2019-2020学年高中数学 2.1 向量的概念及表示教案 新人教A版必修1.doc

合集下载

2019_2020学年高中数学第二章平面向量2.1.1向量的概念学案新人教B版必修4

2019_2020学年高中数学第二章平面向量2.1.1向量的概念学案新人教B版必修4

2.1.1 向量的概念1.了解平面向量的实际背景.2.理解平面向量的概念,两个向量相等的含义. 3.掌握向量的几何表示.1.向量的定义及表示方法 (1)向量:具有大小和方向的量. (2)向量的表示方法2.与向量有关的概念(1)零向量:长度等于零的向量,记作0. (2)向量共线或平行基线:通过有向线段AB →的直线,叫做向量AB →的基线.如果向量的基线互相平行或重合,则称这些向量共线或平行.共线向量的方向相同或相反.向量a 平行于b ,记作a ∥b .(3)相等向量:两个向量a 和b 同向且等长,即a 和b 相等,记作a =b . (4)向量的长度(模)如果AB →=a ,那么AB →的长度表示向量a 的大小,也叫做a 的长(或模),记作|a |. 3.用向量表示点的位置任给一定点O 和向量a (如图),过点O 作有向线段OA →=a ,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量OA →常叫做点A 相对于点O 的位置向量.1.判断(正确的打“√”,错误的打“×”) (1)向量的模是一个正实数.( ) (2)向量就是有向线段.( ) (3)向量AB →与向量BA →是相等向量.( )(4)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (5)零向量是最小的向量.( )答案:(1)× (2)× (3)× (4)× (5)× 2.已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M 答案:D3.如图,在⊙O 中,向量OB →、OC →、AO →是( )A .有相同起点的向量B .共线向量C .模相等的向量D .相等的向量 答案:C4.若A 地位于B 地正西方向5 km 处,C 地位于A 地正北方向5 km 处,则C 地相对于B 地的位移是________.解析:如图所示C 地相对于B 地的位移是西北方向5 2 km.答案:西北方向5 2 km向量的概念[学生用书P34]下列关于向量的说法正确的个数是( )①起点相同,方向相同的两个非零向量的终点相同;②起点相同,长度相等的两个非零向量的终点相同;③两个平行的非零向量的方向相同;④两个共线的非零向量的起点与终点一定共线.A .3B .2C .1D .0【解析】 起点相同,方向相同的两个非零向量若长度不相等,则终点不相同,故①不正确;起点相同,长度相等的两个非零向量的终点不一定相同,其终点在一个圆上,故②不正确;两个平行的非零向量的方向相同或相反,故③不正确;两个共线的非零向量的起点与终点不一定共线,所对应的直线可能平行,故④不正确.【答案】 D对于概念性题目,关键把握好概念的内涵与外延,正确理解向量共线、向量相等的概念,清楚它们的区别与联系.给出下列几种说法:①若非零向量a 与b 共线,则a =b ; ②若向量a 与b 同向,且|a |>|b |,则a >b ; ③若两向量有相同的基线,则两向量相等. 其中错误说法的序号是______.解析:①错误.共线向量是指向量的基线互相平行或重合,其方向相同或相反,所以共线向量未必相等.②错误.向量是既有大小,又有方向的量,不能比较大小.③错误.两向量有相同的基线表示两向量共线(或平行),但两向量的大小和方向都不一定相同.答案:①②③向量的表示[学生用书P34]一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解】 (1)如图所示.(2)由题意,易知AB →与CD →方向相反, 故AB →与CD →共线, 即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).用有向线段表示向量的步骤在如图所示的坐标纸中,每个小正方形的边长为1,画出下列向量.(1)|OA →|=3,点A 在点O 正西方向;(2)|OB →|=32,点B 在点O 北偏西45°方向; (3)|BC →|=6,点C 在点B 正东方向. 解:(1)(2)(3)如图:相等向量与共线向量[学生用书P35]如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的长度相等,方向相反的向量有哪些? (2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c 相等的向量.【解】 (1)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(3)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,FA →;与c 相等的向量有FO →,ED →,AB →.相等向量与共线向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.如图所示的▱ABCD ,OA →=a ,OB →=b .(1)与OA →的模相等的向量有多少个? (2)与OA →的模相等且方向相反的向量有哪些? (3)写出分别与OA →、AB →共线的向量.解:(1)与OA →的模相等的向量有OC →,AO →,CO →三个向量. (2)与OA →的模相等且方向相反的向量为OC →,AO →.(3)与OA →共线的向量有AO →,AC →,OC →,CO →,CA →;与AB →共线的向量有DC →,CD →,BA →.1.向量既有大小又有方向,但不能比较大小,向量的模是数量,可以比较大小.对于一个向量,只要不改变它的大小和方向,是可以任意平行移动的.2.平行(共线)概念不是平面几何中平行线概念的简单移植,这里的平行是指方向相同或相反的一对向量,它与长度无关,与是否在一条直线上无关.向量平行与直线平行的区别1.直线的平行具有传递性,即a ∥b ,b ∥c ⇒a ∥c .2.向量的平行不具有传递性,即若a ∥b ,b ∥c ,则未必有a ∥c ,因为若b =0,它与任意向量共线,故a ,c 两向量不一定共线.1.下列物理量:①速度;②位移;③力;④加速度;⑤路程;⑥密度.其中不是向量的有( )A .1个B .2个C .3个D .4个解析:选B.由于速度、位移、力、加速度都是由大小和方向确定,具备了向量的两个要素,所以是向量;而路程、密度只有大小没有方向,所以不是向量.故选B.2.下列关于零向量的说法不正确的是( ) A .零向量是没有方向的向量 B .零向量的方向是任意的 C .零向量与任一向量平行 D .零向量只能与零向量相等解析:选A.零向量的方向是任意的,是有方向的.3.如图,小正方形的边长为1,则|AB →|=________;|CD →|=________;|EF →|=________.解析:根据勾股定理可得|AB →|=32,|CD →|=26, |EF →|=2 2. 答案:3 226 2 24.在四边形ABCD 中,若AB →∥CD →,且|AB →|≠|CD →|,四边形ABCD 为________. 解析:由题意可知,对边AB 与CD 平行且不相等,故四边形ABCD 为梯形.答案:梯形, [学生用书P103(单独成册)])[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等; ④与非零向量a 共线的单位向量是a |a|. A .3 B .2 C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的. 2.若a 为任一非零向量,b 的模为1,给出下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1. 其中正确的是( ) A .①④ B .③ C .①②③D .②③解析:选B.①中,|a |的大小不能确定,故①错误;②中,两个非零向量的方向不确定,故②错误;④中,向量的模是一个非负实数,故④错误;③正确.选B.3.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则两向量共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形B .矩形C .菱形D .等腰梯形解析:选C.由BA →=CD →,知AB =CD 且AB ∥CD , 即四边形ABCD 为平行四边形. 又因为|AB →|=|AD →|, 所以四边形ABCD 为菱形.5.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A .AB →=OC → B .AB →∥DE → C .|AD →|=|BE →|D .AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →不共线,故AD →≠FC →,故选D. 6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22, 所以|OA →|= 2. 答案: 27.给出下列三个条件:①|a |=|b |;②a 与b 方向相反;③|a |=0或|b |=0,其中能使a ∥b 成立的条件是________.解析:由于|a |=|b |并没有确定a 与b 的方向, 即①不能够使a ∥b 成立; 因为a 与b 方向相反时,a ∥b , 即②能够使a ∥b 成立; 因为零向量与任意向量共线, 所以|a |=0或|b |=0时,a ∥b 能够成立.故使a ∥b 成立的条件是②③. 答案:②③8.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在如图的方格纸(每个小方格的边长为1)上,已知向量a .(1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么. 解:(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如图所示.(2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如图所示.10.如图所示,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.证明:因为AB →=DC →, 所以|AB →|=|DC →|且AB ∥CD , 所以四边形ABCD 是平行四边形, 所以|DA →|=|CB →|且DA ∥CB .同理可得,四边形CNAM 是平行四边形, 所以CM →=NA →. 所以|CM →|=|NA →|, 所以|MB →|=|DN →|, 又DN →与MB →的方向相同, 所以DN →=MB →.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是( ) A .与AB →相等的向量只有一个(不含AB →) B .与AB →的模相等的向量有9个(不含AB →) C .BD →的模恰为DA →模的3倍 D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图所示,已知四边形ABCD 是矩形,O 为对角线AC 与BD 的交点,设点集M ={O ,A ,B ,C ,D },向量的集合T ={PQ →|P ,Q ∈M ,且P ,Q 不重合},则集合T 有________个元素.解析:以矩形ABCD 的四个顶点及它的对角线交点O 五点中的任一点为起点,其余四点中的一个点为终点的向量共有20个.但这20个向量中有8对向量是相等的,其余12个向量各不相等,即为AO →(OC →)、OA →(CO →),DO →(OB →),BO →(OD →),AD →(BC →),DA →(CB →),AB →(DC →),BA →(CD →),AC →,CA →,BD →,DB →,由元素的互异性知T 中有12个元素.答案:1213.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →,如图所示:(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=55米.14.(选做题)如图所示方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC →|= 5.(1)画出所有的向量AC →;(2)求|BC →|的最大值与最小值.解:(1)画出所有的向量AC →,如图所示.(2)由第一问所画的图知,①当点C 位于点C 1和C 2时,|BC →|取得最小值12+22=5;②当点C 位于点C 5和C 6时,|BC →|取得最大值42+52=41.所以|BC →|的最大值为41,最小值为 5.。

2019-2020高中数学人教A版必修四教师用书:2.1 平面向量的实际背景及基本概念 Word版

2019-2020高中数学人教A版必修四教师用书:2.1 平面向量的实际背景及基本概念 Word版

姓名,年级:时间:2.1 平面向量的实际背景及基本概念[教材研读]预习课本P74~76,思考以下问题1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.零向量与单位向量有什么特殊性?0与0的含义有什么区别? 5.如何判断相等向量或共线向量?向量错误!与向量错误!是相等向量吗?[要点梳理]1.向量的概念和表示方法(1)概念:既有大小,又有方向的量称为向量.(2)向量的表示2.向量的长度(或称模)与特殊向量(1)向量的长度(或模)定义:向量的大小叫做向量的长度(或模).(2)向量的长度表示:向量错误!,a的长度分别记作:|错误!|,|a|。

(3)特殊向量:①长度为0的向量为零向量,记作0;②长度等于1个单位的向量,叫做单位向量.3.向量间的关系(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a =b。

(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.[自我诊断]判断(正确的打“√",错误的打“×”)1.两个向量能比较大小.()2.向量的模是一个正实数.()3.单位向量的模都相等.( )4.向量错误!与向量错误!是相等向量.( )[答案]1。

×2。

× 3.√ 4.×错误!思考:已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有__________,是向量的有__________.提示:②④⑤⑨⑩①③⑥⑦⑧下列说法正确的有__________.(填序号)①若|a|=|b|,则a与b的长度相等且方向相同或相反;②若|a|=|b|,且a与b的方向相同,则a=b;③由于0方向不确定,故0不能与任意向量平行;④向量a与向量b平行,则向量a与b方向相同或相反;⑤起点不同,但方向相同且模相等的向量是相等向量.[思路导引] 利用向量的有关概念逐一判断.[解析] ①不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们方向的关系.②正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.③不正确.依据规定:0与任一向量平行.④不正确.因为向量a与向量b若有一个是零向量,则其方向不定.⑤正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.[答案] ②⑤解决与向量概念有关问题的方法解决与向量概念有关题目的关键是突出向量的核心——方向和长度,如:共线向量的核心是方向相同或相反,长度没有限制;相等向量的核心是方向相同且长度相等;单位向量的核心是方向没有限制,但长度都是一个单位长度;零向量的核心是方向没有限制,长度是0;规定零向量与任一向量共线.只有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.[跟踪训练]下列说法错误的有__________.(填上你认为所有符合的序号)①两个单位向量不可能平行;②两个非零向量平行,则它们所在直线平行;③当两个向量a,b共线且方向相同时,若|a|〉|b|,则a>b.[解析]①错误,单位向量也可以平行;②错误,两个非零向量平行,则它们所在直线还可能重合;③错误,两个向量是不能比较大小的,只有模可以比较大小.[答案] ①②③错误!思考:向量就是有向线段,这种说法对吗?提示:不对,向量与有向线段是两个不同的概念,可以用有向线段表示向量.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)错误!,使|错误!|=4错误!,点A在点O北偏东45°;(2)错误!,使|错误!|=4,点B在点A正东;(3)错误!,使|错误!|=6,点C在点B北偏东30°。

平面向量的概念教学设计-高一下学期数学人教A版(2019) 必修第二册

平面向量的概念教学设计-高一下学期数学人教A版(2019) 必修第二册

平面向量的概念教学设计一.教学内容分析:向量是近代数学中重要和基本的概念之一,向量理论具有丰富的物理背景,深刻的数学内涵。

向量既是代数的研究对象,也是几何的研究对象,是沟通几何和代数的一个桥梁,也是进一步学习和研究其他数学领域问题的一个基础,在解决实际问题中发挥着非常重要的作用,本章内容通过实际背景引入向量的概念,类比数的运算学习向量的运算及其性质,建立向量的运算体系,在此基础上,用向量的语言方法表述和解决现实中数学和物理中的一些问题。

二.学情分析:向量是本册书新引入的概念,学生对新概念的接受是比较困难的。

但是在生活中和物理学的学习过程中是经常用到的,所以对本节课应该从实际生活方面引入,激发学生的学习兴趣,让学生们都参与到积极探究新知识的学习过程中,激发学生的学习兴趣和求知欲。

三.教学目标设定【知识与技能】1.掌握向量的概念2.能正确进行平面向量的几何表示【过程与方法】通过学生对向量的学习,使学生对现实生活中向量和数量的概念有一定清楚的认识,培养学生分析问题和解决问题的能力。

【情感态度与价值观】1.激发学生的求知欲,培养学生良好的数学思维习惯以及勤于动脑的学习习惯。

2.学生在独立思考的基础上,主动参与到数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,增强学好数学的信心。

四.教学方法的选择1.结合本节课的内容特点和学情分析,本节课主要采用问题启发,任务驱动的教学方法;2.学生自主思考探究,小组交流讨论的学习方式。

五.教学媒体的选择教科书,黑板,粉笔,教师语言,手势,板书,多媒体计算机,PPT。

六.教学重难点【重点】向量的概念以及其几何表示【难点】对向量概念的理解七.教学过程(一)创设情景,导入新课情境导入--教师活动:在生活中,我们会遇到很多量。

其中一些量,在取定单位之后只用一个实数就能表示出来,比如长度,质量。

就像老师手里这支粉笔,长6cm,重0.6g。

还有一些量,则不是这样。

小船由A地向东南方向航行15n mile到达B地,如果仅指出由A地航行15n mile,不指明方向,小船一定能到达B地吗?学生活动:学生就教师提出的问题进行,思考,回答得出:不一定,如果小船向其他方向航行,则无法到达B地。

新课标高中数学人教A版必修一全册课件向量的物理背景与概念及向量的几何表示 公开课一等奖课件

新课标高中数学人教A版必修一全册课件向量的物理背景与概念及向量的几何表示  公开课一等奖课件
零向量
(3) 若两个向量在同一直线上,则这两个向
量一定是什么向量?
平行向量
练习.教材P.77练习第1、2、3题.
课堂小结
1.描述向量的两个指标:模和方向. 2. 平面向量的概念和向量的几何表示; 3. 向量的模、零向量、单位向量、平行 向量等概念.
课后作业
1. 阅读教材P.74-P.76; 2.《学案》P.49的学法引导; 3.《学案》P.44的单元检测卷.
讲授新课
例1. 如图,试根据图 中的比例尺以及三地 的位置,在图中分别 用向量表示A地至B、 C两地的位移,并求 出A地至B、C两地的 实际距离(精确到1km).
A B
C
讲授新课
例2. 判断: (1) 平行向量是否一定方向相同? (2) 与任意向量都平行的向量是什么向量?
(3) 若两个向量在同一直线上,则这两个向 量一定是什么向量?
讲授新课
例2. 判断: (1) 平行向量是否一定方向相同? 不一定 (2) 与任意向量都平行的向量是什么向量?
(3) 若两个向量在同一直线上,则这两个向 量一定是什么向量?
讲授新课
例2. 判断: (1) 平行向量是否一定方向相同? 不一定 (2) 与任意向量都平行的向量是什么向量?
零向量 (3) 若两个向量在同一直线上,则这两个向
“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因 正在于试题多为基础题,对上了自己的“口 味”。

高中数学 2.1平面向量的实际背景及基本概念教案2 新人教A版必修4

高中数学 2.1平面向量的实际背景及基本概念教案2 新人教A版必修4

§2.1 平面向量的实际背景及基本概念
一、三维目标
1、知识与技能
(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;
(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;
并能弄清平行向量、相等向量、共线向量的关系
(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、过程与方法
引导发现法与讨论相结合。

这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。

体现了在老师的引导下,学生的的主体地位和作用。

3、情感目标与价值观
通过对向量与数量的比较,培养学生认识客观事物的数学本质的能力,并且意识到数学与现实生活是密不可分的,是源于生活,用于生活的。

二、教学重点及难点
1重点:向量的概念,相等向量的概念,向量的几何表示等
2难点:向量的概念和共线向量的概念。

向量的概念及表示教案

向量的概念及表示教案

向量的概念及表示一、教学目标:1. 让学生理解向量的概念,知道向量是有大小和方向的量。

2. 让学生掌握向量的表示方法,包括字母表示和坐标表示。

3. 让学生学会向量的加减法和数乘运算。

二、教学内容:1. 向量的概念:向量是有大小和方向的量,可以用来表示物体的位移、速度等。

2. 向量的表示方法:(1)字母表示:用大写字母表示向量,如\( \vec{a} \),\( \vec{b} \) 等。

(2)坐标表示:用小写字母加上坐标轴上的坐标表示,如\( \vec{a} = (a_x, a_y) \),\( \vec{b} = (b_x, b_y) \) 等。

3. 向量的加减法:(1)向量加法:\( \vec{a} + \vec{b} = (\vec{a}_x + \vec{b}_x, \vec{a}_y + \vec{b}_y) \)。

(2)向量减法:\( \vec{a} \vec{b} = (\vec{a}_x \vec{b}_x, \vec{a}_y \vec{b}_y) \)。

4. 向量的数乘:(1)数乘向量:\( k\vec{a} = (ka_x, ka_y) \),其中\( k \) 是实数。

三、教学重点与难点:1. 重点:向量的概念、表示方法以及向量的加减法和数乘运算。

2. 难点:向量的坐标表示以及向量的加减法和数乘运算的坐标表示。

四、教学方法:1. 采用讲解法,引导学生理解向量的概念和表示方法。

2. 采用练习法,让学生通过例题和练习掌握向量的加减法和数乘运算。

3. 采用提问法,检查学生对向量知识的理解和掌握程度。

五、教学过程:1. 导入:通过生活中的实例,如物体位移、速度等,引入向量的概念。

2. 讲解向量的概念,引导学生理解向量有大小和方向。

3. 讲解向量的表示方法,包括字母表示和坐标表示。

4. 讲解向量的加减法,让学生掌握向量加减法的运算规则。

5. 讲解向量的数乘,让学生掌握向量数乘的运算规则。

向量的概念 课件 高中数学人教A版(2019)必修第二册

向量的概念 课件 高中数学人教A版(2019)必修第二册
①要注意0和
且|
的区别及联系:0是一个实数, 是一个向量,并
|=0,书写时 0 表示零向量,一定不能忘记上面的箭头.
②单位向量有无数个,它们大小相等,但是方向不一定相同.
③在平面内,将表示所有单位向量的有向线段的起点平移到
同一点,则它们的终点就会构成一个半径为1的圆.
牛刀小试
问题:“向量就是有向线段,有向线段就是向量”的说法对吗?
定的,而向量是可以自由移动的;向量可以用有向线段表示,但并不能
说向量就是有向线段
3.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一
条直线上.当然,同一直线上的向量也是平行向量
4.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,
单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一
个单位圆
得正确选项.
测验
【例2】(2020·全国高一专题练习)某人从A点出发向东走了5米到达B点,然后改
变方向沿东北方向走了10 2 米到达C点,到达C点后又改变方向向西走了10米到达
D点.
(1)作出向量AB,BC,CD ;
(2)求AD 的模.
(1)不一定;(2)不一定;(3)零向量;(4)平行(共线)向量
(速度为10海里/小时).如果只是给出指令:
“由A地航行15 海里”,小船能否到达B地?
• 如果不指明“向东南方向”航行,小船不一定到达B地
• 给出指令:“向东南方向航行”呢?
• 方向和距离缺一不可
新知探究
(1)向量的实际背景与概念
• 物理中我们学习了位移、速度、力等既有大小、又有方向的量,
在物理中被称为“矢量”,
B.②④⑥是数量,①③⑤是向量

2019-2020学年新教材人教A版高中数学必修第二册课件:第六章 6.4.1 平面几何中的向量方法

2019-2020学年新教材人教A版高中数学必修第二册课件:第六章 6.4.1 平面几何中的向量方法
证明:因为 BC =OC -OB ,AE =OE -OA =(OA+OB +OC )-OA=OB +OC , 所以 AE ·BC =(OB +OC )·(OC -OB )=|OC |2-|OB |2. 因为O为△ABC的外心,所以|OC |=|OB |,所以 AE ·BC =0,即AE⊥ BC.
第十一页,共34页。
2
又| AC |2=|a+b|2=a2+2a·b+b2=1+4+2a·b=6, ∴ | AC |= 6 ,即AC= 6 .
第十七页,共34页。
◆利用向量法解决长度问题的方法 (1)基向量法:利用图形特点选择基底,向向量的数量积转化,用 公式|a|2=a2求解; (2)坐标法:建立平面直角坐标系,确定相应向量的坐标,代入公 式,若a=(x,y),则|a|= x2 y2 .
第五页,共34页。
◆用向量方法解决平面几何问题的“三步曲” (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元 素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问 题; (3)把运算结果“翻译”成几何关系. ◆用向量法解决平面几何问题的两种方法 (1)几何法:选取适当的基底(基底中的向量尽量已知模或夹角), 将题中涉及的向量用基底表示出来,利用向量的运算法则、运算律或 性质计算. (2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问 题中的长度、垂直、平行等问题转化为代数运算. 一般地,存在坐标系或易建坐标系的题目适合用坐标法.
1.用向量方法解决平面几何问题的“三步曲” (1)建立平面几何与向量的联系,用 向量 表示问题中涉及 的几何元素,将平面几何问题转化为 向量问题 ; (2)通过 向量运算 ,研究几何元素之间的关系,如距离、 夹角等问题; (3)把运算结果“翻译”成几何关系. 2.向量在物理中的应用 (1)物理问题中常见的向量有力、速度、位移等. (2)向量的加减法运算体现在一些物理量的合成和分解中. (3)动量 mv 是向量的数乘运算. (4)功是力 F 与位移 s 的数量积.

平面向量的概念高一下学期数学人教A版(2019)必修第二册

平面向量的概念高一下学期数学人教A版(2019)必修第二册
2.若表示两个平行向量的有向线段有相同的起点,那么它们是否一定有相
同的终点?
提示 不一定,只有当两个平行向量相等时,它们才有相同的终点.
3.如图,在四边形ABCD中,如果 = ,那么四边形ABCD是平行四边形
吗?
提示 是平行四边形.因为 = ,所以 AB∥DC,AB=DC,所以四边形 ABCD
4.长度为

),记作
| | .
5.长度等于
1
个单位长度的向量,叫做单位向量.
6.向量也可以用字母a,b,c,…表示.
→ → →
书写用 , b , ,…
名师点睛
1.表示有向线段时,起点一定要写在终点的前面.
2.零向量的长度为0,方向不确定.
3.单位向量只规定了向量的大小(模长为1),并没有规定向量的方向,所以同
探究点二
平面向量的表示
【例2】 在如图所示的坐标纸上(每个小方格的边长均为1),用直尺和圆规
画出下列向量:
(1),使||=4√2,点 A 在点 O 北偏东 45°方向;
(2) ,使| |=4,点 B 在点 A 正东方向;
(3) ,使| |=6,点 C 在点 B 北偏东 30°方向.
一起点的单位向量有无数个,它们的终点构成一个单位圆.
过关自诊
1.判断正误.(正确的画√,错误的画×)
(1)用有向线段表示向量,使向量有了直观形象.( √ )
(2)有向线段 和有向线段 的长度相等.( √ )
(3)零向量没有方向.( × )
(4)单位向量的模等于1个单位长度.( √ )
2.向量可以比较大小吗?
终点 处画
上箭头表示它的方向.以A为起点、B为终点的有向线段记作
段AB的长度也叫做有向线段 的长度,记作 | | .

人教A版高中数学必修4《二章 平面向量 2.1 平面向量的实际背景及基本概念 2.1.2 向量的几何表示》教案_14

人教A版高中数学必修4《二章 平面向量  2.1 平面向量的实际背景及基本概念  2.1.2 向量的几何表示》教案_14

向量的几何表示教学设计1.教学内容解析本节课是《普通高中课程标准实验教科书数学4》(人教A 版)第二章第一节“平面向量的实际背景及基本概念”第一课时。

平面向量的实际背景及基本概念是向量知识体系中的起始内容,起着为其他知识学习奠基的重要作用。

一方面,它能为其他向量知识的学习奠基,通过了解向量的实际背景,理解向量的含义及几何表示等内容,奠定学生学习向量的线性运算、平面向量的基本定理及坐标表示和平面向量数量积的知识基础;另一方面,它能为学习新的数学对象奠基,学生通过认识向量,形成向量相关概念的过程,可以获得认识其他数学对象的基本方法和途径,可以为学习和研究其他数学对象奠定方法基础。

所以,平面向量的实际背景及基本概念作为向量的起始课及概念型课,其教学必须要有“交代问题背景、引入基本概念、渗透研究方法、构建研究蓝图”的大气。

由于是第一课时,所以笔者重点在于章引言,向量概念的引入,向量的表示,零向量、单位向量和平行向量的教学,不讲相等向量和共线向量。

2.教学目标设置课堂教学目标如下.(1)从如何由A点确定B点的位置,速度既有大小和方向抽象出向量的概念并与数量区分;(2)经历从实数的表示到“带箭头的线段”,从有向线段到向量的几何表示,掌握向量的几何表示、符号表示,模的表示,感受类比的思想,体会数学的实用性、表达的简洁美;(3)理解从大小看:零向量、单位向量,从方向看:平行向量;(4)体会认识新的数学概念基本思路:1.归纳共性;2.抽象定义;3.符号表示;4.认识特殊;5.研究一般;进而提高提出问题、研究问题的能力;3.学生学情分析(1)在物理学中,已经知道速度,力,位移等是既有大小又有方向的物理量(矢量);(2)如何作力的图示;(3)已经经历并了解实数的形成过程;(4)对实际生活中的一些常见的量,能识别它们是否具有大小、方向;(5)在以前的学习中,能运用类比的思想发现问题、提出问题,进而解决问题。

但是,高一学生在思维辨析方面还比较薄弱,教师要适度加以引导,指导学生进行辨析。

(新教材)人教A版高中数学必修第二册学案 平面向量的概念+Word版

(新教材)人教A版高中数学必修第二册学案   平面向量的概念+Word版

平面向量及应用6.1 平面向量的概念问题导学预习教材P2-P4的内容,思考以下问题:1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些? 3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?1.向量的概念及表示(1)概念:既有大小又有方向的量.(2)有向线段①定义:具有方向的线段.②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|. (2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.判断(正确的打“√”,错误的打“×”) (1)两个向量,长度大的向量较大.( ) (2)如果两个向量共线,那么其方向相同.( ) (3)向量的模是一个正实数.( ) (4)向量就是有向线段.( )(5)向量AB →与向量BA →是相等向量.( )(6)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (7)零向量是最小的向量.( )已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M已知点O 固定,且|OA →|=2,则A 点构成的图形是( ) A .一个点 B .一条直线 C .一个圆 D .不能确定如图,四边形ABCD 和ABDE 都是平行四边形,则与ED →相等的向量有________.向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c . 其中所有正确命题的序号为________.1.下列说法中正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的向量可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小 2.下列说法正确的是( )A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线 B .长度相等的向量叫做相等向量 C .零向量与任一向量平行 D .共线向量是在一条直线上的向量向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB →,使|AB →|=4,点B 在点A 正东方向上; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°方向上.已知飞机从A 地按北偏东30°的方向飞行2 000 km 到达B 地,再从B地按南偏东30°的方向飞行 2 000 km 到达C 地,再从C 地按西南方向飞行1 000 2 km 到达D 地.(1)作出向量AB →,BC →,CD →,DA →;(2)问D 地在A 地的什么方向?D 地距A 地多远?共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量. 2.[变问法]本例条件不变,与AD →共线的向量有哪些?[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.1.已知向量AB →与向量BC →共线,下列关于向量AC →的说法中,正确的为( ) A .向量AC →与向量AB →一定同向 B .向量AC →,向量AB →,向量BC →一定共线 C .向量AC →与向量BC →一定相等 D .以上说法都不正确2.如图,四边形ABCD 和BCED 都是平行四边形,在每两点所确定的向量中:(1)写出与BC →相等的向量; (2)写出与BC →共线的向量.1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4 2.下列结论中正确的是( )①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ;④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④ D .②④3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC →相等的向量;(2)与OB →长度相等的向量; (3)与DA →共线的向量.6.2.1 向量的加法运算问题导学预习教材P7-P10的内容,思考以下问题: 1.在求两向量和的运算时,通常使用哪两个法则? 2.向量加法的运算律有哪两个?1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 3.向量加法的运算律判断(正确的打“√”,错误的打“×”) (1)任意两个向量的和仍然是一个向量.( ) (2)两个向量相加实际上就是两个向量的模相加.( ) (3)任意两个向量的和向量不可能与这两个向量共线. ( )已知非零向量a ,b ,c ,则向量(a +c )+b ,b +(a +c ),b +(c +a ),c +(b +a ),c +(a +b )中,与向量a +b +c 相等的个数为( )A .2B .3C .4D .5如图所示,在平行四边形ABCD 中,AB →=a ,AD →=b ,则AC →+BA →=( )A .aB .bC .0D .a +b在正方形ABCD 中,|AB →|=1,则|AB →+AD →|=________.平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .如图,已知向量a ,b ,求作向量a +b .平面向量的加法运算化简:(1)BC →+AB →;(2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →.1.下列等式不正确的是( )①a +(b +c )=(a +c )+b ;②AB →+BA →=0;③AC →=DC →+AB →+BD →. A .②③ B .② C .① D .③2.如图,E ,F ,G ,H 分别是梯形ABCD 的边AB ,BC ,CD ,DA的中点,化简下列各式:(1)DG →+EA →+CB →; (2)EG →+CG →+DA →+EB →.向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?如图所示,在某次抗震救灾中,一架飞机从A 地按北偏东35°的方向飞行800 km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.1.化简OP →+PQ →+PS →+SP →的结果等于( ) A .QP → B .OQ → C .SP → D .SQ →2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形 D .四边形ABCD 是平行四边形 3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______.4.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO →+AC →; (2)DE →+BA →.6.2.2 向量的减法运算问题导学预习教材P11-P12的内容,思考以下问题: 1.a 的相反向量是什么? 2.向量减法的几何意义是什么?1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可. (3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |.判断(正确的打“√”,错误的打“×”)(1)两个相等向量之差等于0.( ) (2)两个相反向量之差等于0.( )(3)两个向量的差仍是一个向量.( )(4)向量的减法实质上是向量的加法的逆运算.( )在平行四边形ABCD 中,下列结论错误的是( )A .AB →-DC →=0 B .AD →-BA →=AC → C .AB →-AD →=BD → D .AD →+CB →=0设b 是a 的相反向量,则下列说法一定错误的是( )A .a 与b 的长度相等B .a ∥bC .a 与b 一定不相等D .a 是b 的相反向量在平行四边形ABCD 中,向量AB →的相反向量为________.向量的减法运算化简下列各式:(1)(AB →+MB →)+(-OB →-MO →);(2)AB →-AD →-DC →.1.下列四个式子中可以化简为AB →的是( )①AC →+CD →-BD →;②AC →-CB →;③OA →+OB →;④OB →-OA →. A .①④ B .①② C .②③ D .③④ 2.化简下列向量表达式:(1)OM →-ON →+MP →-NA →;(2)(AD →-BM →)+(BC →-MC →).向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c .如图,已知向量a ,b ,c ,求作向量a -b -c .用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.1.如图,O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,则OD →=________.2.已知O 是平行四边形ABCD 的对角线AC 与BD 的交点,若AB →=a ,BC →=b ,OD →=c .试证明:a -b +c =OB →.1.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A .CB → B .BC → C .CD → D .DC → 2.化简:AB →-AC →+BD →-CD →+AD →=________.3.已知||AB →=10,|AC →|=7,则|CB →|的取值范围为______.4.若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.6.2.3 向量的数乘运算问题导学预习教材P13-P16的内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律? 3.向量共线定理是怎样表述的? 4.向量的线性运算是指的哪三种运算?1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么:(1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa .(3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa .判断(正确的打“√”,错误的打“×”) (1)实数λ与向量a 的积还是向量.( )(2)3a 与a 的方向相同,-3a 与a 的方向相反.( ) (3)若m a =m b ,则a =b .( )(4)向量共线定理中,条件a ≠0可以去掉.( )4(a -b )-3(a +b )-b 等于( )A .a -2bB .aC .a -6bD .a -8b若|a |=1,|b |=2,且a 与b 方向相同,则下列关系式正确的是( ) A .b =2a B .b =-2a C .a =2b D .a =-2b在四边形ABCD 中,若AB →=-12CD →,则此四边形的形状是________.向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎡⎦⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝⎛⎭⎫13a -b -⎝⎛⎭⎫a -23b +(2b -a ).1.化简25(a -b )-13(2a +4b )+215(2a +13b )=________.2.若2⎝⎛⎭⎫x -13a -12(b +c -3x )+b =0,其中a ,b ,c 为已知向量,求未知向量x .向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=_____.用已知向量表示其他向量如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC →=________;(2)MN →=________.[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.如图,在正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么EF →=( )A .12AB →+12AD → B .-12AB →-12AD →C .-12AB →+12AD → D .12AB →-12AD →1.13⎣⎡⎦⎤12(2a +8b )-(4a -2b )等于( ) A .2a -b B .2b -a C .b -a D .a -b2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( )A .BO →B .AO →C .CO →D .DO →3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.6.2.4 向量的数量积问题导学预习教材P17-P22的内容,思考以下问题:1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么?4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律?1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向; ②当θ=π2时,向量a 与b 垂直,记作a ⊥b ;③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD →=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB →=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM →=a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎡⎭⎫0,π2时,OM 1→与b 方向相同;当θ∈⎝⎛⎦⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e . 4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ.(2)a ⊥b ⇔a·b =0. (3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b . (2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c 与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2.判断(正确的打“√”,错误的打“×”)(1)两个向量的数量积仍然是向量.( )(2)若a ·b =0,则a =0或b =0.( ) (3)a ,b 共线⇔a ·b =|a ||b |.( ) (4)若a ·b =b ·c ,则一定有a =c .( ) (5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.( )若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12已知|a |=10,|b |=12,且(3a )·⎝⎛⎭⎫15b =-36,则a 与b 的夹角为( ) A .60° B .120° C .135° D .150°4.已知|a |=2,|b |=1,且a -b 与a +2b 互相垂直,则a ·b =______.平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求: ①AD →·BC →;②AB →·DA →.[变问法]若本例(2)的条件不变,求AC →·BD →.1.(2018·高考全国卷Ⅱ)已知向量a ,b 满足|a|=1,a·b =-1,则a·(2a -b )=( ) A .4 B .3 C .2 D .02.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=________.向量模的有关计算(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( ) A .3 B .2 3 C .4 D .12 (2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( ) A .13 B .12 C .15 D .141.已知向量a 与b 的夹角为120°,且|a |=4,|b |=2,则|a +b |=______,|3a -4b |=______.2.已知向量a ,b 满足|a |=|b |=1,|a -b |=1,则|a +b |=________.向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________; (2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( ) A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R ),且|a |=32,则λ=________.1.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( ) A .π6 B .π4 C .π3 D .π22.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-33.已知|a |=3,|b |=5,a ·b =-12,且e 是与b 方向相同的单位向量,则a 在b 上的投影向量为______.4.已知|a |=1,|b |=2.(1)若a ∥b ,求a ·b ;(2)若a ,b 的夹角为60°,求|a +b |; (3)若a -b 与a 垂直,求a 与b 的夹角.6.3.1 平面向量基本定理问题导学预习教材P25-P27的内容,思考以下问题:1.基底中两个向量可以共线吗?2.平面向量基本定理的内容是什么?平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的.判断(正确的打“√”,错误的打“×”) (1)基底中的向量不能为零向量.( )(2)平面内的任何两个向量都可以作为一个基底.( )(3)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2. ( )(4)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这个基底唯一表示.( )设e 1,e 2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是( ) A .2e 1,3e 2 B .e 1+e 2,3e 1+3e 2 C .e 1,5e 2 D .e 1,e 1+e 2若AD 是△ABC 的中线,已知AB →=a ,AC →=b ,则以{a ,b }为基底表示AD →=( ) A .12(a -b ) B .12(a +b ) C .12(b -a ) D .12b +a平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2. 其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号). [提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.1.设点O 是▱ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.A .①②B .①③C .①④D .③④2.点O 为正六边形ABCDEF 的中心,则可作为基底的一对向量是( )A .OA →,BC →B .OA →,CD →C .AB →,CF →D .AB →,DE →用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE →,BF →.1.在△ABC 中,点D 在边AB 上,且BD →=12DA →,设CB →=a ,CA →=b ,则CD →为( )A .13a +23bB .23a +13bC .35a +45bD .45a +35b2.如图,已知在梯形ABCD 中,AD ∥BC ,E ,F 分别是AD ,BC 边上的中点,且BC =3AD ,BA →=a ,BC →=b .试以{a ,b }为基底表示EF →,DF →.平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN相交于点P ,求AP ∶PM 与BP ∶PN .1.[变问法]在本例条件下,若CM →=a ,CN →=b ,试用a ,b 表示CP →.2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .1.设{e 1,e 2}是平面内的一个基底,且a =e 1+2e 2,b =-e 1+e 2,则e 1+e 2=______a +______b .2.在△ABC 中,D 为AB 上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=______.1.如图在矩形ABCD 中,若BC →=5e 1,DC →=3e 2,则OC →=( )A .12(5e 1+3e 2)B .12(5e 1-3e 2)C .12(3e 2-5e 1)D .12(5e 2-3e 1)2.已知非零向量OA →,OB →不共线,且2OP →=xOA →+yOB →,若P A →=λAB →(λ∈R ),则x ,y 满足的关系是( )A .x +y -2=0B .2x +y -1=0C .x +2y -2=0D .2x +y -2=0 3.如图,在平行四边形ABCD 中,设AC →=a ,BD →=b ,试用基底{a ,b }表示AB →,BC →.第1课时 平面向量的分解及加、减、数乘运算的坐标表示问题导学预习教材P27-P33的内容,思考以下问题:1.怎样分解一个向量才为正交分解?2.如何求两个向量和、差的向量的坐标? 3.一个向量的坐标与有向线段的起点和终点坐标之间有什么关系?4.若a =(x ,y ),则λa 的坐标是什么?1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则①a +b =(x 1+x 2,y 1+y 2);②a -b =(x 1-x 2,y 1-y 2);③λa =(λx 1,λy 1). (2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1).判断(正确的打“√”,错误的打“×”) (1)点的坐标与向量的坐标相同.( ) (2)零向量的坐标是(0,0).( )(3)两个向量的终点不同,则这两个向量的坐标一定不同.( ) (4)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( )已知A (3,1),B (2,-1),则BA →的坐标是( )A .(-2,-1)B .(2,1)C .(1,2)D .(-1,-2)如果用i ,j 分别表示x 轴和y 轴正方向上的单位向量,且A (2,3),B (4,2),则AB →可以表示为( )A .2i +3jB .4i +2jC .2i -jD .-2i +j设i =(1,0),j =(0,1),a =3i +4j ,b =-i +j ,则a +b 与a -b 的坐标分别为____________.平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°, (1)求向量OA →的坐标;(2)若B (3,-1),求BA →的坐标.1.在平面直角坐标系xOy 中,向量a ,b 的方向如图所示,且|a |=2,|b |=3,则a 的坐标为________,b 的坐标为________.2.已知长方形ABCD 的长为4,宽为3,建立如图所示的平面直角坐标系,i 是x 轴上的单位向量,j 是y 轴上的单位向量,试求AC →和BD →的坐标.平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0) D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.1.已知A ,B ,C 的坐标分别为(2,-4),(0,6),(-8,10),则AB →+2BC →=____________,BC →-12AC →=____________.2.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP →=OA →+tAB →. (1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限?(2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点?1.已知在平行四边形ABCD 中,A (0,0),B (5,0),D (2,4),对角线AC ,BD 交于点M ,则DM →的坐标是( )A .⎝⎛⎭⎫32,-2B .⎝⎛⎭⎫32,2C .⎝⎛⎭⎫-32,-2D .⎝⎛⎭⎫-32,2 2.已知在非平行四边形ABCD 中,AB ∥DC ,且A ,B ,D 三点的坐标分别为(0,0),(2,0),(1,1),则顶点C 的横坐标的取值范围是________.1.已知向量a =(2,4),b =(-1,1),则2a -b =( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)2.已知A (-1,-2),B (2,3),C (-2,0),D (x ,y ),且AC →=2BD →,则x +y =________. 3.已知点B (1,0)是向量a 的终点,向量b ,c 均以原点O 为起点,且b =(-3,4),c =(-1,1)与a 的关系为a =3b -2c ,求向量a 的起点坐标.第2课时 两向量共线的充要条件及应用问题导学预习教材P31-P33的内容,思考以下问题: 1.两向量共线的充要条件是什么? 2.如何利用向量的坐标表示两个向量共线?两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0. ■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b .判断(正确的打“√”,错误的打“×”) (1)向量(1,2)与向量(4,8)共线.( )(2)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( )下列各组的两个向量共线的是( )A .a 1=(-2,3),b 1=(4,6)B .a 2=(1,-2),b 2=(7,14)C .a 3=(2,3),b 3=(3,2)D .a 4=(-3,2),b 4=(6,-4)已知两点A (2,-1),B (3,1),与AB →平行且方向相反的向量a 可能是( ) A .a =(1,-2) B .a =(9,3) C .a =(-1,2) D .a =(-4,-8)已知a =(3,1),b =(2,λ),若a ∥b ,则实数λ的值为________.向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________. (2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向?1.已知向量a =(-1,2),b =(λ,1).若a +b 与a 平行,则λ=( ) A .-5 B .52 C .7 D .-122.已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB →与CD →是否共线?如果共线,它们的方向相同还是相反?三点共线问题(1)已知OA →=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线; (2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.1.已知A ,B ,C 三点共线,且A (-3,6),B (-5,2),若C 点的纵坐标为6,则C 点的横坐标为( )A .-3B .9C .-9D .32.设点A (x ,1),B (2x ,2),C (1,2x ),D (5,3x ),当x 为何值时,AB →与CD →共线且方向相同,此时A ,B ,C ,D 能否在同一条直线上?向量共线的应用如图所示,在△AOB 中,A (0,5),O (0,0),B (4,3),OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,求点M 的坐标.如图所示,已知△ABC ,A (7,8),B (3,5),C (4,3),M ,N ,D 分别是AB ,AC ,BC 的中点,且MN 与AD 交于点F ,求DF →的坐标.1.已知向量a =(1,-2),b =(m ,4),且a ∥b ,那么2a -b =( ) A .(4,0) B .(0,4) C .(4,-8) D .(-4,8)2.若三点A (4,3),B (5,m ),C (6,n )在一条直线上,则下列式子一定正确的是( ) A .2m -n =3 B .n -m =1 C .m =3,n =5 D .m -2n =3 3.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n 的值; (2)若(a +k c )∥(2b -a ),求实数k 的值.6.3.5 平面向量数量积的坐标表示问题导学预习教材P34-P35的内容,思考以下问题: 1.平面向量数量积的坐标表示是什么? 2.如何用坐标表示向量的模、夹角和垂直?1.平面向量数量积的坐标表示已知a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 即两个向量的数量积等于它们对应坐标的乘积的和. ■名师点拨公式a ·b =|a ||b |cos 〈a ,b 〉与a ·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.两个公式、一个充要条件(1)向量的模长公式:若a =(x ,y ),则|a |(2)向量的夹角公式:设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,则cos θ=a ·b |a ||b |=(3)两个向量垂直的充要条件设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.■名师点拨若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2,即A ,B 两点间的距离为(x 2-x 1)2+(y 2-y 1)2.判断(正确的打“√”,错误的打“×”) (1)向量的模等于向量坐标的平方和.( )(2)|AB →|的计算公式与A ,B 两点间的距离公式是一致的.( )已知a =(-3,4),b =(5,2),则a ·b 的值是( ) A .23 B .7 C .-23 D .-7已知向量a =(1,-2),b =(x ,2),若a ⊥b ,则x =( ) A .1 B .2 C .4 D .-4已知a =(3,1),b =(-3,1),则向量a ,b 的夹角θ=______.数量积的坐标运算已知向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .21.设向量a =(1,-2),向量b =(-3,4),向量c =(3,2),则向量(a +2b )·c =( ) A .(-15,12) B .0 C .-3 D .-112.已知正方形ABCD 的边长为2,E 为CD 的中点,点F 在AD 上,AF →=2FD →,则BE →·CF →=________.平面向量的模(1)设平面向量a =(1,2),b =(-2,y ),若a ∥b 则|3a +b |等于( ) A . 5 B . 6 C .17 D .26(2)已知|a |=213,b =(2,-3),若a ⊥b ,求a +b 的坐标及|a +b |.已知点A (0,1),B (1,-2),向量AC →=(4,-1),则|BC →|=________.平面向量的夹角(垂直)已知a =(4,3),b =(-1,2). (1)求a 与b 夹角的余弦值;(2)若(a -λb )⊥(2a +b ),求实数λ的值.1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m =( )A .23B . 3C .0D .- 32.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等边三角形1.已知向量a =(2,0),a -b =(3,1),则下列结论正确的是( ) A .a ·b =2 B .a ∥b C .b ⊥(a +b ) D .|a |=|b |2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=________.3.已知a =(1,3),b =(2,m ). (1)当3a -2b 与a 垂直时,求m 的值; (2)当a 与b 的夹角为120°时,求m 的值.6.4.3 余弦定理、正弦定理——第1课时 余弦定理问题导学预习教材P42-P44的内容,思考以下问题:1.余弦定理的内容是什么?2.余弦定理有哪些推论?1.余弦定理余弦定理的理解(1)适用范围:余弦定理对任意的三角形都成立. (2)结构特征:“平方”“夹角”“余弦”.(3)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系式,它描述了任意三角形中边与角的一种数量关系.2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab .■名师点拨余弦定理的推论是余弦定理的第二种形式,适用于已知三角形三边来确定三角形的角的问题.用余弦定理的推论还可以根据角的余弦值的符号来判断三角形中的角是锐角还是钝角.3.三角形的元素与解三角形 (1)三角形的元素三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素. (2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.判断(正确的打“√”,错误的打“×”)(1)在三角形中,勾股定理是余弦定理针对直角三角形的一个特例.( ) (2)余弦定理只适用于已知三边和已知两边及夹角的情况.( ) (3)已知三角形的三边求三个内角时,解是唯一的.( ) (4)在△ABC 中,若b 2+c 2>a 2,则∠A 为锐角.( )(5)在△ABC 中,若b 2+c 2<a 2,则△ABC 为钝角三角形.( )在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =61,则角C 等于( )A .120°B .90°C .60°D .45°在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+c 2-b 2=3ac ,则角B 等于( )A .π6B .π3C .π6或5π6D .π3或2π3已知在△ABC 中,a =1,b =2,C =60°,则c =________.已知两边及一角解三角形。

2019-2020学年新人教A版必修二 平面向量的概念 教案

2019-2020学年新人教A版必修二       平面向量的概念   教案

1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)向量不能比较大小,但向量的模可以比较大小.( √ ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .3.在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →,AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 故填③.2.判断下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确的个数是( ) A .1B .2C .3D .4 答案 A解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线.题型二 平面向量的线性运算命题点1 向量加、减法的几何意义例1(2017·全国Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥b D .|a |>|b |答案 A解析 方法一 ∵|a +b |=|a -b |, ∴|a +b |2=|a -b |2.∴a 2+b 2+2a·b =a 2+b 2-2a·b . ∴a·b =0.∴a ⊥b . 故选A.方法二 利用向量加法的平行四边形法则.在▱ABCD 中,设AB →=a ,AD →=b , 由|a +b |=|a -b |知,|AC →|=|DB →|,从而四边形ABCD 为矩形,即AB ⊥AD ,故a ⊥b . 故选A.命题点2 向量的线性运算例2(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →等于( ) A.13a +23b B .-13a -23bC .-13a +23bD.13a -23b 答案 C解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b , 故选C.(2)(2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →等于( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC → 答案 A解析 作出示意图如图所示.EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →.故选A.命题点3 根据向量线性运算求参数例3 在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →,则x y=________.答案 3解析 由题意得CA →+AM →=3(AB →-AM →), 即4AM →=3AB →+AC →, 亦即AM →=34AB →+14AC →,则x =34,y =14.故x y=3.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →等于( ) A.13a +512b B.13a -1312b C .-13a -512bD .-13a +1312b答案 C解析 DE →=DC →+CE →=13BC →+34CA →=13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b ,故选C.(2)(2018·威海模拟)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF→(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例4设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →, ∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)解 假设k a +b 与a +k b 共线, 则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量, ∴k -λ=λk -1=0.消去λ,得k 2-1=0,∴k =±1. 引申探究1.若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m 为何值时,A ,B ,D 三点共线? 解 BC →+CD →=(a +m b )+3(a -b )=4a +(m -3)b ,即BD →=4a +(m -3)b .若A ,B ,D 三点共线,则存在实数λ,使BD →=λAB →. 即4a +(m -3)b =λ(a +b ).所以⎩⎪⎨⎪⎧4=λ,m -3=λ,解得m =7.故当m =7时,A ,B ,D 三点共线.2.若将本例(2)中的“共线”改为“反向共线”,则k 为何值? 解 因为k a +b 与a +k b 反向共线,所以存在实数λ,使k a +b =λ(a +k b )(λ<0).所以⎩⎪⎨⎪⎧k =λ,k λ=1,所以k =±1.又λ<0,k =λ,所以k =-1. 故当k =-1时两向量反向共线.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明 (1)若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →), ∴OP →-OB →=m (OA →-OB →), 即BP →=mBA →,∴BP →与BA →共线.又∵BP →与BA →有公共点B ,则A ,P ,B 三点共线. (2)若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →, ∴OP →-OB →=λ(OA →-OB →). 又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →, 即(m -λ)OA →+(n +λ-1)OB →=0.∵O ,A ,B 不共线,∴OA →,OB →不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1.1.对于非零向量a ,b ,“a +2b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若a +2b =0,则a =-2b ,所以a ∥b . 若a ∥b ,则a +2b =0不一定成立, 故前者是后者的充分不必要条件.2.已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线 D .B ,C ,D 三点共线 答案 B解析 ∵BD →=BC →+CD →=2a +6b =2AB →, ∴BD →与AB →共线,由于BD →与AB →有公共点B , 因此A ,B ,D 三点共线,故选B.3.如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 上的一个靠近点B 的三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD → 答案 D解析 在△CEF 中,有EF →=EC →+CF →. 因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 上的一个靠近点B 的三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D. 4.(2018·唐山模拟)在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA→=mOB →+nOC →,则m -n 等于( ) A .2B .-2C .1D .-1 答案 D解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1,故选D.5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -b C .a +12bD.12a +b 答案 D解析 连接OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b ,故选D.6.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为( )A.911 B.511 C.311 D.211答案 B解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.7.若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________. 答案 2 3解析 因为|AB →|=|AC →|=|AB →-AC →|=2, 所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍, 所以|AB →+AC →|=2 3.8.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________. 答案 直角三角形解析 因为OB →+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →, 所以|AB →+AC →|=|AB →-AC →|, 即AB →·AC →=0,故AB →⊥AC →,△ABC 为直角三角形.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________. 答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N ,则MN AC =BN BA =BM BC =14,从而AN AB =34,又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →,所以λ=34.10.(2019·钦州质检)已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________. 答案 -4解析 因为M ,N ,P 三点共线, 所以存在实数k 使得MN →=kNP →, 所以2e 1-3e 2=k (λe 1+6e 2), 又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧2=k λ,-3=6k ,解得λ=-4.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连接OD ,则OA →+OC →=2OD →, ∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点, ∴S △ABC =2S △OAC ,∴△ABC 与△AOC 面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线, 可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a=-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →) =k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b ,即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0.又a ,b 不共线, 所以⎩⎪⎨⎪⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎪⎨⎪⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ).方法二 延长AO 交BC 于点E ,O 为△ABC 的重心,则E 为BC 的中点, 所以AO →=23AE →=23×12(AB →+AC →)=13(a +b ).13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A.58B.14C .1D.516 答案 A解析 DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58,故选A.14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是( ) A .(0,1) B .(1,+∞) C .(1,2] D .(-1,0)答案 B解析 设OC →=mOD →,则m >1, 因为OC →=λOA →+μOB →, 所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →,又知A ,B ,D 三点共线, 所以λm +μm=1,即λ+μ=m ,所以λ+μ>1,故选B.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则点P 一定为△ABC 的( ) A .BC 边中线的中点B .BC 边中线的三等分点(非重心) C .重心D .BC 边的中点 答案 B解析 设BC 的中点为M , 则12OC →+12OB →=OM →, ∴OP →=13(OM →+2OA →)=13OM →+23OA →,即3OP →=OM →+2OA →,也就是MP →=2PA →, ∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题: ①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量. 其中真命题的序号是________. 答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W1∪W2中的每一个元素也都是极大向量,故正确.。

人教版数学高一教学设计2.1向量的概念及表示

人教版数学高一教学设计2.1向量的概念及表示

必修四第二章平面向量2.1向量的概念及表示教学目的:知识目标:使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。

能力目标:让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。

情感目标:通过本节课的学习,渗透数形结合的思想;树立运动变化观点,学会运用运动变化的观点认识事物;通过学生的亲身实践,引发学生学习兴趣;创设问题情境,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。

教学重点:向量及其几何表示,相等向量、平行向量的概念。

教学难点:向量的概念及对平行向量的理解。

教学过程:【活动阶段】通过采取实际问题的方式引入课题,让学生初步接触现实生活中除了数量之外的一些(物理)量问题1:(多媒体演示)老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?学生:猫的速度再快也没用,因为方向错了。

教师分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量。

问题2:请同学指出现实生活中还有哪些量既有大小又有方向?哪些量只有大小没有方向?学生:力、速度、加速度等有大小也有方向,温度和长度只有大小没有方向;教师分析:同学们所举的例子都是很典型的既有大小又有方向的量;在我们数学既有大小又有方向的量我们称之为向量。

点评:教师通过一个简单的“猫抓老鼠”的实例激发学生的学习兴趣,再通过分析结果解析猫抓不到老鼠的原因,从而引出有大小和方向的量,即向量;实例通俗易懂,有趣味,现象到抽象过度自然。

【过程阶段】通过分析实例,把具体实例抽象成数学问题,具体到普遍性,引导学生对向量由感性认识升华到对数学理论知识的理解,引导学生去总结发现数学概念中向量的定义 问题3:通过前面的分析,同学们总结一下,向量的概念是什么?即满足什么条件的量才叫向量?学生:既有大小又有方向的量我们称之为向量;满足两个条件:①是有大小:②是有方向 点评:让学生自己发现,总结归纳出向量的概念(启发学生思考,激活他们的思维,让学生对向量概念有着深刻的印象)。

2019-2020学年新人教A版必修二 平面向量的概念与表示 教案

2019-2020学年新人教A版必修二  平面向量的概念与表示  教案

平面向量的概念与表示课程目标知识提要平面向量的概念与表示向量的基本概念我们把既有方向,又有大小的量叫做向量(vector).带有方向的线段叫做有向线段.我们在有向线段的终点处画上箭头表示它的方向.以为起点、为终点的有向线段记做,起点写在终点的前面.有向线段包含三个要素:起点、方向、长度.向量可以用有向线段来表示.向量的大小,也就是向量的长度(或称模),记做,长度为的向量叫做零向量(zero vector),记做.零向量的方向不确定.长度等于个单位的向量,叫做单位向量(unit vector).方向相同或相反的非零向量叫做平行向量(parallel vectors),向量、平行,通常记做.规定零向量与任一向量平行,即对于任意向量,都有.相等向量与共线向量长度相等且方向相同的向量叫做相等向量(equal vector).向量与相等,记做.任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量(collinear vectors).精选例题平面向量的概念与表示1. 已知向量,是两个非零向量,,分别是与,同方向的单位向量,则①;②或;③;④,其中结论正确的序号为.【答案】④2. 把同一平面内所有模不小于,不大于的向量的起点移到同一点,则这些向量的终点构成的图形是.【答案】圆环面【分析】将平面中所有长度为的向量的起点移到同一点则该向量终点在以为圆心,以为半径的圆上,所以,所有长度不小于,不大于的向量将起点移到同一点,终点在一个内径为,外径为的圆环面上.3. 如图,四边形为正方形,为等腰直角三角形.图中与共线的向量有;图中与相等的向量有;图中与模相等的向量有;图中与相等的向量有.【答案】,,,,,,;,;,,,,,,,,;【分析】由平面中的位置关系及大小确定向量间的关系.4. 若向量则 | | .【答案】5. "向量与是两平行向量"的正误是.【答案】正确6. 有以下个条件:①;②;③与的方向相反;④或;⑤与都是单位向量.其中能使成立的是.(填正确的序号)【答案】①③④【分析】共线向量是指向量所在的基线平行或重合,零向量与任何向量共线,故①③④正确.7. 一艘船以的速度出发向垂直于对岸的方向行驶,而船实际的航行方向与水流成,则船的实际速度的大小为,水流速度的大小为.【答案】;8. 如图,是正三角形的中心;四边形和均为平行四边形,则与向量相等的向量有;与向量共线的向量有;与向量的模相等的向量有.(填图中所画出的向量)【答案】;,;,,,,【分析】因为是正三角形的中心,所以,所以结合相等向量及共线向量定义可知:与相等的向量有;与共线的向量有,;与的模相等的向量有,,,,.9. 若是的单位向量,则与的方向,且.【答案】相同;【分析】根据.10. 是正三角形,那么与的夹角是度.【答案】11. 在四边形中,,则这个四边形的形状是.【答案】平行四边形【分析】由可得且,所以四边形是平行四边形.12. 给出下列命题:①和的模相等;②方向不同的两个向量一定不平行;③向量就是有向线段;④,⑤.其中正确的命题是.(填序号)【答案】①13. 向量:既有,又有的量叫向量.【答案】大小;方向14. 若,与反向,,则.【答案】【分析】,与反向,,则.15. "平行向量的方向一定相同"的正误是.【答案】错误【分析】平行向量的方向可以相同或相反.16. "当且仅当时,四边形是平行四边形"的正误是 .【答案】错误【分析】四边形是平行四边形;但时,这四点可能在一条线上,故反过来不正确.17. 向量的有关概念:(1)零向量:长度为的向量叫做零向量,记作.(2)单位向量:长度为的向量叫做单位向量.(3)相等向量:且的向量叫做相等向量.(4)平行向量(共线向量):方向的向量叫做平行向量,也叫共线向量.①记法:向量平行于,记作.②规定:零向量与平行.【答案】(1);(2)(3)长度相等;方向相同(4)相同或相反;非零①②任一向量18. 给出下列命题:①若,则;②若是不共线的四点,则是四边形为平行四边形的充要条件;③若,,则;④的充要条件是且;⑤若,,则.其中正确的序号是.【答案】②③19. 如图,设是正六边形的中心,则图中与向量相等的向量是,与相等的向量是,与相等的向量是.【答案】,;,;,,20. 在四边形中,=且=,则四边形的形状为.【答案】菱形21. 如图,半圆的直径,是半圆上的一点,,分别是,上的点,且,,.(1)求证:向量;【解】由题意知,在中,,,,所以.又点为半圆上一点,则.所以,故.(2)求.【解】由知.所以,即.所以,即.22. 如图所示的方格纸由若干个边长为的小正方形并在一起组成,方格纸中有两个定点,,点为小正方形的顶点,且.(1)画出所有的向量;【解】画出所有的向量如图所示.(2)求的最大值与最小值.【解】由所画的图知,当点位于点或时,取得最小值;当点位于点和时,取得最大值,所以的最大值为,最小值为.23. 如图所示,在梯形中,若、分别为腰、的三等分点,且,,求.【解】解:如图,过作,分别交、于点、,因为,所以.因为,所以.又、分别为腰、的三等分点,所以为的三等分点,所以,,所以,所以.24. 如图所示,点是正六边形的中心,则以图中,,,,,,七点中的任一点为起点,与该点不同的另一点为终点的所有向量中,设与向量相等的有个,与模相等的向量有个,与共线的向量有个,求,,的值.【解】与向量相等的向量有个,分别为,,,即;与向量模相等的向量共有个,即;与共线的向量共有个,即.25. 已知是坐标原点,点在第一象限,,,求向量的坐标.【解】设点,则,,即,所以.26. 如图所示,是正六边形的中心,且,,.(1)与的长度相等的向量有多少个?(只考虑图中能用字母表示的向量)【解】与的长度相等的向量有个.(2)与的长度相等且方向相反的向量有哪些?【解】与的长度相等且方向相反的向量有,,,.(3)与共线的向量有哪些?【解】与共线的向量有,,,,,,,,.(4)请一一列出分别与,,相等的向量.【解】与相等的向量有,,;与相等的向量有,,;与相等的向量有,,.27. 如图是中国象棋的半个棋盘,“马走日”是象棋中马的走法.马可从跳到,也可以跳到,用向量,表示马走了"一步".试在图中画出马在,处走了“一步”的所有情况.【解】马在处只有处可走,在处有处可走.图形中马的走法如下:28. 中国象棋中规定:马走“日”字,象走“田”字.如图是中国象棋的半个棋盘,若马在处,可跳到,也可跳到,用向量,表示马走了“一步”,试在图中画出马在,处走了“一步”的所有情况.【解】如图所示.马在处有条路可走,在处有条路可走,而在处有条路可走,解题时应做到不重、不漏.29. 如图,已知==.求证:(1);【解】因为=,所以=,且.又因为不在上,所以.所以四边形是平行四边形.所以=.同理==.所以.(2)==.【解】因为四边形是平行四边形,所以,且=.所以=.同理可证=.30. 在如图的方格纸上,已知向量,每个小正方形的边长为.(1)试以为终点画一个向量,使=;【解】根据相等向量的定义,所作向量与向量平行,且长度相等,如图.(2)在图中画一个以为起点的向量,使=,并说出向量的终点的轨迹是什么?【解】由平面几何知识可知所有这样的向量的终点的轨迹是以为圆心,半径为的圆.31. 如图,,,,是上的八个等分点,则在以,,,及圆心九个点中任意两点为起点与终点的向量中,(1)模等于半径的向量有多少个?【解】模等于半径的向量只有两类,一类是,共个;另一类是,也有个.两类合计共个.(2)模等于半径的倍的向量有多少个?【解】以,,,为顶点的的内接正方形有两个,一个是正方形;另一个是正方形.在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的长度为半径的倍.所以模为半径的倍的向量共有个.32. 如图所示,是正六边形的中心,且===.(1)与的模相等的向量有多少个?【解】与的模相等的向量有个.(2)与的长度相等,方向相反的向量有哪些?【解】与的长度相等且方向相反的向量有.(3)与共线的向量有哪些?【解】与共线的向量有.(4)请一一列出与相等的向量.【解】与相等的向量有;与相等的向量有;与相等的向量有.33. 某人从点出发向西走了到达点,然后改变方向向北偏西走了到达点.作出向量,,.【解】作出向量如图所示.34. 如图,在矩形中,,、分别为和的中点.(只考虑以、、、、、为起点和终点的所有向量)(1)与向量相等的向量有哪些?与向量相反的向量有哪些?【解】与向量相等的向量有,;向量的相反向量有,,.(2)与向量相等的向量有哪些?与向量相反的向量有哪些?【解】与向量相等的向量有,,;向量的相反向量有,,,.(3)长度为的相等的向量有几对?【解】长度为的相等的向量有与,与,与,与,共对.(4)长度为的相等的向量有几对?【解】长度为的相等的向量有对,其中与同向的有对,与反向的有对,与同向的有对,与反向的有对,共对.35. 如图,已知平面上一点和向量,作出同时满足下列三个条件的向量:()以点为起点;()与的长度相等;()与平行.【解】如图,、即为所求.36. 如图所示,为正方形对角线的交点,四边形,都是正方形.(1)分别写出与,相等的向量;【解】与相等的向量为,,.与相等的向量为,,.(2)写出与共线的向量;【解】与共线的向量有,,,,,,,,.(3)写出与的模相等的向量.【解】与的模相等的向量为,,,,,,,,,,,,,,.37. 已知向量,,且,求,的值.【解】根据两向量相等的充要条件是对应坐标相等,可得到解得38. 一艘军舰从基地出发向东航行了到达基地,然后改变航线向东偏北航行了到达岛,最后又改变航线向西航行了到达岛.(1)试作出向量,,;【解】建立如图所示的直角坐标系,向量,,即为所求.(2)求.【解】根据题意,向量与方向相反,故向量.又,四边形为平行四边形,,(海里).39. 如图,在等腰梯形中,,对角线与相交于点,是过点且平行于的线段.(1)写出图中与共线的向量;【解】图中与共线的向量有,,,.(2)写出图中与方问相同的向量;【解】图中与方向相同的向量有,,,.(3)写出图中与,的模相等的向量;【解】图中与的模相等的向量有,与的模相等的向量有.(4)写出图中与相等的向量.【解】图中与相等的向量为.40. 如图所示,的三边均不相等,、、分别是、、的中点.(1)写出与共线的向量;【解】因为、分别是、的中点,所以且.又因为是的中点,所以与共线的向量有:.(2)写出与的模大小相等的向量;【解】与模相等的向量有:.(3)写出与相等的向量.【解】与相等的向量有:与.课后练习1. 下列各种情况中,向量的终点在平面内各构成什么图形.①把所有单位向量移到同一起点;②把平行于某一直线的所有单位向量移到同一起点;③把平行于某一直线的一切向量移到同一起点.①;②;③.2. 四边形中,,.则四边形为.3. 已知在矩形中,,,则的模等于.4. (1)下图中,小正方形的边长为,则,,;(2)把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是.5. 对于下列命题:①相反向量就是方向相反的向量;②不相等的向量一定不平行;③相等的向量一定共线;④共线的单位向量一定相等;⑤共线的两个向量一定在同一条直线上.其中真命题的序号为.6. "向量与是共线向量,则四点必在同一直线上"的正误是.7. 若某人从点出发向东走至点,从点向北走至点,则点相对于点的位置向量为.8. 已知,则.9. " 与共线,与共线,则与也共线"的正误是.10. 判断题:(1)与是两平行向量.(2)若是单位向量,也是单位向量,则.(3)长度相等且方向相反的两个向量不一定是平行向量.(4)与任一向量都平行的向量为零向量.(5)四边形是平行四边形,当且仅当.(6)两向量相等,当且仅当它们的起点相同,终点也相同.(7)若,,则.(8)若,且,则四边形是菱形.(9)若与是共线向量,则,,,四点必在同一直线上.11. 如图所示,、分别为边、的中点,则与向量共线的向量有(将图中符合条件的向量全写出来).12. 下列命题中,正确的是.(填序号)①;②;③;④.13. 若非零向量与互为相反向量,给出下列结论:①;②;③;④,其中所有正确结论的序号为.14. 一架飞机向北飞行千米后,改变航向向东飞行千米,则飞行的路程为;两次位移的和的方向为,大小为千米.15. 若平面向量、满足,,且以向量、为邻边的平行四边形的面积为,则和的夹角的取值范围是.16. 在平面上下列各种情形中,各向量的终点的集合分别构成什么图形?请将答案填在横线上.(1)把所有单位向量的起点平移到同点;.(2)把平行于直线的所有单位向量的起点平移到直线上的点;.(3)把平行于直线的所有向量的起点平移到直线上的点..17. ”单位向量不一定都相等“的正误是(填“正确”或“错误”).18. 向量的几何表示:以为起点,为终点的向量记作.19. 给出下列命题:①若,则向量与的长度相等且方向相同或相反;②对于任意非零向量与,若,且与的方向相同,则;③非零向量与非零向量满足,则向量与方向相同或相反;④向量与是共线向量,则,,,四点共线;⑤若,且,则.其中正确命题的个数为.20. 已知为正六边形,若向量,则;(用坐标表示).21. 判断下列各命题是否正确:(1)零向量没有方向;(2)若,则;(3)单位向量都相等;(4)向量就是有向线段;(5)若,,则;(6)若,,则;(7)若四边形是平行四边形,则,.22. 如图,已知矩形中,设点集,求集合且.23. 在单位圆中,是的中点,过且,,,则在向量,,,,,,,,中,(1)找出相等的向量;(2)找出单位向量;(3)找出与共线的向量;(4)求向量,的长度.24. 判断下列命题是否正确,若不正确,请简述理由.(1)向量与是共线向量,则、、、四点必在同一条直线上;(2)单位向量都相等;(3)任一向量与它的相反向量不相等;(4)四边形是平行四边形,则;(5)如果一个向量的方向不确定,那么这个向量的长度一定为;(6)共线的向量,若起点不同,则终点一定不同.25. 判断正误,并简要说明理由.;;;;若,则对任一非零向量,有;若,则与中至少有一个为;若与是两个单位向量,则.26. 如图,四边形和都是平行四边形.(1)写出与向量相等的向量;(2)若,求.27. 一辆消防车从地去地执行任务,先从地向北偏东方向行驶千米到地,然后从地沿北偏东方向行驶千米到达地,从地又向南偏西方向行驶千米才到达地.(1)在如图所示的坐标系中画出,,,;(2)求地相对于地的位置向量.28. 判断下列命题的真假.(1)作用力与反作用力是一对大小相等、方向相反的向量;(2)数轴是向量;(3)温度是向量.。

高一数学 向量精品教案 新人教A版

高一数学 向量精品教案 新人教A版

课题:向量的概念教学目的:1.理解向量的概念,掌握向量的几何表示;2.了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量或出与某一向量相等的向量;3.了解平行向量的概念.教学重点:向量概念、相等向量概念、向量几何表示教学难点:向量概念的理解授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法那么,包括加法、减法、实数与向量的积、向量的数量积的运算法那么等之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法本章共分两大节第一大节是“向量及其运算〞,内容包括向量的概念、向量的加法与减法、实数与向量的积、平面向量的坐标运算;线段的定比分点、平面向量的数量积及运算律、平面向量数量积的坐标表示、平移等本节从帆船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念在“向量及其表示〞中,主要介绍有向线段,向量的定义,向量的长度,向量的表示,相等向量,相反向量,自由向量,零向量教学过程:一、复习引入:在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们在物理中所学习的位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量.向量是数学中的重要概念之一,向量和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,在这一章,我们将学习向量的概念、运算及其简单应用.这一节课,我们将学习向量的有关概念.二、讲解新课:1.向量的概念:我们把既有大小又有方向的量叫向量注意:1︒数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小 2︒从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质2.向量的表示方法:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB;④向量AB的大小――长度称为向量的模,记作|AB|.3.零向量、单位向量概念:①长度为0的向量叫零向量,记作00的方向是任意的注意0与0的区别②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:〔1〕综合①、②才是平行向量的完整定义;〔2〕向量a、b、c平行,记作a∥b∥c.5.相等向量定义:长度相等且方向相同的向量叫相等向量.说明:〔1〕向量a与b相等,记作a=b;〔2〕零向量与零向量相等;〔3〕任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关.........6.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上.说明:〔1〕平行向量可以在同一直线上,要区别于两平行线的位置关系;〔2〕共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 探究:1.对向量概念的理解要深刻理解向量的概念,就要深刻理解有向线段这一概念.在线段AB的两个端点中,我们规定了一个顺序,A为起点,B为终点,我们就说线段AB具有射线AB的方向,具有方向的线段就叫做有向线段.通常有向线段的终点要画箭头表示它的方向,以A为起点,以B为终点的有向线段记为AB,需要学生注意的是:AB的字母是有顺序的,起点在前终点在后,所以我们说有向线段有三个要素:起点、方向、长度.既有大小又有方向的量,我们叫做向量,有些向量既有大小、方向、作用点(起点),比如力;有些向量只有大小、方向,比如位移、速度,我们现在所学的向量一般指后者.2.向量不能比较大小我们知道,长度相等且方向相同的两个向量表示相等向量,但是两个向量之间只有相等关系,没有大小之分,“对于向量a,b,a>b,或a<b〞这种说法是错误的.3.实数与向量不能相加减,但实数与向量可以相乘.初学向量的同学很可能认为一个实数与一个向量之间可进行加法或者减法,这是错误的.实数与向量之间不能相加减,但可相乘,相乘的意义就是几个相等向量相加.4.向量与有向线段的区别:〔1〕向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,那么这两个向量就是相同的向量;〔2〕有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段三、讲解范例:例1判断以下命题是否正确,假设不正确,请简述理由.①向量AB与CD是共线向量,那么A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形的充要条件是AB=DC⑤模为0是一个向量方向不确定的充要条件;⑥共线的向量,假设起点不同,那么终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB、AC在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.④、⑤正确.⑥不正确.如图AC与BC共线,虽起点不同,但其终点却相同.评述:此题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.例2以下命题正确的是〔〕A.a与b共线,b与c共线,那么a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,那么a与b都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假假设a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b共线,不符合条件,所以有a与b都是非零向量,所以应选C.评述:对于有关向量基本概念的考查,可以从概念的特征入手,也可以从反面进行考虑,要启发学生注意这两方面的结合四、课堂练习:1.平行向量是否一定方向相同?〔不一定〕2.不相等的向量是否一定不平行?〔不一定〕3.与零向量相等的向量必定是什么向量?〔零向量〕4.与任意向量都平行的向量是什么向量?〔零向量〕5.假设两个向量在同一直线上,那么这两个向量一定是什么向量?〔平行向量〕6.两个非零向量相等的充要条件是什么?〔长度相等且方向相同〕7.共线向量一定在同一直线上吗?〔不一定〕8.如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA 、OB 、OC 相等的向量 五、小结 :向量及向量的有关概念、表示方法,还知道有两个特殊向量,最后学了向量间的两种关系,即平行向量〔共线向量〕和相等向量六、课后作业:1.以下各量中不是向量的是〔 〕 A.浮力B .风速 C.位移 D.密度2.以下说法中错误..的是〔 〕 A.零向量是没有方向的 B .零向量的长度为0C.零向量与任一向量平行D.零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是〔 〕 A.一条线段B .一段圆弧 C.圆上一群孤立点 D.一个单位圆4.“两个向量共线〞是“这两个向量方向相反〞的 条件.5.非零向量a ∥b ,假设非零向量c ∥a ,那么c 与b 必定 .6.a 、b 是两非零向量,且a 与b 不共线,假设非零向量c 与a 共线,那么c 与b 必定 .参考答案:1.D 2.A 3.D 4.必要非充分 5.c ∥b 6.不共线七、板书设计〔略〕八、试题:1.在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,那么〔 〕A. AB 与AC 共线 B . DE 与CB 共线C. 1sin AD θ-与AE 相等D. AD 与BD 相等2.以下命题正确的是〔 〕A.向量AB 与BA 是两平行向量B .假设a 、b 都是单位向量,那么a =bC.假设AB =DC ,那么A 、B 、C 、D 四点构成平行四边形D.两向量相等的充要条件是它们的始点、终点相同3.在以下结论中,正确的结论为〔 〕(1)a ∥b 且|a |=|b |是a =b 的必要不充分条件(2)a∥b且|a|=|b|是a=b 的既不充分也不必要条件(3)a与b方向相同且|a|=|b|是a=b 的充要条件(4)a与b方向相反或|a|≠|b|是a≠b 的充分不必要条件A.(1)(3) B .(2)(4) C.(3)(4) D.(1)(3)(4)4.把平行于某一直线的一切向量归结到共同的始点,那么终点所构成的图形是 ;假设这些向量为单位向量,那么终点构成的图形是 .5.|AB |=1,| AC|=2,假设∠BAC=60°,那么|BC |= .6.在四边形ABCD 中, AB=DC ,且|AB |=|AD|,那么四边形ABCD是 .7.设在平面上给定了一个四边形ABCD,点K、L、M、N分别是AB、BC、CD、DA的中点,求证:KL =NM.8.某人从A点出发向西走了200m到达B点,然后改变方向向西偏北60°走了450m到达C点,最后又改变方向,向东走了200m到达D点.(1)作出向量AB、BC、CD (1 c m表示200 m).(2)求DA的模.9.如图,四边形ABCD是矩形,设点集M={A、B、C、D},求集合T={PQ、Q∈M,且P、Q不重合}.第9题图参考答案:1.B2.A3.D4.一条直线两点5.36.菱形7.(略)8.(1)如下图(2)450 m9.{AC、CA、BD、DB、AB、AD、BA、DA}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学 2.1 向量的概念及表示教案新人教A版必
修1
教学目标:
1.了解向量的实际背景,会用字母表示向量,理解向量的几何表示.
2.理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念.
教学重点:
向量概念、相等向量概念、向量几何表示.
教学难点:
向量概念的理解.
教学方法:
自主探究式.
教学过程:
一、问题情境
情境:溱湖湿地公园的湖面上有三个景点O,A,B,如图:一游艇将游客从景点O送至景点A,半小时后,游艇再将游客从A送至景点B.从景点O到景点A有一个位移,从景点
A送至景点B也有一个位移.
二、学生活动
1.问题
(1)在图中标出两个位移.
(2)请说出位移和距离的异同.
B
O
A
(3)你能否例举一些具有上述两种特征的例子? 2.思考:阅读课本55~56页,回答下列问题. (1)什么是向量? (2)怎么表示向量? (3)什么是向量的模? (4)有哪些特殊向量? 三、建构数学
1.向量的概念及表示. (1)向量的定义: (2)向量的表示:
思考1 要确定一个向量必须确定什么?要确定一个有向线段必须确定什么? 两者有何区别? (3)向量的大小及表示: (4)零向量: (5)单位向量:
思考2 平面直角坐标系内,起点在原点的单位向量,它们终点的轨迹是什么图形? 2.向量的关系. (1)平行向量 (2)相等向量 (3)共线向量 (4)相反向量 问题:
(1)实数可以比较大小,向量能吗?
(2)DC ABCD AB 中,写出与的关系?
(3)DC ABCD AB 判断:若=,则四点构成平行四边形,对吗? (4)能找出向量的平行与直线平行的区别吗? (5)能运用这个区别解决什么问题? 四、数学运用
例1 已知O 为正六边形ABCDEF 的中心,如图,所标出的向量中:
(1)试找出与FE 共线的向量; (2)确定与FE 相等的向量; (3)OA 与BC 向量相等吗? 概念辨析(判断):
(1)模相等的两个平行向量是相等的向量; ( ) (2)若a 和b 都是单位向量,则a =b ; ( ) (3)两个相等向量的模相等;
( ) (4)相等向量一定是共线向量; ( ) (5)共线向量一定是相等向量;
( )
(6)任一向量与它的相反向量不相等;
( )
(7)设O 是正ABC 的中心,则向量,,AO BO CO 是模相等向量;( ) (8)若a 与b 共线,b 与c 共线,则a 与c 也共线.
( )
例2 如图,在4×5的方格纸中有一个向量AB ,分别以图中的格点为起点和终点作向量,其中与AB 相等的向量有多少个?与AB 长度相等的共线向量有多少个?(AB 除外)
练习 写出图中所示各向量的长度(小正方形的边长为1).
B E
A
五、回顾小结
1.向量的概念:既有
大小又有方向的量称为向量. 2.向量的表示方法:常用一条有向线段来表示. 3.两种特殊的向量:零向量 单位向量. 4.向量间关系:平行向量(共线向量)
A B A B
C
相等向量相反向量六、作业
教科书第57页习题2.1第 1,3,4题.。

相关文档
最新文档