人教版_人教版八年级数学关于动点问题的分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级动点总是专项练习
如图,在直角坐标系中,O是原点,A,B,C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P,Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC,CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.
(1)求直线OC的解析式.
(2)设从出发起,运动了t秒.假如点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.
(3)设从出发起,运动了t秒.当P,Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由.
(1)O,C两点的坐标分别为O(0,0),C(8,6),利用待定系数法即可求得一次函数的解析式;
(2)当Q在OC上运动时,Q的坐标满足直线OC的解析式,可设Q(m,34
m),则OQ就是Q运动的路程,利用勾股定理即可利用t表示出m,从而求得Q的坐标;
当当Q在CB上运动时,Q点所走过的路程为2t,求得CQ的长度,即可求得Q的坐标;
(3)当Q点在OC上运动时,P运动的路程为t,则Q运动的路程为(22-t),根据△OPQ的面积等于梯形面积的一半,即可得到一个关于t的方程,根据方程的解得情况即可判断;
当Q在BC上运动时,Q走过的路程为(22-t),根据梯形OCQP的面积等于梯形OABC的面积的一半从而列方程求解.
解:(1)∵O,C两点的坐标分别为O(0,0),C(8,6),设OC的解析式为y=kx+b,
将两点坐标代入得:k=3 4 ,b=0.
∴y=3 4 x.
(2)当Q在OC上运动时,可设Q(m,3 4 m),依题意有:m2+(3 4 m)2=(2t)2,解得m=8 5 t.
则Q(8 5 t,6 5 t)(0≤t≤5).
当Q在CB上运动时,Q点所走过的路程为2t.
∵OC=10,
∴CQ=2t-10.
∴Q点的横坐标为2t-10+8=2t-2.
∴Q(2t-2,6)(5<t≤10).
(3)∵梯形OABC的周长为44,当Q点在OC上运动时,P运动的路程为t,则Q运动的路程为(22-t).
△OPQ中,OP边上的高为:(22-t)×3 5 .
∴S△OPQ=1 2 t(22-t)×3 5 ,S梯形OABC=1 2 (18+10)×6=84.
依题意有:1 2 t(22-t)×3 5 =84×1 2 .
整理得:t2-22t+140=0.
∵△=222-4×140<0,
∴这样的t不存有.
当Q在BC上运动时,Q走过的路程为(22-t),
∴CQ的长为:22-t-10=12-t.
∴S梯形OCQP=1 2 ×6(22-t-10+t)=36≠84×1 2 .
∴这样的t值也不存有.
综上所述,不存有这样的t值,使得P,Q两点同时平分梯形的周长和面积.
如图1所示,在△ABC中,点O在AC边上运动,过O作直线MN∥BC交∠BCA内角平分线于E点,外角平分线于F点.试探究:当点O运动到何处时,四边形AECF是矩形?
析解:当点O运动到AC的中点时,四边形AECF是矩形.
因为MN ∥BC ,所以∠ECB=∠FEC .因为∠ECB=∠ECA ,所以∠ECA=∠FEC ,所以EO=OC .同理可得OF=OC ,所以EO=OF .又因为点O 是AC 的中点,所以CA 与FE 互相平分,所以四边形AECF 是平行四边形.又因为CE 、CF 分别是∠BCA 的内、外角平分线,而∠BCD 是一平角,所以∠ECA+∠ACF=90º,即∠ECF=90º.所以四边形AECF 是矩形.
如图2所示,在直角坐标系中,四边形OABC 为直角梯形,OA ∥BC ,BC=14cm ,A 点坐标为(16,0),C 点坐标为(0,2).点P 、Q 分别从C 、A 同时出发,点P 以2cm/s 的速度由C 向B 运动,点Q 以4cm/s 的速度由A 向O 运动,当点Q 停止运动时,点P 也停止运动,设运动时间为ts (0≤t ≤4).
(1)求当t 为多少时,四边形PQAB 为平行四边形.
(2)求当t 为多少时,PQ 所在直线将梯形OABC 分成左右两部分的面积比为1:2,求出此时直线PQ 的函数关系式. 析解:(1)因为ts 后,BP=(14-2t) cm ,AQ=4t cm .由BP= AQ ,得14-2t=4t ,t=37(s).所以当t=3
7s 时,BP= AQ ,又OA ∥BC ,所以四边形PQAB 为平行四边形.
(2)因为C 点坐标为(0,2),A 点坐标为(16,0),所以OC=2 cm ,OA=16 cm .所以OABC S 梯形=21(OA+BC)·OC=2
1×(16+14)×2=30(cm 2). 因为ts 后,PC=2t cm ,OQ=(16-4t) cm ,所以PQOC S 四边形=
21(2t+16-4t)×2=16-2t . 由题意可得PQOC S 四边形=10,所以16-2t=10,解得t=3(s).此时直线PQ 的函数关系式为y=x-4.
1. 如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从
A 开始沿AD 边向D 以1cm/s 的速度运动;动点Q 从点C 开始沿C
B 边向B 以3cm/s 的速度运动.P 、Q 分别从点A 、
C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts .
(1)当t 为何值时,四边形PQCD 为平行四边形?
(2)当t 为何值时,四边形PQCD 为等腰梯形?
(3)当t 为何值时,四边形PQCD 为直角梯形?
分析:
(1)四边形PQCD为平行四边形时PD=CQ.
(2)四边形PQCD为等腰梯形时QC-PD=2CE.
(3)四边形PQCD为直角梯形时QC-PD=EC.
所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.
解答:
解:(1)∵四边形PQCD平行为四边形
∴PD=CQ
∴24-t=3t
解得:t=6
即当t=6时,四边形PQCD平行为四边形.
(2)过D作DE⊥BC于E
则四边形ABED为矩形
∴BE=AD=24cm
∴EC=BC-BE=2cm
∵四边形PQCD为等腰梯形
∴QC-PD=2CE
即3t-(24-t)=4
解得:t=7(s)
即当t=7(s)时,四边形PQCD为等腰梯形.
(3)由题意知:QC-PD=EC时,
四边形PQCD为直角梯形即3t-(24-t)=2
解得:t=6.5(s)
即当t=6.5(s)时,四边形PQCD为直角梯形.
点评:
此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易水准适中.
2.
如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)试说明EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;
(3)若AC边上存有点O,使四边形AECF是正方形,猜测△ABC的形状并证明你的结论.
分析:
(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.
(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.
(3)利用已知条件及正方形的性质解答.
解答:
解:(1)∵CE平分∠ACB,
∴∠ACE=∠BCE,
∵MN∥BC,
∴∠OEC=∠ECB,
∴∠OEC=∠OCE,
∴OE=OC,
同理,OC=OF,
∴OE=OF.
(2)当点O运动到AC中点处时,四边形AECF是矩形.
如图AO=CO,EO=FO,
∴四边形AECF为平行四边形,
∵CE平分∠ACB,
∴∠ACE= ∠ACB,
同理,∠ACF= ∠ACG,
∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,
∴四边形AECF是矩形.
(3)△ABC是直角三角形
∵四边形AECF是正方形,
∴AC⊥EN,故∠AOM=90°,
∵MN∥BC,
∴∠BCA=∠AOM,
∴∠BCA=90°,
∴△ABC是直角三角形.
点评:
此题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)实行判断.解答时不但要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合使用.
3.
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存有某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存有,求出此时t的值;若不存有,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.
分析:
(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;
四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;
(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存有符合条件的t值.
(4)因为等腰三角形的两腰不确定,所以分三种情况实行讨论:
①当MP=MC时,那么PC=2NC,据此可求出t的值.
②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.
③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.
综上所述可得出符合条件的t的值.
解答:
解:(1)∵AQ=3-t
∴CN=4-(3-t)=1+t
在Rt△ABC中,AC2=AB2+BC2=32+42
∴AC=5
在Rt△MNC中,cos∠NCM= = ,CM= .
(2)因为四边形PCDQ构成平行四边形
∴PC=QD,即4-t=t
解得t=2.
(3)假如射线QN将△ABC的周长平分,则有:
MN+NC=AM+BN+AB
即:(1+t)+1+t= (3+4+5)
解得:t= (5分)
而MN= NC= (1+t)
∴S△MNC= (1+t)2= (1+t)2
当t= 时,S△MNC=(1+t)2= ≠ ×4×3
∴不存有某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.
(4)①当MP=MC时(如图1)
则有:NP=NC
即PC=2NC∴4-t=2(1+t)
解得:t=
②当CM=CP时(如图2)
则有:
(1+t)=4-t
解得:t=
③当PM=PC时(如图3)
则有:
在Rt△MNP中,PM2=MN2+PN2
而MN= NC= (1+t)
PN=NC-PC=(1+t)-(4-t)=2t-3
∴[ (1+t)]2+(2t-3)2=(4-t)2
解得:t1= ,t2=-1(舍去)
∴当t= ,t= ,t= 时,△PMC为等腰三角形
点评:
此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.
4.
如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;
(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?假如能,求x的值;假如不能,请说明理由.
分析:
以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以能够根据这两种情况来求解x的值.
以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P 在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以能够根据这些条件列出方程关系式.
假如以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC 即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.
解答:
解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.
①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去).
因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.
所以x= -1符合题意.
②当点Q与点M重合时,由x+3x=20,得x=5.
此时DN=x2=25>20,不符合题意.
故点Q与点M不能重合.
所以所求x的值为-1.
(2)由(1)知,点Q只能在点M的左侧,
①当点P在点N的左侧时,
由20-(x+3x)=20-(2x+x2),
解得x1=0(舍去),x2=2.
当x=2时四边形PQMN是平行四边形.
②当点P在点N的右侧时,
由20-(x+3x)=(2x+x2)-20,
解得x1=-10(舍去),x2=4.
当x=4时四边形NQMP是平行四边形.
所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.
(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.
因为2x>x,
所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形,
则点F一定在点N的右侧,且PE=NF,
即2x-x=x2-3x.
解得x1=0(舍去),x2=4.
由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,
所以以P,Q,M,N为顶点的四边形不能为等腰梯形.
点评:
本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.
5.
如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N 分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
(1)当t为何值时,四边形MNCD是平行四边形?
(2)当t为何值时,四边形MNCD是等腰梯形?
分析:
(1)根据平行四边形的性质,对边相等,求得t值;
(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.
解答:
解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;
(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形
点评:
考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.
6.
如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).
(1)设△BPQ的面积为S,求S与t之间的函数关系;
(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?
分析:
(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;
(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;
②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;
③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.
解答:
解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.
∴PM=DC=12,
∵QB=16-t,
∴s= •QB•PM= (16-t)×12=96-6t(0≤t≤ ).
(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况
:
①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;
②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.
③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得,t2=16(不合题意,舍去).
综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.
点评:
本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.
7.
直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
分析:
(1)分别令y=0,x=0,即可求出A、B的坐标;
(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P 的速度是2,从而可求出,
当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得PD=48-6t5,利用S= 12OQ×PD,即可求出答案;
(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.
解答:
解:(1)y=0,x=0,求得A(8,0)B(0,6),
(2)∵OA=8,OB=6,∴AB=10.
∵点Q由O到A的时间是81=8(秒),
∴点P的速度是6+108=2(单位长度/秒).
当P在线段OB上运动(或O≤t≤3)时,
OQ=t,OP=2t,S=t2.
当P在线段BA上运动(或3<t≤8)时,
OQ=t,AP=6+10-2t=16-2t,
如图,做PD⊥OA于点D,
由PDBO=APAB,得PD= 48-6t5.
∴S= 12OQ•PD=- 35t2+245t.
(3)当S= 485时,∵485>12×3×6∴点P在AB上
当S= 485时,- 35t2+245t= 485
∴t=4
∴PD= 48-6×45= 245,AD=16-2×4=8
AD= 82-(245)2= 325
∴OD=8- 325= 85
∴P(85,245)
M1(285,245),M2(- 125,245),M3(125,- 245)
点评:
本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.。