《第一章勾股定理》word教案 (公开课获奖)2022北师版 (3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第一章勾股定理》回顾与思考
一、学生起点分析
通过前面三节的学习,学生已经基本掌握了勾股定理及逆定理的知识,并能应用勾股定理及其逆定理解决一些具体的实际问题,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.
八年级学生已初步具有几何图形的观察,几何证明的理论思维能力.他们希望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会.但对于勾股定理的综合应用,还需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,可能部分同学会有一些困难.
二、教学任务分析
勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,将形与数密切联系起来,理论上占有重要的地位,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用,勾股定理的应用蕴含着丰富的文化价值.勾股定理也是后续有关几何度量运算和代数学习必要的基础,具有学科的基础性与广泛的应用.
本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,感受数学的美,以提高学习兴趣.
为此,本节课的教学目标是:
①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用.
②在回顾与思考的过程中,提高解决问题,反思问题的能力.
③在反思和交流的过程中,体验学习带来的无尽的乐趣.通过对勾股定理历史的再认识,培养爱国主义精神,体验科学给人来带来的力量.
三、教学过程设计
本节课设计了六个环节.第一环节:情境引入;第二环节:知识结构梳理;第三环节:合作探究;第四环节:拓展提升;第五环节:交流小结;第六环节:布置作业.
第一环节情境引入
勾股定理,我们把它称为世界第一定理.它的重要性,通过这一章的学习已深有体验,首先,勾股定理是数形结合的最典型的代表;其次,了解勾股定理历史的同学知道,正是由于勾股定理得发现,导致无理数的发现,引发了数学的第一次危机,这一点,我们将在《实数》一章里讲到,第三,勾股定理中的公式是第一个不定方程,有许许多多的数满足这个方程,也是有完整的解答的最早的不定方程,最为著名的就是费马大定理,直到1995年,数学家怀尔斯才将它证明.
勾股定理是我们数学史的奇迹,我们已经比较完整地研究了这个先人给我们留下来的宝贵的财富,这节课,我们将通过回顾与思考中的几个问题更进一步了解勾股定理的历史,勾股定理的应用.
目的:
通过对勾股定理历史及地位的解读,让学生了解知识脉络及前后联系,激发学习探究热情.
效果:
从历史的深度提出问题,学生探究热情高涨,为下一环节奠定了良好基础.
第二环节:知识结构梳理
本章知识要点及结构:
(第1—6题由学生独立思考完成,小组代表展示)
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用,a b和c分别表
.
示直角三角形的直角边和斜边,那么__________2c
2.勾股定理各种表达式:
a b c,则c=_________,
在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边也分别为,,
b=_________,c=_________.
3.勾股定理的逆定理:
a b c三边满足___________,则△ABC为___________.
在△ABC中,若,,
4.勾股数:
满足___________的三个___________,称为勾股数.
5.几何体上的最短路程是将立体图形的________展开,转化为_________上的路程问题,再利用___________两点之间,___________解决最短线路问题.
6.直角三角形的边、角之间分别存在着什么关系?
(教师引导,小组讨论、总结)
从边的关系来说,当然就是勾股定理;从角度的关系来说,由于直角三角形中有一个特殊的角即直角,所以直角三角形的两个锐角互余.
直角三角形作为一个特殊的三角形.如果又有一个锐角是30︒,那么30︒的角所对的直角边时斜边的一半.
7.举例说明,如何判断一个三角形是直角三角形.
判断一个三角形是直角三角形可以从角、边两个方面去判断.
(1)从定义即从角出发去判断一个三角形是直角三角形.
例如:①在△ABC 中,7515B C ∠=︒∠=︒,,根据三角形的内角和定理,可得90A ∠=︒,根据定义可判断△ABC 是直角三角形.
②在△ABC 中,1123
A B C ∠=∠=∠,由三角形的内角和定理可知,A 30∠=︒,260B A ∠=∠=︒,390C A ∠=∠=︒,△ABC 是直角三角形.
(2)从边出发来判断一个三角形是直角三角形.其实从边来判断直角三角形它的理论依据就是判定直角三角形的条件(即勾股定理的逆定理).
例如:①△ABC 的三条边分别为72524a b c ===,,,而22222262572524a c b +=+===,根据勾股定理的逆定理可知△ABC 是直角三角形,但这里要注意的是b 所对的角90B ∠=︒.
②在△ABC 三条边的比为::5:12:13a b c =,△ABC 是直角三角形.
8.通过回顾与思考中的问题的交流,由同学们自己建立本章的知识结构图.
(小组内展示自己总结的知识框图,相互交流完善知识框图;每个小组选取一名代表,展示本组的知识框图.)
三边的关系--勾股定理→历史、应用
直角三角形
直角三角形的判别→应用
目的: {
复习与直角三有形有关的知识,加强知识的前后联系,把勾股定理及判定纳入直角三角形的知识体系中,把以前的零散的知识形成知识体系.通过学生相互交流,整理知识框图复习本章知识点,自觉内化到自身的知识体系中.
效果:
学生有独立思考的空间,与有合作交流的舞台,动静结合,相得益彰.
第三环节:合作探究
内容:
探究一:利用勾股定理求边长
已知直角三角形的两边长分别为3、4,求第三边长的平方.
解:(1)当两直角边为3和4时,第三边长的平方为25;
(2)当斜边为4,一直角边为3时,第三边长的平方为7.
注意事项:
因学生习惯了“勾三股四弦五”的说法,即意味着两直角边为3和4时,斜边长为5.但这一理解的前提是3、4为直角边.而本题中并未加以任何说明,因而所求的第三边可能为斜边,但也可能为直角边.
探究二:利用勾股定理求图形面积:
1.求出下列各图中阴影部分的面积.
0.64
0.36
(1)225
144(2)
图(1)阴影部分的面积为____;(答案:1)
图(2)阴影部分的面积为____;(答案:81)
图(3)阴影部分的面积为____;(答案:5)
2. 已知Rt△ABC 中,90C ∠=︒,若1410a b cm c cm +==,,求Rt△ABC 的面积.
_( 3 )
2 1
ABC 222222211S 2241()()4
1()4
1(1410)4
24.ab ab a b a b a b c ∆=
=⨯⎡⎤=+-+⎣⎦⎡⎤=+-⎣⎦=⨯-=解:
探究三:利用勾股定理逆定理判定△ABC 的形状或求角度
1. 在△ABC 中,A B C ∠∠∠,,的对边分别为a b c ,,,且2()()a b a b c +-=,则( ).
(A )A ∠为直角 (B )C ∠为直角 (C )B ∠为直角 (D )不是直角三角形
解:222a b c -=,∴222a b c =+.故选(A ).
注意事项:
因为常见的直角三角形表示时,一般将直角标注为C ∠,因而有同学就习惯性的认为C ∠就一定表示直角,加之对本题所给条件的分析不缜密,导致错误.该题中的条件应转化为222a b c -=,即222
a b c =+,因根据这一公式进行判断.
2.已知△ABC 的三边为a ,b ,c ,有下列各组条件,判定△ABC 的形状.
(1)41409a b c ===,,;
(2))(,,0n m mn 2c n m b n m a 2222>>=+=-=. 解:(1)(2)均为直角三角形.
探究四:勾股定理及逆定理的综合应用:
B 港有甲、乙两艘渔船,若甲船沿北偏东60︒方向以每小时8 n mile 的速度前进,乙船沿南偏东某个角度以每小时15 n mile 的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34 n mile ,你知道乙船是沿哪个方向航行的吗?
解:甲船航行的距离为BM=8216⨯=(n mile ),
乙船航行的距离为BP=15230⨯=(n mile ).
∵22216301156,341156+==,∴222
BM BP MP +=, ∴△MBP 为直角三角形,∴90MBP ∠=︒,∴乙船是沿着南偏东30︒方向航行的.
注意事项:
勾股定理的使用前提是直角三角形,而本题需对三角形做出判断,判断的依据是勾定理
的逆定理,其形式为“若222a b c +=,则90C ∠=︒.学生容易不先对三角形做出判断而
直接应用勾股定理进行计算.
目的:
通过对四大问题的探究,培养同学们归纳知识的能力,并将各种数学基本思想方法渗透其中,如对数形结合思想的渗透,鼓励学生由代数表示联想到几何图形,由几何图形联想到有关代数表示,从而认识数学的内在联系.如对分类讨论的渗透,培养学生严谨的数学态度.
效果:
探究四综合运用勾股定理及其逆定理解决实际问题,这种贴近生活的实例,训练学生解决实际问题的能力,通过学生的解答和讨论,让学生自我解决疑难,既是对所学知识的巩固应用,又让学生体验成功的喜悦.
第四环节:拓展提升
内容:
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由“弦图”变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=10,则S 2的值是 .
(答案为103
) 目的:
学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智,在我们的数学史上,好多结论的发现都是这样一个过程,都是从几个或大量的特例中发现
规律,大胆猜想出结论,然后以前面的理论作为基础,证明猜想,一个伟大的成果就诞生了,掌握这种研究数学的方法,大胆创新,刻苦钻研,说不一定你就是未来的商高,第二个赵爽.
效果:
运用勾股定理和方程思想解决实际问题,让学生体会生活中处处皆数学,并且使新知得到了巩固,能力得到了训练,认识得到了升华.
第五环节:交流小结
内容:
师生相互交流总结:
1.本章知识要点及在学习中用到了哪些数学思想方法?
2.你在学习过程中是否积极参与?是否与同伴进行了有效的合作交流?
目的:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史.
效果:
学生畅所欲言自己的切身感受与实际收获,总结解决问题的思路与方法,并赞叹我国古代数学的成就.
第六环节:布置作业
1.课本《复习题》.
2.思考题:一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为
2 m ,坡角A 30B 90BC 6∠=︒∠=︒=,,m .当正方形DEFH 运动到什么位置,即当AE = m 时,有222
DC AE BC =+.
(答案为:3
14.) 四、教学设计反思
本节课是复习课,利用勾股定理和勾股逆定理来解决实际问题.勾股定理是在学生已经
掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个三角形三条边之间的数量关系,而勾股定理逆用的作用是判定某一个三角形是否是直角三角形.针对我班学生的知识结构和心理特征,本节课的设计思路是引导学生“‘做’数学”,先由浅入深,在学生的自主探究与合作交流中解决问题,这样既遵循了学生的认知规律,又充分体现了“学生是数学学习的主人、教师是数学学习的组织者、引导者与合作者”的教学理念.本节课围绕激趣引入,归纳知识--综合练习,应用知识—课堂小结三部分,发展学生应用数学的意识与能力,增强了学生学好数学的愿望和信心.让学生自己绘制知识网络图,进一步体会本章所学知识之间的前后联系,并培养了学生这方面的能力.设计的题目既考察了对基本知识的掌握情况,又注重了综合课的特点,注重对所学知识的综合利用.设计的问题尽量与实际问题有联系,体现了数学来源于实际,又应用于生活实际,这一点符合新课标的要求.
附:板书设计
回顾与思考
一情境引入
二本章知识结构
三边的关系--勾股定理→历史、应用
直角三角形
直角三角形的判别→应用
三合作探究
探究一:利用勾股定理求边长
探究二:利用勾股定理求图形面积
探究三:利用勾股定理及逆定理判定△ABC的形状或求角度
探究四:勾股定理及逆定理的综合应用
四拓展与提升
五交流小结
六布置作业
第五章反比例函数
一、学生知识状况分析
通过本章的学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。
本章的教学主要以直观操作,观察,概括和交流作为主要的活动方式。
通过这些活动,对函数的三种表示方法进行有机的整合,逐步形成对函数概念的整体性认识,逐步提高从函数图象中获取数学信息的能力,提高学生的感知水平,逐步形成从函数视角处理问题的意识,体验数形结合的数学思想方法.
教师应从现实情境和学生已有的知识经验出发,以本章三维教学目标为标准来考查学生的学习情况,考查学生对反比例函数的定义,图象,性质及其应用掌握的程度,以及从函数图象中敏锐地获取相关信息、分析问题、解决问题的能力.
二、教学任务分析
函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念, 是研究现实世界变化规律的重要内容及数学模型, 学生已经在七年级下册和八年级上册学习过变量之间的关系、一次函数等内容, 对函数已有了初步的认识, 在此基础上讨论反比例函数, 可以进一步领悟函数的概念,并积累研究函数性质的方法及用函数观点处理和解决实际问题的经验,为后继学习二次函数等产生积极的影响。
教学目标
(一)知识与能力
1.经历抽象反比例函数概念的过程,理解反比例函数的概念.
2.会作反比例函数的图象,并探索和掌握反比例函数的主要性质.
3.会从函数图象中获取信息,能运用反比例函数的概念、图象和主要性质解决实际问题.
(二)过程与方法
1.熟练掌握本章的整体知识结构,培养学生的概括和归纳能力,形成知识体系.
2.在经历抽象反比例函数概念的过程中,领会反比例函数的意义,理解反比例函数的概念,进一步培养学生的抽象思维能力.
3.经历一次函数的图象及其性质的探索过程,在合作与交流中发展学生的合作意识和
交流能力.
4.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能运用数形结合思想解决与反比例函数相关的数学问题和实际应用问题.
(三)情感与价值观
通过本章内容的回顾与思考,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力,激发学生学习的热情,培养学生学习数学的兴趣。
教学重点
本章知识的网络结构体系.
反比例函数的概念.
会作反比例函数的图象,并掌握其性质.
反比例函数的相关应用.
教学难点
利用反比例函数的图像,探索反比例函数的主要性质.
反比例函数的相关应用.
教学方法
自主探究、合作交流.
三、教学过程分析
本节课设计了五个教学环节:第一环节:复习提问,引人入胜;第二环节:知识串联,形成体系;第三环节:例题精练,巩固新知;第四环节:交流探讨、收获小结;第五环节:课后作业
第一环节:复习提问,引人入胜
活动目的给学生设置疑问,激发学生的思考和回顾,明确本节课的学习任务。
活动过程:本章的内容已全部学完,请大家先回忆一下,本章学习了哪些主要内容?
学生回答预设:反比例函数的定义;反比例函数的图象及性质;反比例函数的应用。
. 教师引入:下面我们就来系统全面地对本章内容进行复习。
.
第二环节:知识串联,形成体系
活动目的:引导学生对本章的所学的基础知识进行系统的归纳和整理,使学生明确各个知识点之间的联系, 将基础知识网络化,形成本章知识的框架结构体系。
活动过程: (一)本章知识结构
引导学生构造本章知识结构图。
(可课前让学生自己制作本章知识的内容框架或思维导图,上课进行展示和交流)
本章内容框架
活动效果:学生可以根据以上内容框架,对自己整理的知识框架进行补充和整理,完善自己的知识体系,并能用自己的语言归纳总结本章内容.
注意事项:1. 应以学生自主总结和归纳为主,教师要在适时适当的给予指导; 2.对于学生个性化的结构框架的整理设计,只要合理,老师都应给予肯定。
(二)举出现实生活中有关反比例函数的实例,并归纳出反比例函数概念. 学生回答预设:
例:当三角形的面积是16 cm 2
时,它的底边a(cm)是这个底边上的高h(cm)的函数. 解:a =
h
32
. 在上式中,任意给定h 一个值,相应地就确定了一个a 的值.因此a 是h 的函数。
所以一般地,如果两变量x ,y 之间的关系可以表示成y=x
k
(k 是常数,k ≠0)的形式,那么称y 是 x 的反比例函数. (三)说说函数y =
x 2和y =-x
2
的图象的联系和区别. 联系:(1)图象都是由两支曲线组成;
(2)它们都不与坐标轴相交;
(3)它们都不过原点,既是中心对称图形,又是轴对称图形. (4)虽然y =
x 2和y=-x
2
的图象不同,但是在这两个函数图象上任取—点,过这两点分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积相等,都为2. 区别:(1)它们所在的象限不同,y=x 2的两支曲线在第一象限和第三象限;y=-x
2
的两支曲线在第二象限和第四象限. (2)y =
x 2的图象在每个象限内,y 随x 的增大而减小;y=-x
2
的图象在每个象限内,y 随x 的增大而增大.
(四)回顾反比例函数图象的作图步骤及反比例函数图象的性质
画函数图象的步骤有列表、描点、连线.在作反比例函数的图象时应注意:列表时自变量的取值应选取绝对值相等而符号相反的—对一对的数值,并尽量多取一些点,连线时要连成光滑的曲线,而不是折线.
反比例函数图象的性质有(课件演示): 1.形状:反比例函数的图象是两支双曲线.
2.位置:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
3.增减性:当k>0时.在每一个象限内,y 随x 的增大而减小;当k<0时,在每一个象限,y 随x 的增大而增大.
4.因为在y=
x
k
(k ≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交.
5.在一个反比例函数图象上任取两点P ,Q ,过点P ,Q 分别作x 、轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2则S 1=S 2
6.对称性: 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.
第三环节:例题精练,巩固新知
活动目的:使学生运用反比例函数的概念、图象和主要性质熟练的解决实际问题,提高学生获取信息、分析问题、解决问题的能力。
活动过程:课件展示
例一
1.下列函数中,其图象位于第一、三象限的有哪些?在其图象所在象限内,y 的值随x 值的增大而增大的是哪些 ( )
(1)y=
x 31 (3)y=x 2.0 (2)y= x
10- (4)y=-x 1007
2.在函数y =x
3
的图象上任取一点P ,过P 分别作x 轴、y 轴的平行线,与坐标轴围成
的矩形面积是多少?
分析:根据反比例函数图象的性质,当k >0时,图象位于第一、三象限,在每一个象限内,y 随x 的增大而减小;当k<0时,正好相反,但在y =
x
31
中,形式虽然和反比例函数的形式不相同,但可以化成y=x
31
的形式。
答案:1.图象位于第一、三象限的有(1)(2).在其图象所在象限内,y 的值随x 值的增大而增大的有(3)(4).
2. S=|k |=
3. 例二
1.一个圆台物体的上底面积是下底面积的4
1
,当下底面放在桌子上时,对桌面的压强是200 Pa ,倒过来放,对桌面的压强是多少?
2.一定质量的CO 2,当体积v =5米3
时.它的密度ρ=1.98千克/米3
,求(1)ρ与v 的函数关系式;(2)当v=9米3
时,CO 2的密度.
分析:压强p 、受力面积S 、压力F 三者之间的关系为p=S
F
,因为是同一物体,所以F 是一定的,由于受力面积不同,因此压强也不同. 质量m 、密度ρ、体积v 三者之间的关系为:ρ=
v
m ,由v=5米3,ρ=1.98千克/米3
,可知质量m ,实际代表已知反比例函数中的k ,求出m ,就确定了反比例函数的关系式. 答案:
解:1.当下底面放在桌面上时,对桌面的压强为p 1=S
F
=200Pa,所以倒过来放时,对桌面的压强p 2=
S F
S F 44
1=
=800Pa.
2.设CO 2的质量为m 千克,将v=5米3,ρ=1.98千克/米3
代入公式ρ=v
m
中,得m=9.9千克.
故所求ρ与v 间的函数关系式为ρ=
v
9.9. (2)当v =9米3
时,ρ=
v
9.9=1.1(千克/米3
)。
课堂练习 课件演示: 1.对于函数y=
x 2,当x>0时,y_______0,这部分图象在第______象限;对于y =-x
2,当x<0时,y____0,这部分图象在第_____象限.
2.函数y=
x
10
的图象在第____象限内,在每一个象限内,y 随x 的增大而______. 3.根据下列条件,分别确定函数y =x
k
的表达式
(1)当x=2时,y =-3; (2)点(-3
1,21-
)在双曲线y =x k
上.
答案:1.> 一、三 < 二、四 2.一、三 减小 3.(1)y=
x
6- (2)y=x 61
;
注意事项:在本环节教学中,教师可以引导学生首先进行独立思考,避免替代思维,然后可以通过小组讨论、合作交流等形式,启发学生对问题进行探究,分析,完善解题思路,进而感悟和总结解决此类问题的一般方法和规律。
第四环节:交流探讨 收获小结
活动内容: 教师引导学生进行回顾和整理,然后通过师生交流和生生交流,回答以下问题:本节课我们都一起回顾和复习了哪些内容?
交流预设: 1.反比例函数概念
2.反比例函数图像的做法及性质
3.反比例函数在生活中的应用
4.做题时要注意数形结合
5.具体题目的解题思路
活动目的:使学生通过再次的回顾和总结,完善自己知识框架,进一步培养了学生归纳和交流能力。
第五环节:课后作业 (一)复习题 (二)活动与探究
反比例函数图象与矩形的面积 若点A 是反比例函数y=
x
k
(k ≠0)图象上的任意一点,且AB 垂直于x 轴,垂足为B ,AC 垂直于y 轴,垂足为C,则矩形面积S ABOC =|k |.如图(1).
1.如图(2),P 是反比例函数)y=
x
k
(k ≠O)图象上的一点,由P 点分别向x 轴,y 轴引垂线,得阴影部分(矩形)的面积为3,则 这个反比例函数的表达式______.
2. 如图(3)过双曲线y=
x
2
上两点A 、B 分别作x 轴,y 轴的垂线,若矩形ADDC 与矩形BFOE 的面积分别为S 1,S 2,则S 1与S 2的关系是_____.
答案:
1.解:由题意得|k |=3.
又双曲线的两支分布在第二、四象限,所以k<0,故k =-3. ∴k=
x
3 . 2.解:由题意得 S 1=S 2=|k |=2.
(三)补充练习(课件展示)
(四)反比例函数与正比例函数图象性质比较分析
K<0
双曲线的两个分支分别位于第象限;
,y随着x。
双曲线的两个分支分别位于第象限;在,y随着的增大而。
四、板书设计
回顾与思考
一、本章知识结构
二、课堂练习
三、课时小节
四、课后作业
五、教学反思
本节作为本章的复习课,涉及到了中学数学里所有的数学思想方法,包括待定系数法、数形结合法、方程思想等等,这些方法相互渗透,相互融合,构成了函数应用的广泛性,解法的多样性,和思维的创造性。
函数的性质、图象及函数与方程、不等式知识的联系和综合应用是命题的热点,尤以探索性题型考查较多,其主要特点是要求学生能够建立数学模型,对相关知识进行综合应用。