七年级数学有理数测试题

合集下载

七年级数学有理数单元测试卷

七年级数学有理数单元测试卷

七年级数学有理数单元测试卷一、选择题(每题 3 分,共 30 分)1. 下列数中,是有理数的是()A. 圆周率πB. 0C. 根号 2D. 无限不循环小数。

2. 在数轴上,距离原点 3 个单位长度的点表示的数是()A. 3B. -3C. 3 或 -3D. 6 或 -6。

3. 下列计算正确的是()A. -2 + 3 = 1B. -5 - 5 = 0C. -1 × 2 = -2D. 4 ÷ 2 = 2.4. 绝对值等于 5 的数是()A. 5B. -5C. 5 或 -5D. 0。

5. 比较 -2,0,-3 的大小,正确的是()A. -2 > 0 > -3B. 0 > -2 > -3C. 0 > -3 > -2D. -3 > -2 > 0.6. 若 a + b < 0,ab > 0,则()A. a > 0,b > 0B. a < 0,b < 0C. a > 0,b < 0D. a < 0,b > 0.7. 计算 (-2)³的结果是()A. -6B. 6C. -8D. 8.8. 下列说法正确的是()A. 正数和负数互为相反数B. 数轴上表示相反数的点到原点的距离相等。

C. 任何数都有相反数D. 一个数的相反数一定是负数。

9. 若 a = 3,b = 2,且 a < b,则 a + b 的值是()A. 1 或 5B. -1 或 -5C. 1 或 -5D. -1 或 5。

10. 观察下列算式:2¹ = 2,2² = 4,2³ = 8,2⁴ = 16,2⁵ = 32,2⁶ = 64,2⁷ = 128,2⁸ = 256,…通过观察,用你所发现的规律确定 2²⁰²³的个位数字是()A. 2B. 4C. 6D. 8.二、填空题(每题 3 分,共 15 分)11. 把 -3,-2.5,0,1,2 这五个数按从小到大的顺序排列:________________。

七年级数学有理数单元检测题系列

七年级数学有理数单元检测题系列

有理数单元检测001有理数及其运算(综合)(测试5) 一、境空题(每空2分,共28分) 1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为2-,最高气温为8℃,那么该景点这天的温差是____.C7、计算:.______)1()1(101100=-+- 8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______. 二、选择题(每小题3分,共24分)11、–5的绝对值是………………………………………………………( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………( ) A 、l 个 B 、2个 C 、3个 D 、4个13、下列算式中,积为负数的是………………………………………………( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是…………………………………………………( ) A 、–1与(–4)+(–3) B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( ) A 、90分 B 、75分 C 、91分 D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( )A 、121 B 、321 C 、641 D 、1281 17、不超过3)23(-的最大整数是………………………………………( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分? 21、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21-- (3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯- (3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。

七年级数学第二章《有理数》测试题(含答案)

七年级数学第二章《有理数》测试题(含答案)

七年级数学第二章《有理数》测试题一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A .任何负数都小于它的相反数B .零除以任何数都等于零C .若b a ≠,则22b a ≠ D .两个负数比较大小,大的反而小2.如果一个数的绝对值等于它的相反数,那么这个数( ) A .必为正数 B .必为负数 C .一定不是正数 D .不能确定正负 3.当a 、b 互为相反数时,下列各式一定成立的是( ) A .1-=a b B .1=abC .0=+b aD .0 ab 4.π-14.3的计算结果是( )A .0B .π-14.3C .14.3-πD .π--14.35.a 为有理数,则下列各式成立的是( )A .02>aB .012<-aC .0)(>--aD .012>+a 6.如果一个数的平方与这个数的绝对值相等,那么这个数是( )A .0B .1C .-1D .0,1或-1 7.若3.0860是四舍五入得到的近似数,则下列说法中正确的是( )A .它有四个有效数字3,0,8,6B .它有五个有效数字3,0,8,6,0C .它精确到0.001D .它精确到百分位8.已知0<a ,01<<-b ,则a ,ab ,2ab 按从小到大的顺序排列为( )A .2ab ab a <<B .ab a ab <<2C .a ab ab <<2D .ab ab a <<29. 下列各组运算中,其值最小的是( )A .2)23(--- B .)2()3(-⨯- C .22)2()3(-÷- D .)2()3(2-⨯- 10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A .28 B .33 C .45 D .57 二、填空题(每小题3分,共24分)11.绝对值小于n (n 是正整数)的整数共有___________个。

七年级上册数学第一章《有理数》测试题(含答案)人教版

七年级上册数学第一章《有理数》测试题(含答案)人教版

第一章 有理数一、选择题(4分×10=40分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-= D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334×710人 B 、33.4×510人 C 、3.34×210人 D 、3.34×610人 4、下列各对数互为相反数的是( )A 、-(-8)及+(+8)B 、-(+8)及+︱-8︱C 、-2222)与(- D 、-︱-8︱及+(-8)5、计算(-1)÷(-5)×51的结果是( ) A 、-1 B 、1 C 、251D 、-25 6、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( ) A 、5 B 、-1 C 、-5或-1 D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,则在数轴上到A 点的距离是3个单位长度的点所表示的数有( ) A 、1个 B 、2个 C 、3个 D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mm D 、(0.1×202)mm二、填空题(5分×4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,则“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 . 14、观察下列各数,按规律在横线上填上适当的数。

七年级数学有理数及其运算测试卷

七年级数学有理数及其运算测试卷

七年级数学有理数及其运算测试卷一、选择题(每题3分,共30分)1. 下列说法正确的是()A. 正数和负数统称为有理数。

B. 0是最小的有理数。

C. 0既不是正数也不是负数。

D. 整数包括正整数和负整数。

2. -2的相反数是()A. 2.B. -2.C. (1)/(2)D. -(1)/(2)3. 在数轴上,距离原点3个单位长度的点表示的数是()A. 3.B. -3.C. 3或 -3。

D. 6或 -6。

4. 计算:(-3)+5的结果是()A. -2.B. 2.C. 8.D. -8.5. 计算:-2×(-3)等于()A. 6.B. -6.C. 5.D. -5.6. 计算:-3^2的值是()A. 9.B. -9.C. 6.D. -6.7. 下列运算正确的是()A. 2 - 3 = 1B. -2×(-3)= -6C. (-2)^2 = 4D. -2^2 = 48. 把(-2)+(+3)-(-5)+(-4)写成省略括号的和的形式是()A. -2 + 3 - 5 - 4.B. -2 + 3 + 5 - 4.C. -2 + 3 + 5 + 4.D. 2 + 3 - 5 - 4.9. 若|a| = 3,则a的值是()A. 3.B. -3.C. 3或 -3。

D. 以上都不对。

10. 一个数的倒数是它本身,则这个数是()A. 1.B. -1.C. 1或 -1。

D. 0.二、填空题(每题3分,共15分)1. 比较大小:-5___-4(填“>”或“<”)。

2. 绝对值等于4的数是___。

3. 某天的最高气温为6℃,最低气温为 -2℃,则这天的温差是___℃。

4. 计算:(-1)^2023=___。

5. 若a,b互为相反数,c,d互为倒数,则a + b + cd的值为___。

三、计算题(每题5分,共30分)1. (-8)+10 - 22. (-5)×(-6)÷(-3)3. 4 - 5×(-(1)/(2))^34. (-2)^3+3×(-1)^2 - (-1)^45. ((1)/(2)-(2)/(3)+(3)/(4))×(-12)6. -1 - [2 - (1 - (1)/(3)×0.5)]四、解答题(共25分)1. (8分)在数轴上表示下列各数,并比较它们的大小:-3,0,2.5,-1(1)/(2),4。

七年级数学上册《第一章-有理数》单元测试题及答案(人教版)

七年级数学上册《第一章-有理数》单元测试题及答案(人教版)

七年级数学上册《第一章有理数》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走5步记作+5步,那么向南走10步记作()A.+10步B.−10步C.+12步D.−2步2.有理数−12,5,0,-(-3),-2,-|-25|中,负数的个数为()A.1B.2C.3D.43.大于-1且小于2的整数有()A.1个B.2个C.3个D.4个4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是()A.甲B.乙C.丙D.丁5.有理数a、b、c、d在数轴上的对应点的位置如图所示,则下列结论中正确的为()A.a>b B.a+d>0C.|b|>|c|D.bd>06.某种植物成活的主要条件是该地区的四季温差不得超过30℃,若不考虑其他因素,表中的四个地区中,适合大面积栽培这种植物的地区()地区温度甲地区乙地区丙地区丁地区四季最高气温/℃2524324四季最低气温/℃-7-5-11-28 A.甲B.乙C.丙D.丁7.−12023的倒数是()A .2023B .12023C .−2023D .−120228.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a −b >0C .−a >−b >aD .a ⋅b >09. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .0.46×107B .4.6×106C .4.6×107D .46.0×10510.祖冲之是我国古代杰出的数学家,他首次将圆周率π精算到小数第七位,即3.1415926<π<3.1415927,则精确到百分位时π的近似值是( ) A .3.1B .3.14C .3.141D .3.142二、填空题11.某单位开展了职工健步走活动,职工每天健步走5000步即为达标.若小夏走了6200步,记为+1200步,小辰走了4800步,记为 步.12.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次引入负数.下图是小明家长11月份的微信账单,如果收入3377.51元记作+3377.51元,那么支出5333.73元记作 元.13.比较大小:−(13)2 −(12)3(填 > 或者 < 或者 =).14.点A 为数轴上表示−1的点,若将点A 沿数轴一次平移一个单位,平移两次后到达点B ,则点B 表示的数是 .15.若a=4,|b|=3,且ab<0,则a+b= .16.整数a 、b 、c 满足1000|a|+10|b|+|c|=2023,其中|a|>1且abc>1,则a+b+c 的最小值是 .三、计算题17.计算:(1)15+(−13)+18 (2)−10.25×(−4)(3)−12÷4×3(4)−23×3+2×(−3)2四、解答题18.某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米20元,升旗台的台阶宽为3米,其侧面如图所示,请你帮助测算一下,买地毯至少需要多少元?19.已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.20.若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.21.在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?22.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是-6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100米气温大约降低0.6℃,这座山峰的高度大约是多少米?参考答案与解析1.【答案】B【解析】解:向北走5步记作+5步,那么向南走10步记作−10步故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】C【解析】解:−(−3)=3,−|−25|=−25∴有理数−12,5,0,-(-3),-2,-|-25|中是负数的有−12,−2,−|−25|共3个故答案为:C.【分析】首先根据相反数及绝对值的性质将需要化简的数分别化简,再根据小于0的数就是负数即可判断得出答案.3.【答案】B【解析】解:大于-1且小于2的整数有0、1,共2个.故答案为:B.【分析】根据有理数比较大小的方法进行解答.4.【答案】D【解析】|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.60.6<0.7<1.5<3.5最接近标准质量的足球是丁.故答案为:D【分析】根据绝对值最小的最接近标准加以判定。

七年级数学第一章有理数测试试卷及答案(共6套)

七年级数学第一章有理数测试试卷及答案(共6套)

七年级数学第一章有理数测试题(一)一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯ 2、大于–3.5,小于2.5的整数共有( )个。

(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) (A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大 (C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数 C 、整数 D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=1 10、如果a <0,那么a 和它的相反数的差的绝对值等于( ) A.a B.0 C.-a D.-2a 二、填空题:(每题2分,共42分) 1、()642=。

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

21.计算: (1)﹣20+(﹣14)﹣(﹣18)﹣|13|; (2) (1 1 3) (48) ;
68 (3)﹣32+(﹣ 1 )2×(﹣3)3÷(﹣1)25
3
1 22.已知数 3.3,-2,0, ,-3.5.
8 (1) 比较这些数的大小,并用“<”号连接起来; (2) 比较这些数的绝对值的大小,并将这些数的绝对值用“>”号连接起来; (3) 比较这些数的相反数的大小,并将这些数的相反数用“<”号连接起来.
法表示为( )
A.1.7×104
B.1.7×105
C.1.7×106
D.0.17×106
8.若 a b 0 ,则 a 和 b 的关系为( )
A.相等
B.互为倒数
9. 1 2 的倒数的绝对值是( ) 5
A.1 2 5
B.1 5 2
6. 1 2022 1 2023 的值是( )
C.互为相反数
a A.
b
B.b﹣a
C.a+b
D.ab
6.用四舍五入按要求对 0.04018 分别取近似数,其中正确的是( ).
A.0.4(精确到 0.1)
B.0.040(精确到百分位)
C.0.040(精确到 0.001)
D.0.0402(精确千分位)
7.据北京市通信管理局披露,截至 3 月 30 日,北京市已建设了 5G 基站数量超过 17000 个.将 17000 用科学记数
则此时蜗牛离地面的距离为 米.
15.气象部门测定,高度每增加 1 千米,气温大约下降 5℃,现在地面气温是 18℃,那么 4 千米高空的气温
,若开始输入 x 2 ,则最后输出的结果是 .
17.据统计,2021 年国庆小长假期间,我市累计接待游客 197.9 万人次,实现旅游总收入 969000000 元.数据 969000000

2024-2025学年七年级数学上册 第一章 有理数 单元测试题(含详解)

2024-2025学年七年级数学上册 第一章  有理数  单元测试题(含详解)

第1章 有理数(单元重点综合测试)考试范围:全章的内容; 考试时间:120分钟; 总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.−3的相反数是( )A .−3B .3C .−13D .132.如果把收入2024元记作+2024,那么支出2024元记作( )A .2024B .12024C .|2024|D .−20243.下列运算结果为负数的是( )A .|−3|B .|−(−3)|C .−(−3)D .−|−3|4.下列说法中,正确的是( )A .0既不是整数也不是分数B .绝对值等于本身的数是0和1C .不是所有有理数都可以在数轴上表示D .整数和分数统称为有理数5.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个6.如图,数轴上被墨水遮盖的数的绝对值可能是( )A .−72B .−52C .72D .527.已知a =−|−3|,b =+(−0.5),c =−1,则a 、b 、c 的大小关系是( )A .b >c >aB .a >c >bC .a >b >cD .c >b >a8.凝固点是晶体物质凝固时的温度,标准大气压下,下列物质中凝固点最低的是( )物质钨水银煤油水凝固点3412℃−38.87℃−30℃0℃A .钨B .水银C .煤油D .水9.实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A.a>−1B.b>1C.−a<b D.−b>a10.数轴上点A表示的数是−2,将点A沿数轴移动3单位长度得到点B,则点B表示的数是()A.−5B.1C.−1或5D.−5或1二、填空题(本大题共6小题,每小题3分,共18分)11.用“>”“<”“=”号填空:−76−6 7.12.化简:|−35|=;−|−1.5|=;|−(−2)|=.13.我国古代数学名著《九章算术》中已经用正负数来表示相反意义的量.如果节约50cm3的水记为+50cm3,那么浪费10cm3的水记为.14.如图,在数轴上有A、B两点,点A表示的数是−2024,点O为原点,若OA=OB,则点B表示的数是.15.若|x−1|+|y−5|=0,那么x=,y=.16.如图,在数轴上,点A表示的数是10,点B表示的数为50,点P是数轴上的动点.点P沿数轴的负方向运动,在运动过程中,当点P到点A的距离与点P到点B的距离比是2:3时,点P表示的数是.三、(本大题共4小题,每小题6分,共24分)17.某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?18.下面是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:−3;3.5;−(−212);−|−1|.19.有理数a,b在数轴上的对应点的位置如图所示.(1)判断:−a_______1(填“>”,“<”或“=”);(2)用“<”将a,a+1,b,−b连接起来(直按写出结果)20.把下面各数填在相应的大括号里(将各数用逗号分开):−18,3.14,0,2024,−3,5 80%,π,−|−5|,−(−7).2负整数集合{……}整数集合{……}正分数集合{……}非负整数集合{……}有理数{……}四、(本大题共3小题,每小题8分,共24分)21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,他从A处出发去看望B、C、D处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A到B记为A→B{1,4},从B到A记为:B→A{−1,−4},其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C{______,______},C→B{______,______}:(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M、N,且M→A{1−a,b−5},M→N{5−a,b−2},则A→N应记为什么?直接写出你的答案.22.数轴上表示有理数a,b,c,d的点的位置如图所示:(1)请将有理数a,b,c,d按从小到大的顺序用“<”连接起来:______;(2)如果|a|=4,表示数b的点到原点的距离为6,|c|=2,c与d距离原点的距离相等,则a= ______,b=______,c=______,d=______.23.有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x+2|x|=3,解:当x≥0时,方程可化为:x+2x=3,解得x=1,符合题意;当x<0时,方程可化为:x−2x=3,解得x=−3,符合题意.所以,原方程的解为x=1或x=−3.请根据上述解法,完成以下问题:解方程:x+2|x−1|=3;五、(本大题共2小题,每小题12分,共24分)24.点A、B、C、D、E在数轴上位置如图所示(1)点A、B、C、D、E所表示的有理数分别是______,用“<”把它们连接起来是______.(2)点F所对应的有理数是−5,请在数轴上标出点F的位置2(3)A、B之间的距离是多少?A、E之间的距离是多少?若数轴上有两点M、N,且它们对应的有理数分别是a和b,则M、N之间的距离是多少?(用含a,b的代数式表示)25.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a−b|.利用数形结合的思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和−10的两点之间的距离是;(2)数轴上表示x和−2的两点之间的距离表示为;(3)若x表示一个有理数,|x−1|+|x+3|有最小值吗?若有,请求出最小值,若没有写出理由.(4)若x表示一个有理数,求|x+4|+|x−5|+|x+6|的最小值.参考答案:1.B【分析】本题考查了相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解答此题的关键.根据符号不同,绝对值相同的两个数互为相反数即可求得答案.【详解】解:−3的相反数是3.故选:B2.D【分析】本题考查正数和负数,理解具有相反意义的量是解题的关键.正数和负数是一组具有相反意义的量,据此即可求得答案.【详解】解:收入2024元记作+2024,那么支出2024元记作−2024,故选:D3.D【分析】本题考查了有理数的绝对值、相反数等,解题的关键是正确理解有理数的绝对值以及相反数的意义.|−3|=3,结果为正数,故A错误;|−(−3)|=3,结果为正数,故B错误;−(−3)=3,结果为正数,故C错误;−|−3|=−3,结果为负数,故D正确.【详解】解:A、|−3|=3,结果为正数,故A错误;B.|−(−3)|=3,结果为正数,故B错误;C.−(−3)=3,结果为正数,故C错误;D.−|−3|=−3,结果为负数,故D正确.故选:D.4.D【分析】本题考查数轴,有理数,绝对值,关键是掌握有理数、整数的概念,由有理数和整数的概念,即可判断.【详解】解:A、0是整数,故A不符合题意;B、绝对值等于本身的数是0或正数(非负数),故B不符合题意,C、所有理数都可以在数轴上表示,故C不符合题意;D、整数和分数统称为有理数,正确,故D符合题意.故选:D.5.B【分析】本题考查了非负数的定义,解题的管计划司掌握非负数的定义.根据“零和整数统称为非负数”,即可求解.【详解】解:非负数有:3.1415,0,2.010010001…,共3个,故选:B.6.C【分析】本题主要考查了有理数与数轴,求一个数的绝对值.根据数轴确定该数的绝对值在3到4之间即可判断.【详解】解:由题意得,遮住的数在−4到−3之间,∴遮住的数的绝对值在3到4之间,∴四个选项中只有C选项符合题意,故选:C.7.A【分析】此题考查了绝对值,多重符号化简,有理数的大小比较,先化简个数,再根据有历史大小比较的方法比较即可.【详解】解:∵a=−|−3|=−3,b=+(−0.5)=−0.5,c=−1,∴−0.5>−1>3,∴b>c>a,故选:A.8.B【分析】本题考查了正负数,绝对值越大的负数反而越小,据此即可作答.【详解】解:∵|−38.87℃|=38.87℃,|−30℃|=30℃,38.87℃>30℃,∴−38.87℃<−30℃,∴下列物质中凝固点最低的是水银,故选:B.9.D【分析】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.根据数轴上的点的特征即可判断.【详解】解:A:∵点a在−1的左边,∴a<−1,故该选项不符合题意;B:∵点b在1的左边,∴b<1,故该选项不符合题意;C:∵a<−1,∴−a>1,又∵b<1,∴−a>b,故该选项不符合题意;D :∵ b <1,∴ −b >−1,又∵ a <−1,∴ −b >a ,故该选项符合题意;故选:D .10.D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:−2−3=−5,可得点A 向右移动时:−2+3=1,综上可得点B 表示的数是−5或1,故选D .11.<【分析】本题考查了有理数的大小比较,解决本题的关键是掌握两个负数大小的比较,绝对值大的其值反而小.根据两个负数,绝对值大的其值反而小即可比较.【详解】解:∵ |−76|=76,|−67|=67,而76>67,∴ −76<−67.故答案为:<.12. 35 −1.5 2【分析】本题考查了绝对值:若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=−a .【详解】解:|−35|=35,−|−1.5|=−1.5,|−(−2)|=2,故答案为:35,−1.5,2.13.−10cm 3【分析】本题考查正数和负数,正数和负数是一组具有相反意义的量,据此即可求得答案,熟练掌握具有相反意义的量是解决此题的关键【详解】解:如果节约50cm 3的水记为+50cm 3,那么浪费10cm 3的水记为−10cm 3,故答案为:−10cm 3.14.2024【分析】本题考查了数轴上两点间的距离,相反数的意义.根据数轴上两点间的距离,即可求解.【详解】解:∵点A 表示的数是−2024,OA =OB ,∴点A 点B 表示的数互为相反数,∴点B 表示的数为:−(−2024)=2024,故答案为:2024.15. 1 5【分析】本题考查了绝对值的非负性和解一元一次方程,熟练掌握任何数的绝对值都是非负数是解题的关键,据此作答即可.【详解】∵|x−1|+|y−5|=0,|x−1|≥0,|y−5|≥0,∴x−1=0,y−5=0,解得x =1,y =5,故答案为:1,5.16.26或−70【分析】本题考查了数轴上的动点问题、数轴上两点间的距离.可分为“当点P 运动到点A 右侧时”和“当点P 运动到点A 左侧时”两种情况讨论,根据“点P 到点A 的距离与点P 到点B 的距离比是2:3”,列式计算即可,根据数轴得到两点间的距离是解题的关键.【详解】解:∵在点P 运动过程中,点P 到点A 的距离与点P 到点B 的距离比是2:3,∴PA:PB =2:3,当点P 运动到点A 右侧时,PA =23+2AB =25×(50−10)=16,∴此时点P 表示的数是10+16=26;当点P 运动到点A 左侧时,PA =23−2AB =2×(50−10)=80,∴此时点P 表示的数是10−80=−70,综上所述,点P 表示的数是26或−70.故答案为:26或−7017.合格,过程见详解【分析】本题考查用正负数表示变化的量,在用正负数表示变化的量时,先规定其中的一个为正(或负),则其相反意义的量就用负(或正)表示.理解500±30(mL )的意义,根据题意进行判断即可.【详解】解:“500±30(mL )”是500 mL 为标准容量,470~530(mL )是合格范围,故503mL,511mL,489mL,473mL,527mL,抽查产品的容量是合格的.18.(1)见解析(2)−3<−|−1|<−(−212)<3.5【分析】本题主要考查了用数轴表示有理数,根据数轴比较有理数的大小,化简绝对值和多重符号:(1)先规定向右为正方向,以及单位长度,再化简绝对值和多重符号,最后表示出各数即可;(2)根据数轴上左边的数小于右边的数用小于号将各数连接起来即可.【详解】(1)解:−(−212)=212,−|−1|=−1(2)解;由数轴可得,−3<−|−1|<−(−212)<3.5.19.(1)<(2)−b<a<a+1<b.【分析】(1)利用数轴和相反数的意义解答即可;(2)利用数轴和相反数的意义解答即可.【详解】(1)解:∵−1<a<0,∴0<−a<1.故答案为:<;(2)解:∵−1<a<0,b>1,∴0<a+1<1,−b<−1,如图,∴−b<a<a+1<b.20.见解析【分析】本题考查了正数,负数,整数,分数,有理数,以及无理数的概念,解题的关键是熟练掌握相关定义,要注意的是本题中的π2是无限不循环小数,为无理数.【详解】解:∵ −|−5|=−5,−(−7)=7,3.14=3750,80%=45,∴ 这些数可按如下分类,负整数集合{−18,−|−5|……}整数集合{−18,0,2024,−|−5|,−(−7)……}正分数集合{3.14,80%……}非负整数集合{0,2024,−(−7)……}有理数{−18,3.14,0,2024,−35,80%,−|−5|,−(−7)……}21.(1)3,4;−2,0(2)10(3)(4,3)【分析】本题考查了正负数在网格线中的运动路线问题,数形结合,明确运动规则,是解题的关键.(1)根据向上向右走均为正,向下向左走均为负,分别写出各点的坐标即可;(2)分别根据各点的坐标计算总长即可;(3)将M→A ,M→N 对应的横纵坐标相减即可得出答案.【详解】(1)解:图中A→C {3,4},C→B {−2,0}故答案为:3,4;−2,0.(2)解:由已知可得:A→B 表示为{1,4},B→C 记为{2,0},C→D 记为{1,−2},则该甲虫走过的路程为:1+4+2+1+2=10.(3)解:由M→A {1−a,b−5},M→N {5−a,b−2},可知:5−a−(1−a )=4,b−2−(b−5)=3,∴点A 向右走4个格点,向上走3个格点到点N ,∴A→N 应记为(4,3).22.(1)a <c <d <b(2)−4,6,−2,2【分析】此题主要考查了数轴以及绝对值的性质,正确利用数形结合得出答案是解题关键.(1)利用数轴上a,b,c,d的位置进而得出大小关系;(2)利用绝对值的意义以及结合数轴得出答案【详解】(1)由题意得:a<c<d<b,故答案为:a<c<d<b;(2)∵|a|=4,a<0,∴a=−4,∵数b的点到原点的距离为6,b>0,∴b=6,∵|c|=2,c<0,∴c=−2,∵c与d距离原点的距离相等,d>0,∴d=2.故答案为:−4,6,−2,2.23.x=−1或x=53【分析】本题考查了含绝对值符号的一元一次方程,分类讨论:x<1,x≥1,根据绝对值的意义,可化简绝对值,根据解方程,可得答案是解题关键,以防遗漏.【详解】当x<1时,方程可化为:x+2(1−x)=3,解得x=−1,符合题意;,符合题意;当x≥1时,方程可化为:x+2(x−1)=3,解得x=53.所以,原方程的解为:x=−1或x=5324.(1)−3,2,3.5,0,−1;−3<−1<0<2<3.5(2)见详解(3)5;2;|a−b|【分析】本题主要考查了数轴表示有理数、利用数轴比较大小和数轴上两点之间的距离.(1)根据数轴写出对应点的有理数,然后利用数轴比较有理数的大小即可.(2)根据有理数的大小在数轴上标出即可.(3)根据数轴上两点的距离公式求解即可.【详解】(1)解:如图,点A、B、C、D、E所对应的有理数分别是:−3,2,3.5,0,−1利用数轴从左到右依次增大,可得A<E<D<B<C.即−3<−1<0<2<3.5故答案为:−3,2,3.5,0,−1;−3<−1<0<2<3.5在−2和−3的正中间,标示如下:(2)−52(3)A、B之间的距离是:|2−(−3)|=5;A、E之间的距离是:|(−3)−(−1)|=|−2|=2,M、N之间的距离是|a−b|25.(1)8;12(2)|x+2|(3)|x−1|+|x+3|有最小值,最小值为4(4)11【分析】本题主要考查的是数轴、绝对值,理解绝对值的几何意义是解题的关键.(1)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(2)依据在数轴上A、B两点之间的距离AB=|a−b|求解即可;(3)根据题意可得|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,即可;(4)根据题意可得|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,即可.【详解】(1)解:|10−2|=8;|2−(−10)|=12;故答案为:8;12.(2)数轴上表示x和−2的两点之间的距离表示为|x−(−2)|=|x+2|;故答案为:|x+2|.(3)解:|x−1|+|x+3|有最小值,根据题意得:|x−1|+|x+3|表示数轴上x和1的两点之间与x和−3的两点之间距离和,∵1−(−3)=4,∴|x−1|+|x+3|有最小值,最小值为4;(4)解:根据题意得:|x+4|+|x−5|+|x+6|表示数轴上x和−4的两点之间,x和5的两点之间与x和−6的两点之间距离和,∴当x=−4时,有最小值,最小值为5−(−4)+(−4)−(−6)=11.。

(必考题)初中七年级数学上册第一章《有理数》经典测试题(含答案解析)

(必考题)初中七年级数学上册第一章《有理数》经典测试题(含答案解析)

一、选择题1.(0分)下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 2.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.(0分)下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.(0分)已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.(0分)若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( )A .(-3.4)3<(-3.4)4<(-3.4)5B .(-3.4)5<(-3.4)4<(-3.4)3C .(-3.4)5<(-3.4)3<(-3.4)4D .(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5 ;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.(0分)下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误; B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误;D、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确;故选:D.【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.9.(0分)下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则a b=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数,∴a 的倒数小于b 的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】 本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.(0分)已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键. 二、填空题11.(0分)若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性 解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.12.(0分)若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 13.(0分)计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算 解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12) =1-2×(9+12)=1-2×192=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 14.(0分)填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.15.(0分)下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.16.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元). 故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.17.(0分)把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.(0分)若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 三、解答题21.(0分)高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;++-+++-+-+++-+-++++⨯,(2)(17971531168516)0.2=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.22.(0分)点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.23.(0分)计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(0分)定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 25.(0分)设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.26.(0分)计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭(2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.27.(0分)如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.28.(0分)计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷=9 12 -+=72.【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.。

初一数学第一章有理数单元测试题及答案

初一数学第一章有理数单元测试题及答案

七年级数学有理数单元测试题(新人教版)一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数2、下列各对数中,数值相等的是()A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)33、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是()A -12B -9C -0.01D -54、如果一个数的平方与这个数的差等于0,那么这个数只能是()A 0B -1C 1D 0或15、绝对值大于或等于1,而小于4的所有的正整数的和是()A 8B 7C 6D 56、计算:(-2)100+(-2)101的是()A 2100B -1C -2D -21007、比-7.1大,而比1小的整数的个数是()A 6B 7C 8D 98、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确的是( )A.1.205×107 B.1.20×108 C.1.21×107 D.1.205×1049、下列代数式中,值一定是正数的是( )A.x2 B.|-x+1| C.(-x)2+2 D.-x2+110、已知8.622=73.96,若x2=0.7396,则x的值等于()A 86. 2B 862C ±0.862D ±862二、填空题(本题共有9个小题,每小题2分,共18分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。

初中数学七年级上册第一章:有理数测试题(含答案)

初中数学七年级上册第一章:有理数测试题(含答案)

《第1章有理数》单元测试卷一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣12.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣3.2015的相反数是()A.B.﹣C.2015D.﹣20154.﹣的相反数是()A.2B.﹣2C.D.﹣5.6的绝对值是()A.6B.﹣6C.D.﹣6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是() A.﹣10℃B.10℃C.14℃D.﹣14℃8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为__________.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是__________,第n个数是__________(n为正整数).13.﹣3的倒数是__________,﹣3的绝对值是__________.14.数轴上到原点的距离等于4的数是__________.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是__________.16.在数轴上点P到原点的距离为5,点P表示的数是__________.17.绝对值不大于2的所有整数为__________.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:__________.负数集:__________.有理数集:__________.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m的值.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.新人教版七年级上册《第1章有理数》单元测试卷解析版一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数大小比较的法则,可得﹣1<﹣,所以在﹣,0,,﹣1这四个数中,最小的数是﹣1.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.2015的相反数是()A.B.﹣C.2015D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.4.﹣的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.6的绝对值是()A.6B.﹣6C.D.﹣【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:6是正数,绝对值是它本身6.故选:A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是1【考点】绝对值;有理数;相反数.【分析】分别利用绝对值以及有理数和相反数的定义分析得出即可.【解答】解:A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.故选:D.【点评】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.7.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【考点】相反数;倒数;有理数大小比较;有理数的减法.【分析】根据相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选:D.【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,掌握有关的概念和法则是解题的关键.9.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D【考点】实数与数轴;估算无理数的大小.【分析】先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1【考点】绝对值.【分析】根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.【解答】解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A【点评】此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为5.3×10﹣7.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为5.3,10的指数为﹣7.【解答】解:0.00000053=5.3×10﹣7.故答案为:5.3×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是8,第n 个数是(n为正整数).【考点】规律型:数字的变化类.【专题】规律型.【分析】观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是(n+1).【解答】解:第7个数是(7+1)=8;第n 个数是(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.13.﹣3的倒数是﹣,﹣3的绝对值是3.【考点】倒数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣3的绝对值是3,故答案为:,3.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.14.数轴上到原点的距离等于4的数是±4.【考点】数轴.【分析】根据从原点向左数4个单位长度得﹣4,向右数4个单位长度得4,得到答案.【解答】解:与原点距离为4的点为:|4|,∴这个数为±4.故答案为:±4.【点评】本题考查的是数轴的知识,灵活运用数形结合思想是解题的关键,解答时,要正确理解绝对值的概念.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是0或4或﹣4.【考点】有理数的混合运算;绝对值.【分析】根据绝对值的性质求出a的值,根据平方根求出b的值,再根据|a+b|=a+b可知,a+b≥0,然后确定出a、b的值,再代入进行计算即可.【解答】解:∵|a|=4,∴a=2或﹣2,∵b2=4,∴b=2或﹣2,∵|a+b|=a+b,∴a+b≥0,∴a=2时,b=2,或a=2时,b=﹣2,或a=﹣2时,b=2,∴a﹣b=2﹣2=0,或a﹣b=2﹣(﹣2)=4,或a﹣b=(﹣2)﹣2=﹣4,综上所述,a﹣b的值是0或4或﹣4.故答案为:0或4或﹣4.【点评】本题考查了有理数的混合运算,绝对值的性质,平方根的概念,根据题意求出a、b的值是解题的关键.16.在数轴上点P到原点的距离为5,点P表示的数是±5.【考点】数轴.【专题】推理填空题.【分析】根据数轴上各点到原点距离的定义进行解答.【解答】解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.【点评】本题考查的是数轴上各数到原点距离的定义,即数轴上各点到原点的距离等于各点所表示的数绝对值.17.绝对值不大于2的所有整数为0,±1,±2.【考点】绝对值.【专题】计算题.【分析】找出绝对值不大于2的所有整数即可.【解答】解:绝对值不大于2的所有整数为0,±1,±2.故答案为:0,±1,±2.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:5%、﹣2.3、、3.1415926、﹣、.负数集:﹣11、﹣2.3、﹣、﹣9.有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:分数集:5%、﹣2.3、、3.1415926、﹣、;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣、;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n 变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。

七年级数学上册第一章《有理数》测试题1(含解析)(新版)新人教版

七年级数学上册第一章《有理数》测试题1(含解析)(新版)新人教版

第一章《有理数》单元测试题一、选择题(每小题只有一个正确答案)1.﹣的相反数是()A. 4 B.﹣ C. D.﹣42.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元 B.﹣237元 C. 237元 D. 503.下列说法正确的是()A.正数和负数统称有理数 B.正整数和负整数统称为整数C.小数不是分数 D.整数和分数统称为有理数4.在,+7, 0,,中,负数有()A. 4个 B. 3个 C. 2个 D. 1个5.下列说法中错误的是()A.正分数、负分数统称分数 B.零是整数,但不是分数C.正整数、负整数统称整数 D.零既不是正数,也不是负数6.下列各数:,,,,,,…中,有理数的个数有()A. 4个 B. 5个 C. 6个 D. 0个7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.﹣1 B. 0 C. 1 D.不存在8.“厉害了我的国”一档电视节目展示了我国国内生产总值由2006年的3645亿元增长到2017年的82.712万亿元,用科学记数法表示应为()A.0.82712×1014 B.8.2712×1013 C.8.2712×1014 D.8.2712×10129.如果a、b互为相反数,且b≠0,则式子a+b,,|a|﹣|b|的值分别为()A. 0,1,2 B. 1,0,1 C. 1,﹣1,0 D. 0,﹣1,010.数轴上一点表示的有理数为,若将点向右平移个单位长度后,点表示的有理数应为()A. B. C. D.11.京九铁路的全长用四舍五入法得到近似数为,则它精确到( ) A.万位 B.十万位 C.百万位 D.千位12.若,,,的大小关系是()A. B. C. D.二、填空题13.比较大小:________;________;________14.如果定义为与中较大的一个,那么________.15.下列算式中,①,②,③,④,⑤.计算错误的是________.(填序号)16.若m、n互为相反数,x、y互为倒数,则m+n+xy+=__.17.已知|x|=5,|y|=4,且x>y,则2x+y的值为____________.三、解答题18.将下列各数填入相应的集合中:—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,有理数集合:{ };无理数集合:{ };整数集合:{ };分数集合:{ }19.计算:(1)|-3|-5×(-)+(-4); (2)(-2)2-4÷(-)+(-1)2017.20.计算:(1)-18×;(2)(-1)3-÷3×[2-(-3)2].21.把下列各数表示的点画在数轴上,并用“”把这些数连接起来,然后指出哪些是负数、哪些是分数、哪些是非负整数.,,,,,22.已知a,b互为相反数,且a≠0,c,d为倒数,m的绝对值为3,求m(2a+2b)2015+(cd)2016+()2017-m2的值.23.蜗牛从某点O开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):,,,,,,.通过计算说明蜗牛是否回到起点O.蜗牛离开出发点O最远时是多少厘米?在爬行过程中,如果每爬厘米奖励粒芝麻,则蜗牛一共得到多少粒芝麻?24.阅读下面的解题过程:计算:(-15)÷×6.解:原式=(-15)÷×6(第一步)=(-15)÷(-1)(第二步)=-15.(第三步)回答:(1)上面解题过程中有两处错误,第一处是第________步,错误的原因是________________;第二处是第________,错误的原因是________________.(2)把正确的解题过程写出来.参考答案1.C【解析】【分析】根据只有符号不同的两个数互为相反数,即可得出答案.【详解】解:的相反数是.故答案为:C.【点睛】此题主要考查相反数的意义,熟记相反数的意义是解题的关键.2.B【解析】【分析】根据条件“收入为正、支出为负”进行解答.【详解】依题意,规定收入为正,支出为负,那么支出237元应记作﹣237元,选项B正确. 【点睛】本题考查用正负数表示两个具有相反意义的量,属基础题.3.D【解析】【分析】根据有理数的分类及整数,分数的概念解答即可.【详解】A中正有理数,负有理数和0统称为有理数,故A错误;B中正整数,负整数和0统称为整数,故B错误;C中小数3.14是分数,故C错误;D中整数和分数统称为有理数,故D正确.故选D.【点睛】本题考查了有理数,整数,分数的含义.掌握有理数,整数,分数的含义是解题的关键.4.C【解析】【分析】根据小于0的数即为负数解答可得.【详解】在,+7, 0,,数中,负数有-1,共2个,故选C.【解答】解:在-4,0,-1.5,3,-2,15数中,负数有-4、-1.5、-2这3个,故选:B.【点评】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键.5.C【解析】【分析】根据有理数、分数、整数的含义和分类,逐项判断即可.【详解】:∵正分数、负分数统称分数,∴选项A正确;∵零是整数,但不是分数,∴选项B正确;∵正整数、负整数、0统称整数,∴选项C不正确;∵零既不是正数,也不是负数,∴选项D正确.故选C.【点睛】此题主要考查了有理数、分数、整数的含义和分类,要熟练掌握,解答此题的关键是要明确:0是自然数.6.C【解析】【分析】根据有理数的定义解答即可.【详解】在﹣6,﹣3.14,﹣π,,0.307,4,0.212121…中,有理数有﹣6,﹣3.14,,0.307,4,0.212121…共6个.故选C.【点睛】本题考查了有理数的定义,掌握有理数是有限小数或无限循环小数是解题的关键.7.A【解析】【分析】先根据自然数,整数,有理数的概念分析出a,b,c的值,再进行计算.【详解】∵最小的自然数是0,最大的负整数是﹣1,绝对值最小的有理数是0,∴a+b+c=0+(﹣1)+0=﹣1,故选A.【点睛】本题考查了有理数的加法运算,解题的关键是知道最小的自然数是0,最大的负整数是-1,绝对值最小的有理数是0.8.B【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】82.712万亿= 8.2712×1013故选:B【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学记数法意义.9.D【解析】【详解】∵a、b互为相反数,且b≠0,∴a+b=0,=﹣1,|a|﹣|b|=0,则式子a+b,,|a|﹣|b|的值分别为0,﹣1,0.故选D.10.C【解析】【分析】根据平移的性质,进行分析选出正确答案.【详解】﹣2+3=1.故A点表示的有理数应为1.故选C.【点睛】本题考查了数轴,利用点在数轴上左减右加的平移规律是解决问题的关键.11.B【解析】【分析】根据近似数精确到哪一位,应当看末位数字5实际在哪一位,写出原数即可得出答案.【详解】∵2.5×106=2500000,5在十万位,∴2.5×106精确到十万位;故选:B.【点睛】考查近似数的精确度问题,解决问题的关键是正确区分精确度与有效数字的确定方法. 12.A【解析】【分析】根据﹣1<m<0,可得:0<m2<1,<﹣1,据此判断出m,m2,的大小关系即可.【详解】∵﹣1<m<0,∴0<m2<1,<﹣1,∴<m<m2.故选A.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.【解析】【分析】先根据乘方的定义进行计算,再根据有理数大小比较方法比较即可求解.【详解】解:∵43=64,34=81,64<81,∴43<34;∵(-5)2=25,52=25,∴(-5)2=52;∵-|-3|=-3,-(-3)=3,-3<3,∴-|-3|<-(-3).故答案为:<;=;<.【点睛】考查了有理数大小比较,本题的关键是根据乘方的定义进行计算,求出结果.14.【解析】【分析】根据规则计算出与,比较大小即可得到答案.【详解】∵-(﹣3)×2=6,-(﹣3)+2=5,∴(﹣3)*2=6.故答案为:6.【点睛】本题考查了有理数的乘法,根据规律解题是解题的关键.15.①②③④【解析】【分析】根据有理数的乘方,有理数的除法和乘法的法则,计算得到结果,即可作出判断.【详解】① ﹣(﹣2)2=﹣4,故错误;②﹣5÷×5=﹣125,故错误;③=,故错误;④(﹣3)2×(﹣)=﹣3,故错误;⑤﹣33=﹣27.故错误.故答案为:①②③④.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.0【解析】【分析】互为相反数的两个数的和为0,商为-1,互为倒数的两个数的积为1.【详解】∵m、n互为相反数,x、y互为倒数,∴m+n=0,,xy=1∴原式=0+1+(-1)=0.【点睛】本题主要考查的是相反数和倒数的性质,属于中等难度题型.明确互为相反数的两个数的和为零,互为倒数的两个数的积为1是解决这个问题的基础.17.6或14【解析】【分析】根据绝对值的性质可得x=±5,y=±4,再根据x>y,可得①x=5,y=4,②x=5,y=﹣4,然后可得2x+y的值.【详解】∵|x|=5,|y|=4,∴x=±5,y=±4.∵x>y,∴①x=5,y=4,2x+y=14;②x=5,y=﹣4,2x+y=6.故答案为:6或14.【点睛】本题主要考查了有理数的加法和绝对值,关键是掌握绝对值等于一个正数的数有两个.18.—7 , 0,, —2.55555……, 3.01, +9,+10﹪;4.020020002…,;—7 ,0, +9 ;, —2.55555……, 3.01, +10﹪.【解析】【分析】根据有理数,无理数,整数,分数的概念进行分类即可.【详解】有理数集合:{ —7 , 0,, —2.55555……, 3.01, +9,+10﹪ };无理数集合:{ 4.020020002…, };整数集合:{ —7 , 0, +9 };分数集合:{ , —2.55555……, 3.01, +10﹪ }【点睛】考查有理数,无理数,整数,分数的概念,整数和分数统称为有理数;无理数指的是无限不循环小数;整数包含正整数,0和负整数.19.(1)2;(2)9.【解析】【分析】(1)先化简绝对值、进行乘法运算,然后再进行加减法运算即可;(2)先进行乘方运算、再进行乘除运算、最后进行加减运算即可得.【详解】(1) )|-3|-5×(-)+(-4)=3-(-3)-4=3+3-4=2;(2) (-2)2-4÷(-)+(-1)2017=4-(-6)-1=4+6-1=9.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序与运算法则是解题的关键.20.(1)-6;(2) .【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-××(-7)=-1+=.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.21.见解析.【解析】【分析】首先在数轴上表示各数,再根据在数轴上表示的两个有理数,右边的数总比左边的数大比较大小;再根据负数小于0和有理数的分类找出负数、分数、非负整数.【详解】,负数:,;分数:,,;非负数:,,,.【点睛】考查了有理数的大小比较以及有理数的分类,掌握在数轴上表示的两个有理数,右边的数总比左边的数大是解题的关键.22.-9.【解析】【分析】根据相反数、互为倒数、正整数的性质,推出a+b=0,cd=1,m=1,整体代入即可解决问题. 【详解】由题意得a+b=0,cd=1,=-1,|m|=3,∴m=±3,∴m2=(±3)2=9,∴原式=m[2(a+b)]2015+12016+(-1)2017-9=m(2×0)2015+1+(-1)-9=-9.【点睛】本题考查有理数的混合运算、相反数、互为倒数、正整数的性质等知识,属于中考常考题型. 23.(1)是回到起点O;(2)8厘米;(3)108.【解析】【分析】(1)分别相加,看是否为0,为0则回到了起点O;(2)分别计算绝对值,再比较大小即可;(3)计算绝对值的和,就是总路程,列式可得结论.【详解】(1)﹣6+12﹣10+5﹣3+10﹣8=0.所以蜗牛可以回到起点O.(2)|﹣6|=6,|﹣6+12|=6,|﹣6+12﹣10|=4,|﹣6+12﹣10+5|=1,|﹣6+12﹣10+5﹣3|=2,|﹣6+12﹣10+5﹣3+10|=8,所以蜗牛离开出发点O最远时是8厘米;(3)(6+12+10+5+3+10+8)×2=54×2=108答:蜗牛一共得到108粒芝麻.【点睛】本题考查了正数和负数的意义和有理数的加减法,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量;相加减时要注意同号相加比较简便.24.第二运算顺序错误第三步符号错误【解析】分析:(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是符号错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.详解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是符号错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、符号错误.点睛:(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数乘法的运算方法,要熟练掌握,解答此题的关键是要明确:两数相乘,同号得正,异号得负,并把绝对值相乘.。

人教版七年级上册数学《有理数》测试题(含答案)

人教版七年级上册数学《有理数》测试题(含答案)

七年级数学单元测试题(一)有理数1、选择题(每题3分, 共30分)A 、有一种记分方法:以80分为准, 88分记为+8分, 则某同学得分为74分, 应记为( )A 、+74 分 B.分 C.+6分 D.分B 、下列各数中, 最小的正数是( )3、 B.0 C 、1 D 、24、下列说法中正确的是( )A.0可以用数轴上的点来表示B.数轴上所有的点都表示有理数C.数轴上找不到既不表示正数也不表示负数的点D.数轴上表示的点一定在原点的右边A 、4.2的相反数是( )A 、 B. C.2 D.B 、若, 则和的关系为( )和相等 B.和互为相反数A 、C.和相等或互为相反数 D.以上答案都不对B 、下列计算, 正确的是( )B.7、C. D 、8、与)()(y x ---相等的式子是( )8、 B. C. D.9、下列说法错误的是( )一个数同1相乘, 仍得这个数 B.一个数同相乘, 得原数的相反数9、C 、互为相反数的数的积为1 D 、一个数同0相乘, 得010、计算31327⨯÷-的结果是( ) 10、 B.27 C. D.311、计算223)2(5)3(--+-的值为( )二、A.2 B.5 C. D.11、填空题(每题4分, 共24分)12、比较大小: .13、1030这个数用科学记数法可表示为 .14、12的相反数与7-的绝对值的和是 .数轴上点A, B 的位置如图所示, 若点A 左侧有一点C 满足AB=AC, 则点C 表示的数为 .15、一个数的倒数是, 这个数是 .三、若是的相反数, =5, 则的值为 .解答题一(每题6分, 共18分)17、计算: 18、计算19、计算:四、解答题二(每题7分, 共21分)20、检查5袋水泥的质量, 把超过标准质量的克数记为正数, 不足标准质量的克数记为负数, 记录结果如下表所示:水泥编号1 2 3 4 5 与标准质量的差 100+ 50- +80 70- 30-(1)用绝对值判断最接近标准质量的是几号水泥;质量最大的水泥比质量最小的水泥重多少克?如图, 在数轴上有三个点A.B.C, 请回答下列问题:若将点B 沿数轴向左移动3个单位长度, 则此时A.B.C 三个点所表示的数中哪个数最小? 最小的数是多少?若将点A 沿数轴向右移动4个单位长度, 则此时A 、B 、C 三个点所表示的数中哪个数最小?最小的数是多少?22.已知, 互为相反数, , 互为倒数, 的绝对值为2, 求的值.23、解答题三(每题9分, 共27分)(1)小虫从某点A出发, 在一直线上来回爬行, 假定向右爬行的路程记为正数, 向左爬行的路程记为负数, 爬行的各段路程依次为(单位:):, , , , , , .(2)小虫最后是否回到出发点A?小虫离开原点最远是多少厘米?在爬行过程中, 如果每爬行1奖励一粒芝麻, 则小虫一共得到多少粒芝麻?先阅读并填空, 再解答问题:(1)我们知道, , ,(2), .(3)作含有的式子表示你所发现的规律: .计算: +….(1)现有一组有规律排列的数: 1, , 2, , 3, , 1, , 2, , 3, , …, 其中1, , 2, , 3, 这六个数按此规律重复出现.(2)第50个数是什么?把从第1个数开始的前2025个数相加, 结果是多少?从第1个数起, 把连续若干个数的平方加起来, 如果和为510, 则共有多少个数的平方相加?有理数参考答案一、DCADC DCCCD二、> 12. 13. 14. 15. 16.或三、解: 原式18、解: 原式)55()1220(+-++-= )212523(75-+==08+- 2775⨯= =8- 25=19、解: 原式四、(2)解: (1)因为5袋水泥中与标准质量的差的绝对值最小的是5号水泥, 所以最接近标准质量的是5号水泥;21、质量最大的是1号水泥, 比标准质量多100, 质量最小的是4号水泥, 比标准质量少, 所以质量最大的水泥比质量最小的水泥重(1)解: 点A 表示, 点B 表示, 点C 表示3(2)将点B 沿数轴向左移动3个单位长度后表示, 此时点B 表示的数最小, 是. 将点A 沿数轴向右移动4个单位长度后表示0, 此时点B 表示的数最小, 是解: 由, 互为相反数, 则;由、互为倒数, 则;由的绝对值为2, 则当时, 原式;当时, 原式.4)2()10()2(3-=-⨯+--⨯=五、解: (1)所以小虫最后回到出发点A.(2)第一次爬行距离原点是cm 5;第二次爬行距离原点是)(235cm =-;第三次爬行距离原点是)(12102cm =+;第四次爬行距离原点是)(4812cm =-; 第五次爬行距原点是)(2264cm =-=-;第六次爬行距离原点是)(10122cm =+-; 第七次爬行距离原点是)(01010cm =-;从上面可以看出小虫离开原点最远是12.cm 小虫爬行的总路程为:24、, 所以小虫一共得到54粒芝麻.(2)解: (1);(3)111+-n n (4)原式816161414121(21-+-+-=+…)2024120221-+)2024121(21-= 40481020=1012255= (2)解: (1)因为……2, 所以第50个数是(3)因为……3, , , 所以从第1个数开始的前2025个数相加, 结果是2. , ……6, 且, , 所以共有111个数的平方相加.。

人教版数学七年级上册第一章有理数测试(含答案)

人教版数学七年级上册第一章有理数测试(含答案)

人教版数学七年级上学期第一章有理数测试一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数的是()A. -2B. 3C. -58D. -0.102.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 14.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣25.下列各对数是互为倒数的是( )A. 4和-4B. -3和13C. -2和12D. 0和06.下列说法中错误的是( )A. 0的相反数是0B. 任何有理数都有相反数C. a的相反数是-aD. 表示相反意义的量的两个数互为相反数7. 如图,数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A. —4B. —2C. 0D. 48.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×1079.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A a+b >0B. a-b=0C. a-b >0D. ab <0二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”) 12.某种零件,标明要求是φ20±0.2 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,该零件_____________(填“合格” 或“不合格”).13. 用四舍五入法取近似数,1.806≈__________(精确到0.01). 14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm ),刻度尺上“0cm ”和“8cm ”分别对应数轴上的3-和,那么的值为___ .16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均正整数),则a+b=_______.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-53),- 3.14-,+31,3--4⎛⎫ ⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}. 18.计算: (1)(-24)×(12-213-38); (2)[2-5×(-12)2]÷1-4⎛⎫ ⎪⎝⎭.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?附加题(共20分,不计入总分)23.已知a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a=a;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 124.已知A,B在数轴上表示的数分别是m,n.(1)填写下表:m 5 -5 -6 -6 -10 -2.5n 3 0 4 -4 2 -2.5A、B两点间的距离(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数是()A. -2B. 3C. -58D. -0.10【答案】B【解析】试题分析:A.﹣2是负数,故本选项不符合题意;B.3是正数,不是负数,故本选项符合题意;C.58是负数,故本选项不符合题意;D.﹣0.10是负数,故本选项不符合题意;故选B.考点:正数和负数.2.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米【答案】A【解析】试题分析:收入20元与支出30元是一对具有相反意义的量.故选A.考点:相反意义的量.3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 1 【答案】D【解析】试题分析:∵﹣2<﹣1<0<1,∴最大的数是1.故选D.考点:有理数大小比较.4.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣2 【答案】A【解析】【详解】解:1﹣(﹣1)=1+1=2. 故选:A .【点睛】本题考查有理数的减法. 5.下列各对数是互为倒数是( ) A. 4和-4 B. -3和13C. -2和12D. 0和0【答案】C 【解析】试题解析:A 、4×(-4)≠1,选项错误; B 、-3×13≠1,选项错误; C 、-2×(-12)=1,选项正确; D 、0×0≠1,选项错误. 故选C . 考点:倒数.6.下列说法中错误的是( ) A. 0的相反数是0 B. 任何有理数都有相反数C. a 的相反数是-aD. 表示相反意义的量的两个数互为相反数【答案】D 【解析】A 中,0的相反数是0本身,故A 不符合题意;B 中,任何有理数都有相反数,故B 不符合题意;C 中,a 的相反数是﹣a ,故C 不符合题意;D 中,只有符号不同的两个数叫做互为相反数.而表示相反意义的量的两个数可以用正数和负数表示. 故选D.点睛:本题考查了相反数,只有符号不同的两个数叫做互为相反数,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 7. 如图,数轴的单位长度为1,如果点A,B 表示的数的绝对值相等,那么点A 表示的数是( )A. —4B. —2C. 0D. 4【答案】B【解析】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选B.8.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×107【答案】C【解析】试题解析:3120000=3.12×106故选C.9.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|【答案】B【解析】【分析】根据乘方运算法则逐一计算即可判断.【详解】A. 22=4,(−2)2=4,故此选项正确;B. −22=−4,(−2)2=4,故此选项错误;C. −33=−27,(−3)3=−27,故此选项正确;D. −33=−27,−|−33|=−27,故此选项正确;故答案选:B.【点睛】本题考查了有理数的乘方运算,解题的关键是熟练的掌握有理数的乘方运算法则.10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A. a+b>0B. a-b=0C. a-b>0D. ab<0【答案】D【解析】【分析】根据图示,可得:a<-1,0<b<1,据此逐项判断即可.【详解】∵a<−1,0<b<1,∴a+b<0,∴选项A不符合题意;∵a<−1,0<b<1,∴∴a−b<0∴选项B不符合题意;∵a<−1,0<b<1,∴a-b<0,∴选项C不符合题意;∵a<−1,0<b<1,∴ab<0,∴选项D符合题意.故答案选:D.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的知识与运用.二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”)【答案】< 【解析】两个负数比较,绝对值大的反而小,故﹣1<1 2 -12.某种零件,标明要求是φ20±0.2 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件_____________(填“合格” 或“不合格”).【答案】合格【解析】【分析】先求出合格直径范围,再判断即可.【详解】解:由题意得,合格直径范围为:19.8mm--20.2mm,若一个零件的直径是19.9mm,则该零件合格.故答案为:合格.【点睛】本题考查了正数和负数的知识,解答本题的关键是求出合格直径范围.13. 用四舍五入法取近似数,1.806≈__________(精确到0.01).【答案】1.90.【解析】试题分析:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.把千分位上的数字6进行四舍五入即可.解::1.806≈1.90(精确到0.01).故答案为1.90.考点:近似数和有效数字.14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.【答案】五【解析】【分析】根据题意可知:质量最接近标准的排球就是检测结果的绝对值最小的.【详解】解:依题意,有|−0.6|<|+0.8|<|−2.5|<|−3.5|<|+5|由于“绝对值越小,距离标准越近”所以质量接近标准的是五号排球.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数的相关知识.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的3 和,那么的值为___ .【答案】5.【解析】试题解析:由数轴可知38,x -+= 解得: 5.x = 故答案 16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均为正整数),则a+b=_______.【答案】209 【解析】试题解析:根据题中规律可知33222221111n n n n n n n n n n n n -++===⋅---- ,则当14n = 时,14a = ,195b =,所以14195209a b +=+= . 故本题的答案为209.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-5.3),- 3.14-,+31,3--4⎛⎫⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}.【答案】+31,0,-(+7),2016;-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39;-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016.【解析】 【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数). 【详解】解:整数:{+31,0,-(+7),2016,…}; 分数:{-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39,…};非负数:{-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016,…}. 【点睛】考查了有理数的知识点,解题的关键是熟练的掌握有理数的分类与定义. 18.计算:(1)(-24)×(12-213-38);(2)[2-5×(-12)2]÷1-4⎛⎫⎪⎝⎭.【答案】(1)37;(2)-3.【解析】【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算再计算乘除运算,最后算加减运算即可得到结果. 【详解】解:(1)原式=-12+40+9=37;(2)原式=(2-54)×(-4)=-8+5= -3.【点睛】本题考查了有理数的综合运算,解决的关键在于符号的处理.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26)=6÷(﹣16)=6×(﹣6)=﹣36.【点睛】本题考查有理数的除法.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)【答案】(1) 8.96×104;(2) 1.792×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】解:(1)1 600 000×56÷1000=89 600=8.96×104(升).答:如果每个人都不关水龙头,那么全市一天早晨漱口要浪费8.96×104升水.(2)89 600×1000÷500=179 200=1.792×105(瓶).答:如果用500毫升的水瓶来装(1)中浪费的水,可以装1.792×105瓶.【点睛】本题主要考查科学记数法—表示较大的数,关键在于要确定a的值和n的值.21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.【答案】(1)149985;(2)99900.【解析】【详解】试题分析:根据题目中所给的规律,第一题凑整法,第二题提同数法解决即可. 试题解析:(1)999×(-15)=(1000-1)×(-15)=15-15000=149985;(2)999×41185+999×(15-)-999×31185=999×[41185+(15-)-3185]=999×100=99900.考点:有理数的运算.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地的什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?【答案】(1) B地在A地的东边18千米处;(2) 还需补充7升油.【解析】试题分析:(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量. 试题解析:(1)∵14﹣9+8﹣7+13﹣6+10﹣5=18>0,∴B 地在A 地的东边18千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+10=23千米;14﹣9+8﹣7+13﹣6+10﹣5=18千米,∴最远处离出发点23千米;(3)∵这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+10+|﹣5|=72千米,应耗油72×0.5=36(升),∴还需补充的油量为:36﹣29=7(升).考点:正数和负数.附加题(共20分,不计入总分)23.已知a 为有理数,定义运算符号▽:当a >-2时,▽a=-a ;当a <-2时,▽a=a ;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 1 【答案】C【解析】【分析】定义运算符号▽当a>-2时, ▽a=-a;当时a<-2, ▽a=a;当a=-2时, ▽a=0,先判断a 的大小,然后按照题中的运算法则求解即可.【详解】2532,-=-<-且当a 2<-时, ▽a=a,▽(-3)=-3.4+▽(2-5)=4-3=1>-2,当a>-2时, ▽a=-a,▽[4+▽(2-5)]=▽1=-1.【点睛】本题考查了学生读题做题的能力.关键是理解“▽”这种运算符号的含义,以便从已知条件里找寻规律. 24.已知A,B 在数轴上表示的数分别是m,n.(1)填写下表:(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.【答案】(1)2,5,10,2,12,0;(2)d=|m-n|;(3)在数轴上标出略,整数点P表示的数可以是5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和0.【解析】【分析】根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.【详解】解:(1)从左到右依次填2,5,10,2,12,0.(2)d=|m-n|.(3) 5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和是0.【点睛】本题是一个新型题目,通过本题我们可掌握数轴上两点间的距离的计算方法:两点间的距离表示两个点的数的差的绝对值,熟悉掌握是关键.。

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上学期第一章有理数测试一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元2.某种大米包装袋上的质量标识为“25±0.5kg ”,现从超市随机检测到四袋大米中不合格的是( ) A. 24.5kg B. 24.8kg C. 25.5kg D. 26.1kg 3.若a 的相反数为1,则a 2019是( )A. 2019B. ﹣2019C. 1D. ﹣14.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对 7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36 B. ﹣20C. 6D. ﹣24 9.若与互为倒数,则()20072008a b ⋅-的值是( ) A. B. a -C. D. b - 10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0b a >,正确的是( ) A. ①② B. ②③ C. ②④ D. ③④11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34 )﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12 ) 20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当集合中.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少? (2)求142与132的相反数的商. 22.已知a =﹣312,b =﹣6.25,c =﹣2.5,求|b|﹣(a ﹣c )的值. 23.今抽查10袋盐,每袋盐标准质量是100克,超出部分记为正,统计成表:盐的袋数2 3 3 1 1每袋超出标准的克数+1﹣0.5 0 +2.5 ﹣2问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油02升,问从A地出发到收工时,共耗油多少升?25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.答案与解析一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元【答案】D【解析】【分析】利用相反意义量的定义判断即可.【详解】解:如果收入150元记作+150元,那么支出100元记作﹣100元.故选D.【点睛】考查具有相反意义的量,解决本题的关键突破口是理解用正数和负数表示具有相反意义的量.2.某种大米包装袋上的质量标识为“25±0.5kg”,现从超市随机检测到四袋大米中不合格的是( )A. 24.5kgB. 24.8kgC. 25.5kgD. 26.1kg【答案】D【解析】【分析】先求出面粉的合格重量的范围,再据此对四个选项逐一判断.【详解】解:质量标识为“25±0.5kg”表示25上下0.5,即24.5到25.5之间为合格;分析答案可得26.1kg不在此范围内,不合格.故选:D.【点睛】考查正数和负数的实际应用,根据面粉包装袋上的质量标识为“25±0.5kg”,求出面粉的合格重量的范围是解题的关键.3.若a的相反数为1,则a2019是( )A. 2019B. ﹣2019C. 1D. ﹣1【答案】D【解析】【分析】先根据相反数的定义求出a,再代入计算即可求解.【详解】∵a的相反数为1,∴a=−1,∴a 2019=(−1)2019=−1.故答案选:D.【点睛】本题考查了相反数的定义,解题的关键是根据相反数的定义求出a 的值.4.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元【答案】D【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】解:321亿元=32100000000元,32100000000元这个数用科学记数法可以表示为3.21×1010元.故选D .【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 【答案】C【解析】【分析】根据已知可知1个细胞从第1次到第3次所分裂的细胞个数分别为21个,22个,23个,从而得出第n 次细胞分裂后的细胞个数.【详解】解:根据已知可知:一个细胞第一次分裂成21个,第二次分裂成22个,第三次分裂成23个,由上述规律可知,第n次时细胞分裂的个数为2n个,设第x次分裂成64个,由题意得2x=64,解得x=6,即第6次分裂细菌分裂成64个,答:由每半小时分裂一次,此细菌由1个分裂成64个,共花费了3个小时.故答案选C.【点睛】本题考查了有理数的乘方,解题的关键是熟练的掌握有理数的乘方的相关知识点.6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对【答案】B【解析】【分析】各式计算得到结果,比较即可.详解】解:①−22=−4,22=4,不相等;②(−3)2=32=9,相等;③|−2|=2,−|−2|=−2,不相等;④(−3)3=−33=−27,相等;⑤−(+3)= −3,相等.故答案选B.【点睛】本题考查了相反数、绝对值与有理数的乘方,解题的关键是熟练度掌握相反数、绝对值与有理数的乘方的性质.7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】根据负数的定义可以判断题目中的哪些数据是负数,从而可以解答本题.【详解】解:在()()228,702,3------,,中, 负数有:27,3---,共2个,故选:C.【点睛】考查有理数的分类,掌握负数的定义是解题的关键.8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36B. ﹣20C. 6D. ﹣24 【答案】A【解析】【分析】根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果.【详解】原式()()122841228436.=--+-=+-=故选A.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.9.若与互为倒数,则()20072008a b ⋅-的值是( ) A.B. a -C.D. b - 【答案】B【解析】【分析】由a 与b 互为倒数,得ab=1,然后逆用积的乘方公式即可求解.【详解】解:∵a 与b 互为倒数,∴ab=1,则原式=()20072007a a b ⋅⋅-=()2007ab a -⋅=()20071-•=a -.故选B .【点睛】本题考查倒数的定义以及积的乘方公式,正确对所求的式子进行变形是关键.10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0ba >,正确的是( )A. ①②B. ②③C. ②④D. ③④ 【答案】B【解析】由点A 、B 在数轴上的位置可知,505b a <-<<<,∴(1)0b a -<;(2)b a ->;(3)a b ->-;(4)0ba <.∴原来四个结论中成立的是②③.故选B.11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】①错误,如,符号改变; ③错误,如0×0,积为0;②④正确.12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数【答案】C【解析】【分析】根据题意利用具特殊值的方法,即可判断出答案.【详解】当x =2时,|5+x |=|5+2|=7,而|5|+|x |=5+2=7,7=7,当x =0时,|5+x |=|5+0|=5,而|5|+|x |=5+0=5,故B 错误.当x =−2时,|5+x |=|5+(−2)|=3,而|5|+|x |=5+2=7,37,≠故A. D 错误;当x 是正数或0时,式子|5+x|=|5|+|x|成立.故选C.【点睛】考查绝对值的定义以及应用,注意分类讨论思想在解题中的应用.二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.【答案】-4【解析】【分析】根据乘积为1的两个数互为倒数,可得互为倒数的两个数的积是1,可得答案.【详解】解:若a 、b 互为倒数,则2ab-6=2-6=-4.故答案为−4.【点睛】本题考查了倒数的定义,解题的关键是熟练的掌握倒数的定义.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.【答案】1【解析】a 等于0,b 等于1.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 【答案】0.【解析】【分析】根据小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0.得到A,B,C 的值,代入运算即可.【详解】A 表示最小的正整数,A=1B 表示最大的负整数 B=﹣1C 表示绝对值最小的有理数,C=0()()1100.A B C ⎡⎤-⨯=--⨯=⎣⎦故答案为0.【点睛】本题需掌握的知识点是:最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.【解析】【分析】根据题意,利用绝对值的代数意义化简求出a 与b 的值,即可确定出a-b 的值.【详解】∵|a |=1,|b |=2,且ab <0,∴a =1,b =−2;a =−1,b =2,则a −b =3或−3.故答案为3或−3.【点睛】考查[有理数的乘法, 绝对值, 有理数的减法,得到a 与b 的值是解题的关键.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.【答案】(4)(5).【解析】【分析】根据有理数加法,减法,乘法法则以及数轴的性质进行判断即可.【详解】(1)两个有理数的和为负数时,这两个数不一定都是负数;例如()32,+-故错误.(2)如果两个数的差是正数,那么这两个数不一定都是正数;例如()12,--故错误.(3)几个有理数相乘,当负因数个数为奇数时,乘积不一定为负;当有一个因数为0时,结果为0.(4)数轴上到原点的距离为3的点表示的数是3或﹣3;正确.(5)0乘以任何数都是0.正确.故答案为(4)(5).【点睛】考查有理数的加法,减法,乘法法则以及数轴的性质,比较基础,难度不大.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.【解析】【分析】根据题中运算程序,将3x =-代入列出关系式中计算,即可得到输出的结果.【详解】根据题意列得:()()232418414.-⨯-+=-+=-则输出的数值为14.-故答案为:14.-【点睛】此题考查了代数式的求值,弄清题中的运算程序是解本题的关键. 三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34)﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12) 【答案】(1)0.9;(2)﹣0.25;(3)﹣6;(4)﹣24;(5)814;(6)63. 【解析】分析】(1)利用加法结合律,进行加减运算即可求解;(2)把减法转化为加法,根据法则进行运算即可.(3)首先计算乘法,最后进行加减运算即可求解;(4)首先计算乘方,再利用分配律计算即可; (5)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;(6)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;【详解】(1)原式=(5.6+4.4)+(﹣0.9﹣8.1﹣0.1)=10﹣9.1=0.9;(2)原式=5﹣0.75﹣7+2.5 =7.5﹣7.75=﹣0.25;(3)原式434306. 555=-=-=-(4)原式191849,9=-⨯-+-=﹣1﹣18+4﹣9, =﹣24;(5)原式()18864,8=-÷-+118,88=++184=;(6)原式=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当的集合中.【答案】详见解析.【解析】【分析】根据小于零的数是负数,可得负数集合;根据形如-1,-2,0,1,3,5…是整数,可得整数集合.【详解】解:∵﹣12=﹣1,﹣|﹣12|=﹣12,﹣(﹣5)=5,∴负数集合有:﹣12,﹣1.25,﹣|﹣12|,…整数集合有:﹣12,0,20,﹣|﹣12|,﹣(﹣5)|,…所以【点睛】考查有理数的分类,熟练掌握正数以及负数的定义是解题的关键.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少?(2)求142与132的相反数的商.【答案】(1)183-;(2)9-7【解析】【分析】(1)根据题意列出算式即可求出正确答案;(2)先求132的相反数,再将依据题意作商即可得出答案.【详解】解:(1)由题意可得:(4119--163)+(499-),则(4119--163)+(499-)=411(9-+-163)+(499-)=183-;(2)∵132的相反数是132-,∴142与132的相反数的商即为14921732=--.故本题答案为:(1)183-;(2)9-7.【点睛】掌握有理数加减乘除运算和相反数的含义,以及会根据题意列出相应的算式是解答本题的关键.22.已知a=﹣312,b=﹣6.25,c=﹣2.5,求|b|﹣(a﹣c)的值.【答案】7.25【解析】分析】把a、b、c的值代入代数式,再根据绝对值的性质和有理数的减法运算法则进行计算即可得解.【详解】解:∵a=﹣312,b=﹣6.25,c=﹣2.5,∴|b|﹣(a﹣c)=﹣b﹣a+c=6.25+312﹣2.5=7.25.【点睛】本题考查了绝对值的性质与有理数的减法,解题的关键是熟练的掌握绝对值的性质与有理数的减法运算法则.23.今抽查10袋盐,每袋盐的标准质量是100克,超出部分记为正,统计成表:问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?【答案】(1)总计不足3千克;(2)997千克.【解析】【分析】(1)根据正数表示超出100克的重量,负数表示比100克差的重量,计算出10袋盐一共超出标准重量的重量;(2)根据(1)可得10袋盐一共超出标准重量的重量,然后用100×10加上这个数即可.【详解】解:(1)2×(﹣1)+3×(﹣0.5)+3×0+1×2.5+1×(﹣2)=﹣3,答:这10袋盐以100克为标准质量,总计不足3千克;(2)10×100﹣3=997千克.答:这10袋盐一共997千克.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?【答案】(1)收工时在A地的西边,距A地17千米;(2)若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【解析】【分析】(1)根据题中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据题中的数据将它们的绝对值相加,然后乘以0.2即可解答本题.【详解】解:(1)+8﹣9+4﹣7﹣2﹣10+11﹣12=﹣17.答:收工时在A地的西边,距A地17千米.(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣12|=63,63×0.2=12.6(升),答:若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.【答案】﹣2016.【解析】【分析】先根据已知条件求出a+b=0,cd=1,x=1,再把这些数值代入所求式子,计算即可.【详解】解:∵不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,∴a+b=0,cd=1,x=1,∴2016a+2018cd﹣2017x+2016b﹣2017=2016(a+b)+2018cd﹣2017(x+1)=2016×0+2018×1﹣2017×(1+1)=0+2018﹣4034=﹣2016.【点睛】考查代数式求值, 根据相反数, 绝对值, 倒数的定义得到a+b=0,cd=1,x=1,是解题的关键.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数的一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.【答案】(1)周二进出货物后变化的量为﹣a,周五进出货物后变化的量为5;(2)a=0;(3)a=10,b=10.【解析】【分析】(1)根据有理数的加法法则即可求出周二、周五当天进出货物后变化的量;(2)运进货物件数-运出货物件数=-5,列出方程求解即可.(3)本周运进货物总件数比运出货物件数的一半多15件,列出方程即可求出b的值,设上周运进货物总件数为m,上周运出货物的总件数为n,找出题目中的等量关系,列方程即可求解.【详解】解:(1)周二运进货物件数+运出货物件数=a+(﹣2a)=﹣a,∴周二进出货物后变化的量为:﹣a,周五运进货物件数+运出货物件数=b+[﹣(b﹣5)]=5,∴周五进出货物后变化的量为:5;(2)依题意得:5×5+a+b﹣(12+2a+8+0+b﹣5+5+10)=﹣5解得a=0;(3)依题意得:5+a+5+5+b+5+5=12(12+2a+8+0+b ﹣5+5+10)+15, 化简得:b=10, 设上周运进货物总件数为m ,上周运出货物的总件数为n ,1555556a b m m ++++++=-, 即5256a b m ++=, 2122855103a b n n +++-++=+, 即52303a b n ++=, ∵这两周内,该仓库货物共增加了3件, ∴()55363m n m n ⎛⎫-+-= ⎪⎝⎭, ∴11m ﹣16n=18, ∴()()631125162301855a b a b ⨯++-⨯++=, 解得:a=10.【点睛】考查正负数的意义以及一元一次方程的应用,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.熟练掌握正数和负数的意义和有理数的加减运算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学有理数测试题
时间:100分钟 满分:120分
分数: 等级:
一、选择题: 一定要记住把每题唯一正确的选项填在表格中 (每题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
1.下列说法正确的是( )
A.所有的整数都是正数
B.不是正数的数一定是负数
不是最小的有理数 D.正有理数包括整数和分数
2. 1
2
的相反数的绝对值是( )
A. 1
2
- B. 2 C.2- D. 12
3.有理数a b 、在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A. a >b B. a <b C. a b >0 D. 0a
b
> 4.在数轴上,原点右边的点表示的数是( ) A.正数 B.负数 C.非正数 D.非负数
5.如果一个有理数的绝对值是正数,那么这个数必定( ) 图1-1 A.是正数 B.不是0 C.是负数 D.以上都不对
6.下列说法正确的是( ) 一定是负数;
B.│a │一定是正数;
C.│a │一定不是负数;
│a │一定是负数
7.如果一个数的平方等于它的倒数,那么这个数一定是( )
D.±1
取近似值,保留三个有效数字,结果是( )
; 下列运算正确的是( )
÷(-2)2=1; B. 3
1128327⎛⎫
-=- ⎪⎝⎭
C.13
52535-÷⨯=- D. 133( 3.25)6 3.2532.544
⨯--⨯=-
_
a _1 _0 _ b
10.若│x │=2,│y │=3,则│x+y │的值为( ) 或1 D.以上都不对
11.计算1
(1)(9)9
-÷-⨯的结果是( )
A .1-
B .1 C.181 D.1
81-
12.34-的意义是( )
A .3个4-相乘
B .3个4-相加 C.4-乘以3 D.34的相反数 二、填空题:(每空3分,共30分)
13.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是_
14.数轴上到原点的距离是3个单位长度的点表示的数是______ 15.若│-a │=5,则a=________ 16.绝对值小于5的所有的整数的和_______
17.用科学记数法表示(精确到万分位), 则近似值为_____ 18.若1x -+ 2y +=0,则x y -=___________ 19. 22128(2)2
⎛⎫
-⨯-+÷- ⎪⎝⎭
=_______
20.数轴上表示—5和表示—14的两点之间的距离是 21.计算20082009(1)(1)-+-=
22.若43()a b c d a b cd +-=3
、互为相反数,、互为倒数,则()
三、解答题:(共54分)学会观察
23.(8分) 写出绝对值大于3且不大于7的所有整数,并指出其中的最大数和最小数
24.填表(9分)看好再填
1
3
3
-—|—4|22-
相反数
倒数
绝对值
25.计算题(每题5分,共20分)一定要细心
(1) 20(14)(18)13
-+----(2) 772
(6) 483
÷-⨯-;
(3)
3571
()
491236
--+÷; (4)
2
22
33
11(12)6()
74
⎡⎤
--+-÷⨯
⎢⎥
⎣⎦
26.(8分)检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发, 到收工时,行走记录为(单位:千米):
+8、-9、+4、+7、-2、-10、+18、-3、+7、+5
回答下列问题:(每题5分,共10分)
(1)收工时在A地的哪边距A地多少千米
(2)若每千米耗油升,问从A地出发到收工时,共耗油多少升
27.(9分)寻找规律:观察下列各式:
11111111 1,,,... 12223233434 =-=-=-
⨯⨯⨯
(1)请根据以上的式子填写下列各题:

1
910
=


1
(1)
n n
=
+
(n是正整数)
(2)计算
1111
...
12233420082009
++++
⨯⨯⨯⨯
七年级数学有理数测试题情况分析
我就我们学校七年级数学考试试题和学生的答题情况以及以后的教学方向分析如下.
一、试题特点
试卷包括填空题、选择题、解答题三个大题,共120分,以基础知识为主,。

对于整套试题来说,容易题约占70%、中档题约占20%、难题约占10%,主要考查了七年级上册第一章有理数,这次数学试卷检测的范围应该说内容全面,难易也适度,注重基础知识、基本技能的测检,比较能如实反映出学生的实际数学知识的掌握情况。

试卷能从检测学生的学习能力入手,细致、灵活地来抽测每章的数学知识。

打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。

二、学生问题分析
根据对试卷成绩的分析,学生在答卷过程中存在以下几主面的问题
①学生的知识应用能力不强。

学生对基本的知识和概念掌握的不够牢固,应用基本概念和基本知识解决问题的能力不强.如选择题的第12题得分率不高.
②基本计算能力有待提高。

计算能力的强弱对数学答题来说,有着举足轻重的地位。

计算能力强就等于成功了一半,如解答题的第25题,学生在计算的过程中都出现不少错误.
③数学思维能力差这些问题主要表现在选择题的第3题,第10题;填空题的第15题,第18题,第20题,第22题和解答题的27题。

.
④审题能力及解题的综合能力不强。

三、今后的教学注意事项:
通过这次考试学生的答题情况来看,我认为在以后的教学中应从以下几个方面进行改进:
1、立足教材,教材是我们教学之本,在教学中,我们一定要扎扎实实地给学生渗透教材的重难点内容。

不能忽视自认为是简单的或是无关紧要的知识。

2、教学中要重在突显学生的学习过程,培养学生的分析能力。

在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。

尤其是在应用题的教学中,要让学生充分展示思维,让他们自己分析题目设计解题过程。

3、多做多练,切实培养学生的计算能力。

有时他们是凭自己的直觉做题,不讲道理,不想原因,这点从试卷上很清楚地反映出来了。

4、关注过程,引导探究创新,数学教学不仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知识、新规律的能力。

相关文档
最新文档