140Ð=°得出140Ð=°,得出AFG Ð的度数.【详解】(1)解:BF DE ∥,理由如下:AGF ABC ÐÐ=Q ,GF \BC ∥,1CBF ÐÐ\=,12180Ð+Ð=°Q ,2180CBF ÐÐ\+=°,BF \DE ∥;(2)解:BF Q DE ∥,BF AC ^,DE AC \^,12180Ð+Ð=°Q ,2140Ð=°,140Ð\=°,904050AFG Ð\=°-°=°.【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.。

5.3平行线的性质过关检测试题A

5.3平行线的性质过关检测试题A

真 正 的 朋友 从 不 追 究 你 的 过错 。 不 妒 忌你 的成 功 . D u asn  ̄ 从 - og r ( L o
・ 森) 拉
维普资讯


: :



4 .
例谈平行线的性质与判定( 题在第 5页 )
12 42 _4 .l , j2 ∥f 2 . 2 ’ ∥ C B=8 。. B+ 1 8 o .. B D, 0 ,. ’ =10.

图 3 图 4
A 锐 角 B 直 角 C 钝 角 D. . . . 无法 确定 9 如 图 9/A C=5 。 /AC =6 o O O . , B _ 0, B 0 , B. C
分别平 分 / B ,_ C ,且 E /B , _ C / B A A F / C /
过点 0, / O 则 _B C=(
6如图6 . ,直 线 z 2 A z, A C= 1 且 B上 1 / B ∥z _
10 , 2 。 则
A. 0。 5
等于 (
B. 0。 4
) .
D. 。 45

C. 0。 3
D + =1 0 . 卢+ 8。
图 1 1
7 如图 7 己知 A /C ∥E / B 4 。 . , B / D F, A C= 0 , / -
( 案在 第 3 答 7页 )
1 7
A u i n n oo e l o sy u i rsa d tl rt s o r u c s e . t ef e d i o ewh v ro k o r a l e n e ae u c e s s r r s f u o y s

人教版七年级下册数学平行线的性质第3课时命题、定理、证明 同步练习

人教版七年级下册数学平行线的性质第3课时命题、定理、证明 同步练习

5.3 平行线的性质第3课时命题、定理、证明基础训练知识点1 命题的定义及结构1.下列语句是命题的是( )A.延长线段AB到CB.用量角器画∠AOB=90°C.同位角相等,两直线平行D.任何数的平方都不小于0吗?2.下列语句:①钝角大于90°;②两点之间,线段最短;③希望明天下雨;④作AD⊥BC;⑤同旁内角不互补,两直线不平行.其中是命题的是( )A.①②③B.①②⑤C.①②④⑤D.①②④3.下列语句中,不是命题的是( )A.如果a>b,那么b<aB.同位角相等C.垂线段最短D.反向延长射线OA4.命题“平行于同一条直线的两条直线互相平行”的题设是( )A.平行B.两条直线C.同一条直线D.两条直线平行于同一条直线5.命题“如果a2=b2,那么a=b或a+b=0”的结论是( )A.a2=b2或a=bB.a2=b2C.a=b或a+b=0D.a2=b2或a+b=0知识点2 命题的分类6.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题是(填写所有真命题的序号).7.下列命题:①垂线段最短;②同位角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④内错角相等,两直线平行;⑤经过一点有且只有一条直线与这条直线平行;⑥如果|x|=2,那么x=2.其中真命题有( )A.1个B.2个C.3个D.4个8.(2016·大庆)如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A.0B.1C.2D.3知识点3 定理与证明(举反例)9.下列说法错误的是( )A.命题不一定是定理,定理一定是命题B.定理不可能是假命题C.真命题是定理D.如果真命题的正确性是经过推理证实的,这样得到的真命题就是定理10.下列命题可以作为定理的个数是( )①两直线平行,同旁内角互补;②相等的角是对顶角;③等角的余角相等;④对顶角相等.A.1个B.2个C.3个D.4个11.(2016·宁波)能说明命题“对于任何实数a,|a|>-a”是假命题的一个反例可以是( )A.a=-2B.a=错误!未找到引用源。

5.3平行线的性质 习题(含答案)

5.3平行线的性质 习题(含答案)
【详解】
如图所示,
∵∠1=35°,∠ACB=90°,
∴∠ACD=125°,
∵a∥b,
∴∠AEB=∠ACD=125°,
∴由图可得∠2=∠AEB=125°,
故选:C.
【点睛】
本题考查了平行线的性质,直角三角形的性质,熟记性质并准确识图是解题的关键.
2.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且与EF交于点O,那么与∠AOE相等的角有()
∴∠AOE=∠OAB=∠ACD,
∵AC平分∠BAD,
∴∠DAC=∠BAC,
∵BC∥AD,
∴∠DAC=∠ACB,
∵∠AOE=∠FOC,
∴∠AOE=∠OAB=∠ACD=∠DAC=∠ACB=∠FOC.
∴与∠AOE(∠AOE除外)相等的角有5个.
故选:B.
【点睛】
考查平行线的性质,两直线平行,同位角相等,内错角相等,同旁内角互补.
【答案】C
【解析】
【分析】
根据平行线的性质及折叠的关系即可判断.
【详解】
如图∵纸条平行,∴∠2=180°-100°=80°,
∵折叠,∴∠1=∠3,
∴∠1= °
故选C.
【点睛】
此题主要考查平行线的性质,解题的关键是熟知平行线的性质与折叠的关系.
9..如图,AB∥CD,AD∥BC,则图中与∠A相等的角有( )个.
【详解】
如图:
∵∠1=65°,
∴∠2=65°,
∵CD∥EB,
∴∠B=180°-65°=115°,
故选:C.
【点睛】
本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.
12.如图,已知AB∥CD,∠A=70°,则∠1的度数是( )

平行线判定与性质习题经典

平行线判定与性质习题经典

∠D=
D
图2
180(已知)
C
∴___A_B__∥__C__D__( 同旁内角互补,两直线平行)
∴∠B+∠C=___1_8_0(0 两直线平行,同旁内角互)补
1.如图已知a∥b找出其中相等的角和互补的 角。
∠1=∠3(两直线平行,内
5
错角相等);
12
∠5=∠4(两直线平行,同
位角相等);
4
3
∠2+∠4=180°(两直线
则∠ DGO=———
B
O
A
C
G
D
B’ C’
如图:AD∥BC, ∠A=∠C.试 说明AB∥DC
证明:∵AD∥BC(已知)
AD
E
∴∠C=∠CDE(两直线平行,内错角相等) 又∵ ∠A=∠C(已知)
∴ ∠A=∠CDE(等量代换) F
B
C
∴AB∥DC(同位角相等,两直线平行)
4.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
即 ∠1+∠2=90°.
变式思考一: 已知AB∥CD,GM,HM平分
∠FGB, ∠EHD,试判断GM与HM是否垂
直?
E
A
G
B
CH
M D
F
变式思考:若已知GM,HM平分 ∠FGB,∠EHD,GM⊥HM,试判断AB与CD 是否平行?
E
A
G
B
CH
M D
F
拓展1:已知AB∥CD,GP,HQ平分 ∠EGB, ∠EHD,判断GP与HQ是否平行?
平行线判定定理
定理1 同位角相等 定理2 内错角相等
两直线平行 两直线平行

平行线的性质知识点及练习题

平行线的性质知识点及练习题

平行线的性质知识点及练习题1、平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补。

几何符号语言:∵AB ∥CD∴∠1=∠2〔两直线平行,内错角相等〕∵AB ∥CD ∴∠3=∠2〔两直线平行,同位角相等〕∵AB ∥CD ∴∠4+∠2=180°〔两直线平行,同旁内角互补〕2、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,那么称线段EF 的长度为两平行线AB 与CD 间的距离。

注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,那么垂线段GH 的长度也就是直线AB 与CD 间的距离。

3、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两局部组成。

题设是事项;结论是由事项推出的事项。

命题常写成“如果……,那么……〞的形式。

具有这种形式的命题中,用“如果〞开场的局部是题设,用“那么〞开场的局部是结论。

有些命题,没有写成“如果……,那么……〞的形式,题设和结论不明显。

对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……〞的形式。

注意:命题的题设〔条件〕局部,有时也可用“……〞或者“假设……〞等形式表述;命题的结论局部,有时也可用“求证……〞或“那么……〞等形式表述。

4、平行线的性质与判定①平行线的性质与判定是互逆的关系两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。

其中,由角的相等或互补〔数量关系〕的条件,得到两条直线平行〔位置关系〕这是平行线的判定;由平行线〔位置关系〕得到有关角相等或互补〔数量关系〕的结论是平行线的性质。

典型例题:∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B 〔〕∴DE ∥BC 〔同位角相等,两直线平行〕 ∴∠2=∠C 〔两直线平行,同位角相等〕注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65°求∠2、∠3的度数A B C DEF 1 2 3 4 A EG B C FH D A D F BE C 1 2 3解答:∵DE ∥BC 〔〕∴∠2=∠1=65°〔两直线平行,内错角相等〕∵AB ∥DF 〔〕∴AB ∥DF 〔〕∴∠3+∠2=180°〔两直线平行,同旁内角互补〕∴∠3=180°-∠2=180°-65°=115°平行线的性质练习题一、选择题:(每题3分,共12分)1、如图1所示,AB ∥CD,那么与∠1相等的角(∠1除外)共有( ) D C B A 1ED C BA O F E D C BA (1) (2) (3) 〔4〕2、如图2所示,DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,•那么∠BDC 等于( )°°°°3、以下说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )A.①B.②和③C.④D.①和④4、如图3所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,那么∠BOF 为( )°°°°二、填空题:(每题3分,共12分)5、如图4所示,n m //,∠2=50°,那么∠1= °,∠3= °,∠4= °6、把命题“邻补角的平分线互相垂直〞改写成“如果……,那么……。

七年级数学 5.3 平行线的性质 检测题3 含答案

七年级数学  5.3 平行线的性质 检测题3  含答案

七年级5.3《平行线的性质》检测题一、选择题 (每小题4分,共40分)1、如图(1),在△ABC 中,∠C =90°。

若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( ) A 、40° B 、60° C 、70° D 、80°2、如图(2),直线c 截二平行直线a 、b ,则下列式子中一定成立的是( ) A 、∠1=∠5 B 、∠1=∠4 C 、∠2=∠3 D 、∠1=∠23、如图(3),AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,若∠FEB =110°,则∠EFD 等于( )A 、50°B 、60°C 、70°D 、110°4、如果∠A 和∠B 是两平行直线中的同旁内角,且∠A 比∠B 的2倍少30º,则∠B 的度数 是( )A 、30ºB 、70ºC 、110ºD 、30º或70º 5、两条直线被第三条直线所截,那么下面说法正确的上是( )A 、同位角相等B 、内错角相等C 、同旁内角互补D 、以上都不对 6、下列命题正确的是( )A 、若∠MON+∠NOP=90º则∠MOP 是直角B 、若α与β互为补角,则α与β中必有一个为锐角,另一个为钝角C 、两锐角之和是直角D 、若α与β互为余角,则α与β均为锐角 7、下列命题正确的是( )A 、若两个角相等,则这两个角是对顶角B 、若两个角是对顶角,则这两个角不等C 、若两个角是对顶角,则这两个角相等D 、所有同顶点的角都相等 8、两条不平行的直线被第三条直线所截,下列说法可能成立的是( )A 、同位角相等B 、内错角相等C 、同旁内角相等D 、同旁内角互补 9、已知:如图(4),l 1∥l 2,∠1=50°, 则∠2的度数是( )图(3)图(4)A 、135°B 、130°C 、50°D 、40°10、如图(5),12//l l ,A 、B 为直线1l 上两点,C 、D 为直线2l 上两点,则ACD ∆与BCD ∆的面积大小关系是( )A 、ACD BCD S S ∆∆<B 、ACD BCD S S ∆∆=C 、ACD BCD S S ∆∆> D 、不能确定 二、填空题 (每小题3分,共24分)11、如图(6),直线a ∥b ,直线c 与直线a 、b 相交,若∠1=47º,则∠2的度数为_______。

人教版七年级数学下册第五章平行线的性质复习试题(含答案) (3)

人教版七年级数学下册第五章平行线的性质复习试题(含答案) (3)

人教版七年级数学下册第五章平行线的性质复习试题(含答案)如图,AB∥CD,∥F=90°,则∥1、∥2、∥3间的关系正确的是()A.∥2=∥1+∥3 B.∥1+∥2+∥3=90°C.∥2+∥3-∥1=90°D.∥1+∥3-∥2=90°【答案】C【解析】【分析】分别过E、F作EG∥AB、HF∥CD,可得EG∥HF;然后运用平行线线的性质得到一系列相等的角,最后运用等量代换和角的和差解答即可.【详解】解:如图:分别过E、F作EG∥AB、HF∥CD∴EG∥HF∴∠6=∠5∵EG∥AB∴∠1=∠4∵CD∥HF∴∠7=∠3∠∠C FE =90°∠∠6+∠7=90°∠∠6+∠3=90°∠∠6=90°-∠3又∠∠5+∠4=∠2∠∠5+∠1=∠2∠∠5=∠2-∠1又∠∠6=∠5∠90°-∠3=∠2-∠1∠∠2+∠3-∠1=90°.故答案为C .【点睛】本题主要考查了平行线的性质,作出辅助线、构造平行线并运用平行线的性质得到一系列相等的角是解答本题的关键.22.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40°【答案】B【解析】【分析】 根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.23.如图,在三角形ABC 中,点D ,E 分别在AB 和AC 上,且DE BC ∥.若BE 平分ABC ∠,20ABE ∠=︒,则BDE ∠的度数为( )A .140°B .40°C .120°D .160°【答案】A【解析】【分析】利用角平分线的性质结合已知条件可知40ABC ∠=︒,再根据两直线平行,同旁内角互补即可得出答案.【详解】解:∵BE 平分ABC ∠,20ABE ∠=︒∴40ABC ∠=︒∵//DE BC∴180BDE ABC ∠+∠=︒∴140BDE ∠=︒故选:A .【点睛】本题考查的知识点是平行线的性质以及角平分线,解此题的关键是利用角平分线的性质得出40ABC ∠=︒,牢记平行线的性质是解此题的关键.24.如图,AB CD ∥,CE 平分AED ∠,80EDC ∠=︒则ECD ∠=( )A .40︒B .45︒C .50︒D .55︒【答案】C【解析】【分析】根据平行线的性质和角平分线的定义即可得到结论.【详解】解:∵AB∥CD,∴∠AED=180°-∠EDC=100°,∵CE平分∠AED,∴∠AEC=12∠AED=50°,∵AB∥CD,∴∠ECD=∠AEC=50°,故选:C.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.25.如图,现将一块含有60︒角的三角板的顶点放在直尺的一边上,若12∠=∠,那么1∠的度数为()A.50︒B.60︒C.70︒D.80︒【答案】B【解析】【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【详解】∵AB ∥CD ,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴2∠3+60°=180°,∴∠3=60°,∴∠1=60°,故选:B .【点睛】此题考查平行线的性质,三角板的知识,熟记性质是解题的关键.26.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 首先证明a ∥b ,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,∴a ∥b ,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C .【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.27.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A .68︒B .60︒C .102︒D .112︒【答案】D【解析】【分析】 根据∠1=∠2,得a ∥b ,进而得到∠5=3∠,结合平角的定义,即可求解.【详解】∵160∠=︒,260∠=︒,∴∠1=∠2,∴a ∥b ,∴∠5=368∠=︒,∴∠4=180°-∠5=112︒.故选D .【点睛】本题主要考查平行线的判定和性质定理以及平角的定义,掌握“同位角相等两直线平行”,“两直线平行,同位角相等”,是解题的关键.28.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED =50°,那么∠BAF =( )A .10°B .50°C .45°D .40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC =60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.∠=︒,则2∠的度29.如图所示是一架梯子,它的各条横档互相平行,198数是()A.72°B.82°C.92°D.98°【答案】B【解析】【分析】本题考查“两直线平行,同位角相等”以及邻补角,结合邻补角互补即可解答.【详解】如下图所示∵1∠=98°∴∠3=180°-98°=82°又因为两直线平行所以∠2=∠3=82°故答案为B 选项.【点睛】两直线平行,同位角相等、内错角相等、同旁内角互补要熟练记忆,求解几何图形角度时,利用邻补角互补解题也极为常见.二、解答题30.完成下列的推理说明:已知:如图,BE//CF ,BE 、CF 分别平分ABC ∠和BCD ∠.求证:AB//CD .证明:BE 、CF 分别平分ABC ∠和BCD ∠(已知)112∴∠=∠________.122∠=∠________(________) BE//CF (________)12∠∠∴=(________)1122ABC BCD ∴∠=∠(________) ABC BCD ∴∠=∠(等式的性质)AB//CD (________)【答案】ABC ;BCD ;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行.【解析】【分析】先根据角平分线的定义得出∠1与∠ABC 、∠2与∠BCD 的关系,然后根据平行线的性质可得∠1=∠2,进而可得∠ABC 与∠BCD 的关系,再根据平行线的判定即得结论.【详解】证明:BE 、CF 分别平分ABC ∠和BCD ∠(已知),112ABC ∴∠=∠,122BCD ∠=∠(角平分线的定义), //BE CF (已知),12∠∠∴=(两直线平行,内错角相等),1122ABC BCD ∴∠=∠(等量代换), ABC BCD ∴∠=∠(等式的性质),//AB CD ∴(内错角相等,两直线平行).故答案为:ABC;BCD;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行.【点睛】本题考查了角平分线的定义以及平行线的判定与性质,属于常见题型,熟练掌握平行线的判定和性质是解题关键.。

2024年七下5.3.1平行线的性质课堂练习题及答案

2024年七下5.3.1平行线的性质课堂练习题及答案
列结论错误的是 ( C )
A.∠3=58°
B.∠4=122°
C.∠5=42°
1
2
D.∠2=58°
3
4
5
6
7
8
5.3.1 平行线的性质
基础通关
能力突破
素养达标
4.如图,∠1和∠2互补,那么图中平行的直线是( D )
A.a∥b
B.c∥d
C.d∥e
1
D.c∥e
2
3
4
5
6
7
8
5.3.1 平行线的性质
基础通关
11
5.3.1 平行线的性质
基础通关
能力突破
素养达标
素养达标
12.【推理能力】课题学习:平行线的“等角转化”功能.
(1)阅读理解:如图1,已知A是BC外一点,连接AB,AC,求∠B+∠BAC+∠C
的度数.阅读并补充下面推理过程.
12
5.3.1 平行线的性质
基础通关
能力突破
素养达标
解:过点A作ED∥BC,
基础通关
能力突破
素养达标
(3)深化拓展:已知AB∥CD,点C在点D的右侧,∠ADC=50°,BE平分∠ABC,
DE平分∠ADC,BE,DE所在的直线交于点E,点E在直线AB与CD之间.
①如图3,当点B在点A的左侧时,若∠ABC=36°,求∠BED的度数;
解:如图2,过点E作EG∥AB.
∵AB∥CD,∴EG∥CD.∴∠GED=∠EDC.

∵DE平分∠ADC,∴∠EDC= ∠ADC=25°.∴∠GED=25°.


∵BE平分∠ABC,∠ABC=36°,∴∠ABE= ∠ABC=18°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周口市2010-2011学年度下期七年级5.3《平行线的性质》检测题
一、选择题 (每小题4分,共40分)
1、如图(1),在△ABC 中,∠C =90°。

若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( ) A 、40° B 、60° C 、70° D 、80°
2、如图(2),直线c 截二平行直线a 、b ,则下列式子中一定成立的是( ) A 、∠1=∠5 B 、∠1=∠4 C 、∠2=∠3 D 、∠1=∠2
3、如图(3),AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,若∠FEB =110°,则∠EFD 等于( )
A 、50°
B 、60°
C 、70°
D 、110°
4、如果∠A 和∠B 是两平行直线中的同旁内角,且∠A 比∠B 的2倍少30º,则∠B 的度数 是( )
A 、30º
B 、70º
C 、110º
D 、30º或70º 5、两条直线被第三条直线所截,那么下面说法正确的上是( )
A 、同位角相等
B 、内错角相等
C 、同旁内角互补
D 、以上都不对 6、下列命题正确的是( )
A 、若∠MON+∠NOP=90º则∠MOP 是直角
B 、若α与β互为补角,则α与β中必有一个为锐角,另一个为钝角
C 、两锐角之和是直角
D 、若α与β互为余角,则α与β均为锐角 7、下列命题正确的是( )
A 、若两个角相等,则这两个角是对顶角
B 、若两个角是对顶角,则这两个角不等
C 、若两个角是对顶角,则这两个角相等
D 、所有同顶点的角都相等 8、两条不平行的直线被第三条直线所截,下列说法可能成立的是( )
A 、同位角相等
B 、内错角相等
C 、同旁内角相等
D 、同旁内角互补 9、已知:如图(4),l 1∥l 2,∠1=50°, 则∠2的度数是( )
图(3)
图(4)
A 、135°
B 、130°
C 、50°
D 、40°
10、如图(5),12//l l ,A 、B 为直线1l 上两点,C 、D 为直线2l 上两点,则ACD ∆与BCD ∆的面积大小关系是( )
A 、ACD BCD S S ∆∆<
B 、ACD BCD S S ∆∆=
C 、AC
D BCD S S ∆∆> D 、不能确定 二、填空题 (每小题3分,共24分)
11、如图(6),直线a ∥b ,直线c 与直线a 、b 相交,若∠1=47º,则∠2的度数为_______。

12、如图(7),直线//AB CD ,028BAE ∠=,050DCE ∠=则∠ACB=______。

13、如图(8),如果AD ∥BC,那么可以推出哪些结论?把可推出的结论都写出来:_________________________________________________________________。

14、如果两条平行线被第三条直线所截,一对同旁内角的度数之比为2:7,那么这两个角分别是_______________。

15、如图(9),在△ABC 中,DE ∥BC,EF ∥AB,则∠B 相等的角有______个。

16、如图(10),已知AB ∥CD , o
180∠=,则=∠2_____。

17、如图(11),C 岛在A 岛的北偏东50o 方向,C 岛在B 岛的北偏西40o 方向,则从C 岛看A ,B 两岛的视角∠ACB 等于__________。

18、如图(12),直线DE 交∠ABC 的边BA 于点D ,若DE ∥BC ,∠B =70°,则∠ADE 的度数是 。

三、解答题 (共56分
)
图(11)
图(10)
C
A
E
D
B
图(12)
19、平面内的两条直线有相交和平行两种位置关系。

(1)如图a ,若AB ∥CD ,点P 在AB 、CD 外部,则有∠B=∠BOD ,又因∠BOD 是△POD 的外角,故∠BOD=∠BPD +∠D ,得
∠BPD=∠B -∠D 。

将点P 移到AB 、CD 内部,如图b ,以上
结论是否成立?若成立,说明理由;若不成立,则∠BPD 、
∠B 、∠D 之间有何数量关系?请证明你的结论;
(2)在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则
∠BPD ﹑∠B ﹑∠D ﹑∠BQD 之间有何数量关系?(不需证明);
(3)根据(2)的结论求图d 中∠A+∠B+∠C+∠D+∠E+∠F 的度数。

20、如图,已知AB ∥CD ∥EF,GC ⊥CF,∠ABC=65º,∠EFC=40º,求∠BCG 的度数。

图c 图d
图a
O
图b
21、如图,已知,a∥c,∠1+∠3=180º,请说明b∥c
22、如图,直线EF交直线AB、CD于点M、N,∠EMB=∠END,MG平分∠EMB,NH平分∠END。

试问:图中哪两条直线互相平行?为什么?
23、已知:如图,A B∥CD,直线EF分别交A B、CD于点E、F,∠BEF的平分线与∠DEF
的平分线相交于点P,求证∠P= 90
24、如图:已知直线m∥n,A、B直线n上两点C、P为直线m上的两点。

(1)请写出图中面积相等的各对三角形:___________________________________________;
(2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,总有
__________与△ABC的面积相等。

请说明理由。

2010-2011学年度下期七年级5、3《平行线的性质》检测题参考答案
一、选择题
1 2 3 4 5 6 7 8 9 10
C A C
D D D C C B B
二、填空题
11、133º
12、78º
13、∠EAD=∠B,∠DAC=∠C,∠DAB+∠B=180ºA
1B
1
C
1
D
1
CDD
1
C
1
14、40º、140º
15、3
16、120
17、90o
18、70°
三.解答题
19、(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论:∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°
20、因为A B∥CD∥EF,所以∠BCD=∠BCD—∠B=65º,∠DCF=∠F=40º,又GC=CF,所以∠GCF=90º,所以∠GCF=90º—40º=50º,所以∠BCG=∠BCD—∠GCD=65º—50º=15º
21、∵∠1+∠3=180º,∠1+∠2=180º(已知)∴∠3=∠2(同位角补角相等),∴a∥b(同位角相等,两直线平行),又∵b∥c(已知)∴a∥c(平行于同一直线的两直线平行)
22、(1)AB∥CD,理由略(2)MG∥NH,理由略
23、∵A B∥CD,∴∠BEF+∠DFE=180°
又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠PEF=1
2
∠BEF,∠PFE=
1
2
∠DEF
∴∠PEF+∠PFE=1
2
(∠BEF+∠DFE)=90°
∵∠PEF+∠PFE+∠P=180°∴∠P=90°
24、(1)△ACP与△BCP,△ACB与△APB,△ACO与△BPO;(2)△ABP
理由:∵m∥n ∴△ABC与△ABP的高相等
∴△ABC与△ABP是同底等高
∴△ABC与△ABP的面积总是相等。

相关文档
最新文档