福建莆田一中2021届高三数学上学期期末理试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莆田一中2020-2021学年上学期期末试卷高三数学(理科)
一、选择题:(本大题共10个小题,每小题5分,共50分;每题只有一个正确答案)
1. 函数f(x)=23x x +的零点所在的一个区间是( ) (A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2)
2. 设{a n }是由正数组成的等比数列,n S 为其前n 项和。已知a 2a 4=1, 37S =, 则5S =( ) (A )152 (B)314 (C)334 (D)17
2
3. 设点M 是线段BC 的中点,点A 在直线BC 外,2
16,BC AB AC AB AC =∣+∣=∣-∣,
则AM ∣∣=( )
(A )8 (B )4 (C ) 2 (D )1
4. 设椭圆以正方形的两个顶点为焦点且过另外两个顶点,那么此椭圆的离心率为( )
(A) 21- (B)
2
2
(C) 512- (D) 2
2
或21-
5. E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( ) (A)
1627 (B)23 (C) 33 (D) 3
4
6.某产品的广告费用x 与销售额y 的统计数据如下表
广告费用x (万
元) 4 2 3 5 销售额y (万元)
49
26
39
54
根据上表可得回归方程ˆˆˆy
bx a =+中的ˆb 为9,据此模型预报广告费用为6万元时销售额为( )
A .63.5万元
B .64.5万元
C .67.5万元
D .71.5万元
7.在ABC ∆中,下列说法不正确的是( ) (A) sin sin A B >是a b >的充要条件 (B) cos cos A B >是A B <的充要条件
(C) 222a b c +<的必要不充分条件是ABC ∆为钝角三角形 (D) 222a b c +>是ABC ∆为锐角三角形的充分不必要条件
8.将一骰子连续抛掷三次,它落地时向上的点数依次..
成等差数列的概率为( ) A.1
9
B.
112
C.
115
D.
118
9. 已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为( ) (A)
32 (B)6
2
(C) 3 (D)
6
10. 直线:y=
3
33
x +与圆心为D 的圆:22(3)(1)3x y -+-=交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )
(A) 7
6π (B) 54π (C) 43π (D) 53
π
二、填空题:(本大题共5个小题,每小题4分,共20分。请把答案填在答题纸的相应
位置)
11.若{(41)2(1)log (2)(1)
()a a x a x x x f x --≥-<=为R 上的增函数,则a 的取值范围是 。
12.抛物线22y px =的焦点为F ,一直线交抛物线于A,B 且3AF FB =,则该直线的倾斜角为 。
13.某三棱锥有五条棱的长度都为2,则当该三棱锥的表面积最大时其体积为 。
14.若()3ln a f x ax x x
=+-在区间[]1,2上为单调函数,
则a 的取值范围是 。
15.如图在平面直角坐标系xOy 中,圆222r y x =+(0>r )内切于 正方形ABCD ,任取圆上一点P ,若OP aOA bOB =+(a 、R b ∈)
, 则a 、b 满足的一个等式是______________________。
三.解答题:(本大题共6小题,共80分;解答应写出文字说明,证明过程或演
算步骤。) 16 .(本题满分13分)
设a R ∈,()()2cos sin cos cos 2f x x a x x x π⎛⎫
=-+- ⎪⎝
⎭
满足()3
f π
-(0)f =, A B
C
D
O y
x
(1)求函数()f x 的解析式; (2)求函数()f x 在11424ππ⎡⎤
,
⎢⎥⎣⎦
上的最大值和最小值 17.(本题满分13分)
抛物线C :y=a 2x 的准线为y=1
2
-,PM,PN 切抛物线于M,N 且与X 轴交于A,B,AB =1.
(1)求a 的值;(2)求P 点的轨迹。
18.(本题满分13分)
如图,在四棱锥P ABCD -中,ABCD 是边长
为2的菱形,且060DAB ∠=, ,E F 分别是,BC PC 的中点, FD ⊥面ABCD 且FD=1, (1)证明:PA=PD; (2)证明:AD ⊥PB;
(3)求AP 与面DEF 所成角的正弦值; (4)求二面角P AD B --的余弦值。
19. (本小题满分13分)
某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过...
的通道,直至走完迷宫为止。令ξ表示