江油市第二高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江油市第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60π
D .72π
2. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在
方向上的投影为( )
A .
B .﹣
C .
D .﹣
3. 给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即{x}=m
在此基础上给出下列关于函数f (x )=|x ﹣{x}|的四个命题:
①;②f (3.4)=﹣0.4;
③
;④y=f (x )的定义域为R ,值域是
;
则其中真命题的序号是( ) A .①② B .①③
C .②④
D .③④
4. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )
A .
B .
C .2
D .3
5. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )
A .a <1<b
B .a <b <1
C .1<a <b
D .b <1<a
6. 由两个1,两个2,两个3组成的6位数的个数为( ) A .45
B .90
C .120
D .360
7. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
8. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若
2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )
A .2
B .3 C.1 D .4
9. 两个随机变量x ,y 的取值表为
若x ,y 具有线性相关关系,且y ^
=bx +2.6,则下列四个结论错误的是( )
A .x 与y 是正相关
B .当y 的估计值为8.3时,x =6
C .随机误差e 的均值为0
D .样本点(3,4.8)的残差为0.65
10.某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .
34 D .3
8
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
11.已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.6
12.已知圆C :x 2
+y 2
﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切
C .相交且一定不过圆心
D .相交且可能过圆心
二、填空题
13.设
是空间中给定的个不同的点,则使
成立的点
的个数有_________个.
14.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .
15.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为
.
14.已知集合
,若3∈M ,5∉M ,则实数a 的取值范围是 .
16.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2
()2f x x x =-,则()y f x =在R 上的解析式为 17.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.
18.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,
在90组数对(x i ,y i )(1≤i ≤90,i ∈N *
)中,
经统计有25组数对满足,则以此估计的π值为 .
三、解答题
19.(本小题满分12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 均为正方形,CF ⊥平面ABCD ,
BG ⊥平面ABCD ,且24AB BG BH ==. (1)求证:平面AGH ⊥平面EFG ;
(2)求二面角D FG E --的大小的余弦值.
20.如图,F1,F2是椭圆C:+y2=1的左、右焦点,A,B是椭圆C上的两个动点,且线段AB的中点M
在直线l:x=﹣上.
(1)若B的坐标为(0,1),求点M的坐标;
(2)求•的取值范围.
21.(本小题满分10分)选修4-1:几何证明选讲.
如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;
(2)若CE=1,AB=2,求DE的长.
22.(本小题满分12分)
中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各
(1)求各大学抽取的人数;
(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.
23.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.
(I)求p的值;
(II)若经过点D(﹣2,﹣1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.
24.已知函数f(x)=和直线l:y=m(x﹣1).
(1)当曲线y=f(x)在点(1,f(1))处的切线与直线l垂直时,求原点O到直线l的距离;(2)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;
(3)求证:ln<(n∈N+)
江油市第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】
【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,
又V 四棱锥P -ABCD =1
3
S 矩形ABCD ·PO
=13abR ≤23R 3. ∴2
3
R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 2. 【答案】D
【解析】解:∵;
∴
在
方向上的投影为
==
.
故选D .
【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.
3. 【答案】B
【解析】解:①∵﹣1﹣<﹣≤﹣1+
∴{﹣}=﹣1
∴f (﹣)=|﹣﹣{﹣}|=|﹣+1|= ∴①正确;
②∵3﹣<3.4≤3+
∴{3.4}=3
∴f (3.4)=|3.4﹣{3.4}|=|3.4﹣3|=0.4 ∴②错误;
③∵0﹣<﹣≤0+
∴{﹣}=0
∴f (﹣)=|﹣﹣0|=,
∵0﹣<≤0+
∴{}=0
∴f ()=|﹣0|=,
∴f (﹣)=f () ∴③正确;
④y=f (x )的定义域为R ,值域是[0,] ∴④错误. 故选:B .
【点评】本题主要考查对于新定义的理解与运用,是对学生能力的考查.
4. 【答案】D
【解析】解:∵a=
,c=2,cosA=,
∴由余弦定理可得:cosA===
,整理可得:3b 2
﹣8b ﹣3=0,
∴解得:b=3或﹣(舍去).
故选:D .
5. 【答案】A
【解析】解:由f (x )=e x +x ﹣2=0得e x =2﹣x ,
由g (x )=lnx+x ﹣2=0得lnx=2﹣x ,
作出计算y=e x ,y=lnx ,y=2﹣x 的图象如图:
∵函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b , ∴y=e x 与y=2﹣x 的交点的横坐标为a ,y=lnx 与y=2﹣x 交点的横坐标为b ,
由图象知a <1<b , 故选:A .
【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.
6.【答案】B
【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,
所以由分步计数原理有:C62C42C22=90个不同的六位数,
故选:B.
【点评】本题考查了分步计数原理,关键是转化,属于中档题.
7.【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)
那么安全存放的不同方法种数为2A44=48.
故选B.
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.
8.【答案】D
【解析】
考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.
【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差
+=(D点是AB的中点),另外,要选好基底OA OB BA
OA OB OD
-=,这是一个易错点,两个向量的和2
AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,
何意义等.
9.【答案】
【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+
^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y
本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.
10.【答案】B
11.【答案】A
【解析】解:∵随机变量ξ服从正态分布N(2,o2),
∴正态曲线的对称轴是x=2
P(0<X<4)=0.8,
∴P(X>4)=(1﹣0.8)=0.1,
故选A.
12.【答案】C
【解析】
【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.
【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,
∴圆心C(1,0),半径r=,
∵≥>1,
∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,
∴直线l与圆相交且一定不过圆心.
故选C
二、填空题
13.【答案】1
【解析】【知识点】平面向量坐标运算
【试题解析】设
设,则
因为,
所以,所以
因此,存在唯一的点M,使成立。
故答案为:
14.【答案】.
【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即
y'=在x>0时有解,
所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.
函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,
即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,
因为函数在[1,2]上单调递增,所以函数的最大值为,
所以,所以.
综上.
故答案为:.
【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.15.【答案】6.
【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,
f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,
令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,
故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,
∴x=2是极小值点.故c=2不合题意,c=6.
故答案为6
【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.
16.【答案】2
22,0
2,0
x x x y x x x ⎧-≥⎪=⎨--<⎪⎩
【解析】
试题分析:令0x <,则0x ->,所以()()()2
222f x x x x x -=---=+,又因为奇函数满足
()()f x f x -=-,所以()()2
20f x x x x =--<,所以()y f x =在R 上的解析式为2
2
2,0
2,0
x x x y x x x ⎧-≥⎪=⎨--<⎪⎩。
考点:函数的奇偶性。
17.【答案】()2
245f x x x =-+
【解析】
试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2
245f x x x =-+.
考点:函数的解析式.
18.【答案】
.
【解析】设A (1,1),B (﹣1,﹣1),则直线AB 过原点,且阴影面积等于直线AB 与圆弧所
围成的弓形面积S 1,由图知,
,又
,所以
【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.
三、解答题
19.【答案】
【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.
∵GH∈平面AGH,∴平面AGH⊥平面EFG.……………………………5分
20.【答案】
【解析】解:(1)∵B的坐标为(0,1),且线段AB的中点M在直线l:x=﹣上,
∴A点的横坐标为﹣1,
代入椭圆方程+y2=1,解得y=±,故点A(﹣1,)或点A(﹣1,﹣).
∴线段AB的中点M(﹣,+)或(﹣,﹣).
(2)由于F1(﹣1,0),F2(1,0),当AB垂直于x轴时,AB的方程为x=﹣,点A(﹣,﹣)、
B(﹣,),
求得•=.
当AB不垂直于x轴时,设AB的斜率为k,M(﹣,m),A(x1,y1),B (x2,y2),
由可得(x1+x2)+2(y1+y2)•=0,∴﹣1=﹣4mk,即k=,
故AB的方程为y﹣m=(x+),即y=x+①.
再把①代入椭圆方程+y2=1,可得x2+x+•=0.
由判别式△=1﹣>0,可得0<m2<.
∴x1+x2=﹣1,x1•x2=,y1•y2=(•x1+)(x2+),
∴•=(x1﹣1,y1)•(x2﹣1,y2)=x1•x2+y1•y2﹣(x1+x2)+1=.
令t=1+8m2,则1<t<8,∴•==[3t+].
再根据[3t+]在(1,)上单调递减,在(,8)上单调递增求得[3t+]的范围为[,).
综上可得,[3t+]的范围为[,).
【点评】本题主要考查本题主要考查椭圆的定义、标准方程,以及简单性质的应用,两个向量的数量积公式的应用,直线和二次曲线的关系,考查计算能力,属于难题.
21.【答案】
【解析】解:(1)证明:
如图,连接AE,
∵AB 是⊙O 的直径, AC ,DE 均为⊙O 的切线, ∴∠AEC =∠AEB =90°, ∠DAE =∠DEA =∠B , ∴DA =DE .
∠C =90°-∠B =90°-∠DEA =∠DEC , ∴DC =DE , ∴CD =DA .
(2)∵CA 是⊙O 的切线,AB 是直径, ∴∠CAB =90°,
由勾股定理得CA 2=CB 2-AB 2, 又CA 2=CE ×CB ,CE =1,AB =2, ∴1·CB =CB 2-2,
即CB 2-CB -2=0,解得CB =2, ∴CA 2=1×2=2,∴CA = 2.
由(1)知DE =12CA =2
2,
所以DE 的长为2
2
.
22.【答案】(1)甲,乙,丙,丁;(2)2
5
P =. 【解析】
试题分析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲,乙,丙,丁;(2)利用列举出从参加问卷调查的40名学生中随机抽取两名学生的方法共有15种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.
试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.
(2)设乙中3人为123,,a a a ,丁中3人为123,,b b b ,从这6名学生中随机选出2名学生发言的结果为12{,}a a ,
13{,}a a ,11{,}a b ,12{,}a b ,13{,}a b ,32{,}a a ,12{,}b a ,22{,}b a ,32{,}b a ,31{,}a b ,32{,}a b ,33{,}a b ,
12{,}b b ,13{,}b b ,23{,}b b ,共15种,
这2名同学来自同一所大学的结果共6种,所以所求概率为62155
P ==. 考点:1、分层抽样方法的应用;2、古典概型概率公式. 23.【答案】
【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.
所以,直线l的方程为…
由消y并整理,得…
设A(x1,y1),B(x2,y2)
则x1+x2=3p,
又|AB|=|AF|+|BF|=x1+x2+p=4,
所以,3p+p=4,所以p=1…
(II)由(I)可知,抛物线的方程为y2=2x.
由题意,直线m的方程为y=kx+(2k﹣1).…
由方程组(1)
可得ky2﹣2y+4k﹣2=0(2)…
当k=0时,由方程(2),得y=﹣1.
把y=﹣1代入y2=2x,得.
这时.直线m与抛物线只有一个公共点.…
当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).
由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.
解得.
于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…
因此,所求m的取值范围是.…
【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
24.【答案】
【解析】(Ⅰ)解:由f(x)=,得,
∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.
原点O到直线l的距离为;
(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,设,即∀x∈[1,+∞),g(x)≤0成立.
.
①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;
②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,
当△≤0,即m时,g′(x)≤0,
∴g(x)在(1,+∞)上单调递减,
∴g(x)≤g(1)=0,即不等式成立.
当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),
,,
当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.
综上所述,m;
(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.
不妨令,
∴ln,
(k∈N*).
∴.
.
…
.
累加可得:,(n∈N*).
即ln<(n∈N*).
【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式
是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是
压轴题.。