运河区三中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运河区三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )
A .
B .
C . +
D . ++1
2. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )
A .至少有一个白球;都是白球
B .至少有一个白球;至少有一个红球
C .恰有一个白球;一个白球一个黑球
D .至少有一个白球;红、黑球各一个
3. 函数f (x )=
有且只有一个零点时,a 的取值范围是( )
A .a ≤0
B .0<a <
C .<a <1
D .a ≤0或a >1
4. 若关于x 的不等式07|2||1|>-+-++m x x 的解集为R ,则参数m 的取值范围为( ) A .),4(+∞ B .),4[+∞ C .)4,(-∞ D .]4,(-∞
【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.
5. 下列各组函数为同一函数的是( )
A .f (x )=1;g (x )=
B .f (x )=x ﹣2;g (x )=
C .f (x )=|x|;g (x )=
D .f (x )=
•
;g (x )=
6.已知函数
[)
[)
1
(1)sin2,2,21
2
()
(1)sin22,21,22
2
n
n
x
n x n n
f x
x
n x n n
π
π
+
⎧
-+∈+
⎪⎪
=⎨
⎪-++∈++
⎪⎩
(n N
∈),若数列{}m a满足
*
()()
m
a f m m N
=∈,数列{}m a的前m项和为m S,则10596
S S
-=()
A.909
B.910
C.911
D.912
【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.
7.如图,△ABC所在平面上的点P n(n∈N*)均满足△P n AB与△P n AC的面积比为3;1,=﹣(2x n+1)(其中,{x n}是首项为1的正项数列),则x5等于
()
A.65 B.63 C.33 D.31
8.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,
末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的()
C.62% D.88%
则几何体的体积为()
3
4
意在考查学生空间想象能力和计算能
∩B,则集合S的子集有()
11.抛物线y 2=2x 的焦点到直线x ﹣y=0的距离是( )
A .
B .
C .
D .
12.设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为
( )
A .
B .
C .
D .
二、填空题
13.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范
围是 .
14.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= . 15.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,
()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.
16.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }
的前n 项的和)为它的各项的和,记为S ,即S=
S n =
,则循环小数0. 的分数形式是 .
17.自圆C :22
(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .
1310 B .3 C .4 D .2110
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.
18.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值
是 .
三、解答题
19.已知椭圆E 的中心在坐标原点,左、右焦点F 1、F 2分别在x 轴上,离心率为,在其上有一动点A ,A 到点F 1距离的最小值是1,过A 、F 1作一个平行四边形,顶点A 、B 、C 、D 都在椭圆E 上,如图所示. (Ⅰ)求椭圆E 的方程;
(Ⅱ)判断▱ABCD能否为菱形,并说明理由.
(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.
20.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(不等式选做题)设,且,则的最小值为
(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则
21.已知函数f(x)=|x﹣a|.
(Ⅰ)若不等式f (x )≤2的解集为[0,4],求实数a 的值;
(Ⅱ)在(Ⅰ)的条件下,若∃x 0∈R ,使得f (x 0)+f (x 0+5)﹣m 2
<4m ,求实数m 的取值范围.
22.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且
cosA=,5(a 2+b 2﹣c 2
)
=3
ab .
(Ⅰ)求cos2C 和角B 的值; (Ⅱ)若a ﹣
c=﹣1,求△ABC 的面积.
23.(本小题满分13分)
椭圆C :22
221(0)x y a b a b
+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点
M ,点M 在x 轴的上方.当0m =
时,1||MF =
(Ⅰ)求椭圆C 的方程;
(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12
12
3MF F NF F S S ∆∆=,求直线l 的方程.
24.已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为0和3.(1)求函数f(x)的单调递增区间;
(2)若函数f(x)的极大值为,求函数f(x)在区间[0,5]上的最小值.
运河区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】D
【解析】解:由三视图可知:该几何体是如图所示的三棱锥,
其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,
边AC上的高OB=1,PO=为底面上的高.
于是此几何体的表面积S=S
+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.
△PAC
故选:D
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.2.【答案】D
【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:
2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,
所以至少有一个白球,至多有一个白球不互斥;
至少有一个白球,至少有一个红球不互斥;
至少有一个白球,没有白球互斥且对立;
至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,
故选:D
【点评】本题考查了互斥事件和对立事件,是基础的概念题.
3.【答案】D
【解析】解:∵f(1)=lg1=0,
∴当x≤0时,函数f(x)没有零点,
故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,
即a>2x,或a<2x在(﹣∞,0]上恒成立,
故a>1或a≤0;
故选D.
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.
4.【答案】A
5.【答案】C
【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数;
B、函数f(x)的定义域为R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数;
C、因为,故两函数相同;
D、函数f(x)的定义域为{x|x≥1},函数g(x)的定义域为{x|x≤1或x≥1},定义域不同,故不是相同函数.综上可得,C项正确.
故选:C.
6.【答案】A.
【解析】
7.【答案】D
【解析】解:由=﹣(2x n+1),
得+(2x n+1)=,
设,
以线段P n A、P n D作出图形如图,
则,
∴,∴,
∵,∴,
则,
即x n+1=2x n+1,∴x n+1+1=2(x n+1),
则{x n+1}构成以2为首项,以2为公比的等比数列,
∴x5+1=2•24=32,
则x5=31.
故选:D.
【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.
8.【答案】B
【解析】
9.【答案】D
【解析】
10.【答案】C
【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},
∴集合S=A∩B={1,3},
则集合S的子集有22=4个,
故选:C.
【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.11.【答案】C
【解析】解:抛物线y2=2x的焦点F(,0),
由点到直线的距离公式可知:
F到直线x﹣y=0的距离d==,
故答案选:C.
12.【答案】C
【解析】解:F
,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.
1
点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,
|PF2|==,由勾股定理可得:|PF1|==.
==.
故选:C.
【点评】本题考查椭圆的简单性质的应用,考查计算能力.
二、填空题
13.【答案】(0,1).
【解析】解:画出函数f(x)的图象,如图示:
令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,
即方程f(x)=k有三个不同的实根,
故答案为(0,1).
【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.14.【答案】5.
【解析】解:P(1,4)为抛物线C:y2=mx上一点,
即有42=m,即m=16,
抛物线的方程为y2=16x,
焦点为(4,0),
即有|PF|==5.
故答案为:5.
【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.
15.【答案】()(),10,1-∞-⋃ 【解析】
16.【答案】 .
【解析】解:0. =
+ +…+==,
故答案为:. 【点评】本题考查数列的极限,考查学生的计算能力,比较基础.
17.【答案】D
【解析】
18.【答案】 4 .
【解析】解:画出满足条件的平面区域,如图示:
,
由,解得:A(3,4),
显然直线z=ax+by过A(3,4)时z取到最大值12,
此时:3a+4b=12,即+=1,
∴+=(+)(+)=2++≥2+2=4,
当且仅当3a=4b时“=”成立,
故答案为:4.
【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.
三、解答题
19.【答案】
【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.
∴椭圆E的方程为=1.
(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.
①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,
取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
∴
k OA•k OB=====
,
假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.
综上可得:平行四边形ABCD不可能是菱形.
(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
|AB|==.
点O到直线AB的距离d=.
∴S平行四边形ABCD=4×S△OAB=
=2××=.
则S2==<36,
∴S<6.
因此当平行四边形ABCD为矩形面积取得最大值6.
20.【答案】
【解析】A
B
21.【答案】
【解析】解:(Ⅰ)∵|x﹣a|≤2,∴a﹣2≤x≤a+2,
∵f(x)≤2的解集为[0,4],∴,∴a=2.
(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,
∵∃x0∈R,使得,
即成立,
∴4m+m2>[f(x)+f(x+5)]min,即4m+m2>5,解得m<﹣5,或m>1,∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞).
22.【答案】
【解析】解:(I)由∵cosA=,0<A<π,
∴sinA==,
∵5(a2+b2﹣c2)=3ab,
∴cosC==,
∵0<C<π,
∴sinC==,
∴cos2C=2cos2C﹣1=,
∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,
∴B=.
(II )
∵
=, ∴
a=
=c , ∵a ﹣
c=
﹣1, ∴
a=,c=1,
∴
S=
acsinB=
×
×1
×
=. 【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.
23.【答案】
【解析】解:(Ⅰ)由直线:1l x my =-经过点1F 得1c =,
当0m =时,直线l 与x
轴垂直,21||b MF a ==,
由212c b a
=⎧⎪⎨=⎪⎩
解得1a b ⎧=⎪⎨=⎪⎩C 的方程为2212x y +=. (4分) (Ⅱ)设1122(,),(,)M x y N x y ,120,0y y >>,由12//MF NF 知12121122
||3||MF F NF F S MF y S NF y ∆∆===. 联立方程22112
x my x y =-⎧⎪⎨+=⎪⎩,消去x 得22(2)210m y my +--=
,解得y =
∴1y =
,同样可求得2y =, (11分) 由123y y =得123y y =
3=,解得1m =, 直线l 的方程为10x y -+=. (13分)
24.【答案】
【解析】解:f ′(x )
=
令g (x )=﹣ax 2+(2a ﹣b )x+b ﹣c
函数y=f ′(x )的零点即g (x )=﹣ax 2+(2a ﹣b )x+b ﹣c 的零点
即:﹣ax 2+(2a ﹣b )x+b ﹣c=0的两根为0,3
则解得:b=c=﹣a,
令f′(x)>0得0<x<3
所以函数的f(x)的单调递增区间为(0,3),
(2)由(1)得:
函数在区间(0,3)单调递增,在(3,+∞)单调递减,
∴,
∴a=2,
∴;,
∴函数f(x)在区间[0,4]上的最小值为﹣2.。