高淳区二中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高淳区二中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.已知等差数列{a n}满足2a3﹣a+2a13=0,且数列{b n} 是等比数列,若b8=a8,则b4b12=()A.2 B.4 C.8 D.16
2.=()
A.﹣i B.i C.1+i D.1﹣i
3.若复数(a∈R,i为虚数单位位)是纯虚数,则实数a的值为()
A.﹣2 B.4 C.﹣6 D.6
4.定义运算,例如.若已知,则
=()
A.B.C.D.
5.在△ABC中,a=1,b=4,C=60°,则边长c=()
A.13 B. C. D.21
6.已知函数f(x)=lg(1﹣x)的值域为(﹣∞,1],则函数f(x)的定义域为()
A.[﹣9,+∞)B.[0,+∞)C.(﹣9,1)D.[﹣9,1)
7.已知直线l1经过A(﹣3,4),B(﹣8,﹣1)两点,直线l2的倾斜角为135°,那么l1与l2()A.垂直 B.平行 C.重合 D.相交但不垂直
8.如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()
A.B.1 C.D.
9.已知点A(1,1),B(3,3),则线段AB的垂直平分线的方程是()
A.y=﹣x+4 B.y=x C.y=x+4 D.y=﹣x
10.在定义域内既是奇函数又是减函数的是()
A .y=
B .y=﹣x+
C .y=﹣x|x|
D .y=
11.数列{a n }满足a 1=, =﹣1(n ∈N *
),则a 10=( )
A .
B .
C .
D .
12.下列计算正确的是( )
A 、213
3
x x x ÷= B 、4554()x x = C 、455
4x x
x = D 、4455
0x x -
=
二、填空题
13.二项式
展开式中,仅有第五项的二项式系数最大,则其常数项为 .
14.函数y=sin 2x ﹣2sinx 的值域是y ∈ .
15.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .
16.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .
17.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函
数,函数()22
x
a g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为3
2,则a 的值
为______.
18.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .
三、解答题
19.如图,在底面是矩形的四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=2,BC=2,E 是PD 的中点. (1)求证:平面PDC ⊥平面PAD ;
(2)求二面角E ﹣AC ﹣D 所成平面角的余弦值.
20.已知函数f (x )=log a (1﹣x )+log a (x+3),其中0<a <1. (1)求函数f (x )的定义域;
(2)若函数f (x )的最小值为﹣4,求a 的值.
21.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2
ln f x ax x =+,
()21145ln 639f x x x x =
++,()221
22
f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当2
3
a =
时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)
22.已知平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为,右顶点为D (2,
0),设点A (1,). (1)求该椭圆的标准方程;
(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程;
(3)过原点O 的直线交椭圆于B ,C 两点,求△ABC 面积的最大值,并求此时直线BC 的方程.
23.已知集合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0} (1)求A ∩B
(2)若A ∪C=C ,求实数m 的取值范围.
24.(本小题满分12分)
已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;
(2)若与夹角为锐角,求的取值范围.
高淳区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】D
【解析】解:由等差数列的性质可得a3+a13=2a8,
即有a82=4a8,
解得a8=4(0舍去),
即有b8=a8=4,
由等比数列的性质可得b4b12=b82=16.
故选:D.
2.【答案】B
【解析】解:===i.
故选:B.
【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.3.【答案】C
【解析】解:复数=,它是纯虚数,则a=﹣6.
故选C.
【点评】本题考查复数代数形式的乘除运算,复数的分类,是基础题.
4.【答案】D
【解析】解:由新定义可得,
====.
故选:D.
【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.
5.【答案】B
【解析】解:∵a=1,b=4,C=60°,
∴由余弦定理可得:c===.
故选:B.
6.【答案】D
【解析】解:函数f(x)=lg(1﹣x)在(﹣∞,1)上递减,
由于函数的值域为(﹣∞,1],
则lg(1﹣x)≤1,
则有0<1﹣x≤10,
解得,﹣9≤x<1.
则定义域为[﹣9,1),
故选D.
【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.7.【答案】A
【解析】解:由题意可得直线l1的斜率k1==1,
又∵直线l2的倾斜角为135°,∴其斜率k2=tan135°=﹣1,
显然满足k1•k2=﹣1,∴l1与l2垂直
故选A
8.【答案】D
【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,
∴直角三角形的直角边长是,
∴直角三角形的面积是,
∴原平面图形的面积是1×2=2
故选D.
9.【答案】A
【解析】解:∵点A(1,1),B(3,3),
∴AB的中点C(2,2),
k AB==1,
∴线段AB的垂直平分线的斜率k=﹣1,
∴线段AB的垂直平分线的方程为:
y﹣2=﹣(x﹣2),整理,得:y=﹣x+4.
故选:A.
10.【答案】C
【解析】解:A.在定义域内没有单调性,∴该选项错误;
B.时,y=,x=1时,y=0;
∴该函数在定义域内不是减函数,∴该选项错误;
C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);
∴该函数为奇函数;
;
∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;
∴该函数在定义域R上为减函数,∴该选项正确;
D.;
∵﹣0+1>﹣0﹣1;
∴该函数在定义域R上不是减函数,∴该选项错误.
故选:C.
【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.
11.【答案】C
【解析】解:∵=﹣1(n∈N*),
∴﹣=﹣1,
∴数列是等差数列,首项为=﹣2,公差为﹣1.
∴=﹣2﹣(n﹣1)=﹣n﹣1,
∴a n=1﹣=.
∴a10=.
故选:C.
【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.
12.【答案】B
【解析】
试题分析:根据()a aβααβ⋅=可知,B正确。
考点:指数运算。
二、填空题
13.【答案】70.
【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,
则n=8,
所以二项式=展开式的通项为
T r+1=(﹣1)r C8r x8﹣2r
令8﹣2r=0得r=4
则其常数项为C84=70
故答案为70.
【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.14.【答案】[﹣1,3].
【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,
∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.
∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].
故答案为[﹣1,3].
【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.
15.【答案】6
【解析】解:根据题意,得;
∵f(2x)=2f(x),
∴f(34)=2f(17)
=4f()=8f()
=16f();
又∵当2≤x ≤4时,f (x )=1﹣|x ﹣3|,
∴f (
)=1﹣|
﹣3|=,
∴f (2x )=16×=2;
当2≤x ≤4时,f (x )=1﹣|x ﹣3|≤1,不存在;
当4≤x ≤8时,f (x )=2f ()=2[1﹣|﹣3|]=2, 解得x=6; 故答案为:6.
【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.
16.【答案】 (1,2) .
【解析】解:由2ρcos 2θ=sin θ,得:2ρ2cos 2
θ=ρsin θ,
即y=2x 2
.
由ρcos θ=1,得x=1.
联立
,解得:
.
∴曲线C 1与C 2交点的直角坐标为(1,2).
故答案为:(1,2).
【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.
17.【答案】
52
【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,
ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,
又()22x
a g x e a =-+,令x
t e =,则()[]2,1,32
a g t t a t =-+
∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2
min 2
a g t g a ==,
则()()max min 312g t g t a -=-=,则5
2
a =,
(2)当3a >时,()()2max 112a g t g a ==-+,()()2
min 332
a g t g a ==-+,
则()()max min 2g t g t -=,舍。
52
a ∴=。
18.【答案】锐角三角形
【解析】解:∵c=12是最大边,∴角C 是最大角
根据余弦定理,得cosC=
=
>0
∵C ∈(0,π),∴角C 是锐角,
由此可得A 、B 也是锐角,所以△ABC 是锐角三角形 故答案为:锐角三角形
【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)∵PA ⊥平面ABCD ,CD ⊆平面ABCD ,∴PA ⊥CD ∵AD ⊥CD ,PA 、AD 是平面PAD 内的相交直线,∴CD ⊥平面PAD ∵CD ⊆平面PDC , ∴平面PDC ⊥平面PAD ; (2)取AD 中点O ,连接EO , ∵△PAD 中,EO 是中位线,∴EO ∥PA ∵PA ⊥平面ABCD ,∴EO ⊥平面ABCD , ∵AC ⊆平面ABCD ,∴EO ⊥AC 过O 作OF ⊥AC 于F ,连接EF ,则 ∵EO 、OF 是平面OEF 内的相交直线, ∴AC ⊥平面OEF ,所以EF ⊥AC ∴∠EFO 就是二面角E ﹣AC ﹣D 的平面角 由PA=2,得EO=1,
在Rt △ADC 中,设AC 边上的高为h ,则AD ×DC=AC ×h ,得h=
∵O 是AD 的中点,∴OF=×=
∵EO=1,∴Rt △EOF 中,EF=
=
∴cos ∠EFO==
【点评】本题给出特殊的四棱锥,叫我们证明面面垂直并求二面角的余弦值,着重考查了平面与平面所成角的求法和线面垂直的判定与性质等知识,属于中档题.
20.【答案】
【解析】解:(1)要使函数有意义:则有,解得﹣3<x <1,
所以函数f (x )的定义域为(﹣3,1).
(2)f (x )=log a (1﹣x )+log a (x+3)=log a (1﹣x )(x+3)==
,
∵﹣3<x <1,∴0<﹣(x+1)2
+4≤4,
∵0<a <1,∴
≥log a 4,即f (x )min =log a 4;
由log a 4=﹣4,得a ﹣4
=4,
∴a==.
【点评】本题考查对数函数的图象及性质,考查二次函数的最值求解,考查学生分析问题解决问题的能力.
21.【答案】(1)切线恒过定点1,22e ⎛⎫
⎪⎝⎭
.(2) a 的范围是11,22⎡⎤
-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足
()()()12f x g x f x <<恒成立函数()g x 有无穷多个
【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-
=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭
;
试题解析:
(1)因为()12f x ax x '=+
,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e
=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛
⎫=+-++ ⎪⎝
⎭,
整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫
⎪⎝⎭
.
(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛
⎫--+< ⎪⎝
⎭,对()1,x ∈+∞恒成立,
因为()()1212p x a x a x =--+'()2
2121a x ax x --+=()()()
1211*x a x x
⎡⎤---⎣⎦= 令()0p x '=,得极值点11x =,21
21
x a =-,
①当112a <<时,有211x x >=,即1
12
a <<时,在()2,x +∞上有()0p x '>,
此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;
②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()
1,p x p ∈+∞,也不合题意; ③当1
2
a ≤
时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;
要使()0p x <在此区间上恒成立,只须满足()111022
p a a =--≤⇒≥-, 所以11
22
a -
≤≤. 综上可知a 的范围是11,22⎡⎤
-
⎢⎥⎣⎦
. (利用参数分离得正确答案扣2分)
(3)当23a =
时,()21145ln 639f x x x x =++,()221423
f x x x =+ 记()()22115
ln 39
y f x f x x x =-=-,()1,x ∈+∞.
因为22565399x x y x x
='-=-,
令0y '=,得x =
所以()()21y f x f x =-在⎛ ⎝
为减函数,在⎫+∞⎪⎪⎭上为增函数,
所以当x =时,min 59180y =
设()()()159
01180
R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个
22.【答案】
【解析】解;(1)由题意可设椭圆的标准方程为,c 为半焦距.
∵右顶点为D (2,0),左焦点为,
∴a=2,
,
.
∴该椭圆的标准方程为
.
(2)设点P (x 0,y 0),线段PA 的中点M (x ,y ).
由中点坐标公式可得,解得.(*)
∵点P 是椭圆上的动点,∴.
把(*)代入上式可得,可化为.
即线段PA 的中点M 的轨迹方程为一焦点在x 轴上的椭圆
.
(3)①当直线BC 的斜率不存在时,可得B (0,﹣1),C (0,1).
∴|BC|=2,点A
到y 轴的距离为1,∴
=1;
②当直线BC 的斜率存在时,设直线BC 的方程为y=kx ,B (x 1,y 1),C (﹣x 1,﹣y 1)(x 1<0).
联立,化为(1+4k 2)x 2
=4.解得
,
∴
.
∴|BC|==2=.
又点A到直线BC的距离d=.
∴==,
∴==,
令f(k)=,则.
令f′(k)=0,解得.列表如下:
又由表格可知:当k=时,函数f(x)取得极小值,即取得最大值2,即.
而当x→+∞时,f(x)→0,→1.
综上可得:当k=时,△ABC的面积取得最大值,即.
【点评】熟练掌握椭圆的标准方程及其性质、中点坐标公式及“代点法”、分类讨论的思想方法、直线与椭圆相交问题转化为直线的方程与椭圆的方程联立解方程组、两点间的距离公式、点到直线的距离公式、三角形的面积计算公式、利用导数研究函数的单调性及其极值.
23.【答案】
【解析】解:由合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>0}.
∴A={x|﹣1<x<6},,C={x|m<x<m+9}.
(1),
(2)由A ∪C=C ,可得A ⊆C .
即,解得﹣3≤m ≤﹣1.
24.【答案】(1)2或2)(1,0)(0,3)-.
【解析】
试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围. 试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.
(2)与夹角为锐角,0a b ∙>,2
230x x -++>,13x -<<,
又因为0x =时,//a b , 所以的取值范围是(1,0)
(0,3)-.
考点:向量平行的坐标运算,向量的模与数量积.
【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是
0a b a b
⋅>且,a b 不同
向,同样两向量夹角为钝角的充要条件是0a b a b
⋅<且,a b 不反向.。