运筹学实验报告

合集下载

运筹学实验报告心得

运筹学实验报告心得

运筹学实验报告心得运筹学实验报告实验一:线性规划问题1、实验目的:?学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

?掌握利用计算机软件求解线性规划最优解的方法。

2、实验任务?结合已学过的理论知识,建立正确的数学模型; ?应用运筹学软件求解数学模型的最优解?解读计算机运行结果,结合所学知识给出文字定性结论 3、实验仪器设备:计算机 4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。

(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“?”、“?”或“=”号,如图所示。

(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。

例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。

学习理论的目的就是为了解决实际问题。

线性规划的理论对我们的实际生活指导意义很大。

当我们遇到一个问题,需要认真考察该问题。

如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。

线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。

一个问题要满足一下条件时才能归结为线性规划的模型:?要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;?为达到这个目标存在很多种方案;?要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。

所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。

这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。

篇二:运筹学实验报告实验一:线性规划问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

运筹学实验报告

运筹学实验报告

运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。

每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。

生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。

已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。

(2)将电子表格格式转换成标准模型。

(3)将结果复制到Excel或Word文档中。

(4)分析结果。

解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。

大学生运筹学实训报告范文

大学生运筹学实训报告范文

一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。

为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。

以下是本次实训的报告。

二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。

三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。

(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。

2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。

(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。

3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。

(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。

4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。

(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。

5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。

(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。

四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。

五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。

六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。

•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。

实验目的•了解运筹学的基本原理和应用。

•掌握LINGO软件的使用方法。

•运用LINGO进行优化建模和求解实际问题。

实验内容1.使用LINGO进行线性规划的建模和求解。

2.使用LINGO进行整数规划的建模和求解。

3.使用LINGO进行非线性规划的建模和求解。

4.使用LINGO进行多目标规划的建模和求解。

实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行建模,设定目标函数和约束条件。

•运行LINGO求解线性规划问题。

2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。

•使用LINGO进行整数规划的建模和求解。

3. 非线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行非线性规划的建模和求解。

4. 多目标规划•确定多个目标函数和相应的权重。

•使用LINGO进行多目标规划的建模和求解。

实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。

结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。

•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。

讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。

•提出对于实验内容或方法的建议和改进方案。

参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。

致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。

以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。

实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。

运筹学实验总结

运筹学实验总结

运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。

在这学期的运筹学课程中,我们进行了一系列实验。

这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。

在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。

实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。

我选择了一个典型的生产调度问题作为实验题目。

通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。

通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。

实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。

在这个实验中,我选择了货物配送路线问题作为研究对象。

通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。

这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。

实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。

在这个实验中,我们学习了动态规划的基本原理和设计思想。

我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。

这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。

实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。

在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。

通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。

实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。

在这个实验中,我选择了装箱问题作为研究对象。

通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。

这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、引言运筹学是一门研究如何有效地进行决策和规划的学科。

它利用数学、统计学和计算机科学的方法,帮助解决各种实际问题。

本次实验旨在通过实际案例,探讨运筹学在实践中的应用。

二、问题描述我们选择了一个物流配送问题作为本次实验的研究对象。

假设有一家电商公司,需要将一批商品从仓库分配给不同的客户。

每个客户的需求量和距离仓库的距离都不同。

我们的目标是找到一种最优的配送方案,以最小化总配送成本。

三、数学模型为了解决这个问题,我们采用了整数规划模型。

首先,我们定义了以下变量:- Xij:表示将商品从仓库i分配给客户j的数量- Di:表示仓库i的供应量- Dj:表示客户j的需求量- Cij:表示将商品从仓库i分配给客户j的单位运输成本然后,我们建立了以下约束条件:1. 每个仓库的供应量不能超过其库存量:∑Xij ≤ Di2. 每个客户的需求量必须得到满足:∑Xij ≥ Dj3. 分配的商品数量必须是非负整数:Xij ≥ 0最后,我们的目标是最小化总配送成本:Minimize ∑Cij*Xij四、实验步骤1. 收集数据:我们收集了仓库的库存量、客户的需求量和单位运输成本的数据,并进行了整理和清洗。

2. 建立数学模型:根据收集到的数据,我们建立了上述的整数规划模型。

3. 求解模型:我们使用了运筹学软件对模型进行求解,并得到了最优的配送方案和总配送成本。

4. 分析结果:我们对结果进行了分析,比较了不同方案的优劣,并提出了一些建议。

五、实验结果与分析经过运筹学软件的求解,我们得到了最优的配送方案和总配送成本。

通过与其他方案的比较,我们发现该方案在成本上具有明显的优势。

同时,我们还发现一些仓库和客户之间的距离较远,可能会导致运输时间和成本增加。

因此,我们建议公司可以考虑优化仓库和客户的布局,以减少运输成本。

六、实验总结本次实验通过运筹学的方法,解决了一个物流配送问题。

我们通过建立数学模型、求解模型和分析结果,得出了最优的配送方案和总配送成本。

管理运筹学实训报告结论

管理运筹学实训报告结论

本次管理运筹学实训旨在通过实际操作,使我们对运筹学的基本理论、方法和技术有一个更为深入的理解,并能够将其应用于解决实际问题。

通过实训,我们不仅提高了自己的数学建模能力、计算机操作能力和问题解决能力,还培养了团队合作精神,为今后从事相关工作打下了坚实的基础。

二、实训内容与过程1. 实训内容本次实训主要包括以下内容:(1)线性规划:通过学习线性规划的基本原理和方法,运用软件求解线性规划问题,并分析问题解的特点。

(2)整数规划:了解整数规划的基本概念和求解方法,通过软件求解整数规划问题,并分析问题解的特点。

(3)非线性规划:学习非线性规划的基本原理和方法,运用软件求解非线性规划问题,并分析问题解的特点。

(4)动态规划:了解动态规划的基本概念和求解方法,通过软件求解动态规划问题,并分析问题解的特点。

(5)网络流:学习网络流的基本概念和求解方法,运用软件求解网络流问题,并分析问题解的特点。

2. 实训过程(1)理论学习:在实训开始前,我们通过查阅资料、阅读教材等方式,对运筹学的基本理论进行了系统的学习。

(2)案例分析:在理论学习的基础上,我们选取了具有代表性的案例,对案例中的问题进行分析,并运用所学知识进行求解。

(3)软件操作:为了提高实训效果,我们使用了专业的运筹学软件,如Lingo、MATLAB等,对实际问题进行求解。

(4)讨论与交流:在实训过程中,我们积极讨论、交流心得,互相学习、共同进步。

1. 实训成果通过本次实训,我们取得了以下成果:(1)掌握了运筹学的基本理论、方法和技术。

(2)提高了数学建模、计算机操作和问题解决能力。

(3)培养了团队合作精神,提高了沟通协调能力。

(4)对实际问题有了更深入的认识,为今后从事相关工作打下了坚实的基础。

2. 实训体会(1)理论联系实际的重要性:通过本次实训,我们深刻体会到理论联系实际的重要性。

只有将所学知识应用于实际,才能真正掌握其精髓。

(2)团队合作的重要性:在实训过程中,我们充分体会到团队合作的重要性。

实用运筹学实习报告

实用运筹学实习报告

实习报告一、实习背景及目的随着我国经济的快速发展,市场竞争日益激烈,企业对运筹学应用的需求越来越迫切。

为了提高自己在运筹学方面的实际应用能力,我选择了运筹学实习作为本次实习的内容。

本次实习旨在通过实际操作,掌握运筹学在企业运营管理中的应用方法,为今后的工作和学习打下坚实基础。

二、实习内容及过程1. 实习前的准备在实习开始前,我认真学习了运筹学的基本理论知识,包括线性规划、整数规划、目标规划、非参数规划等,并熟练掌握了运筹学软件工具的使用方法。

2. 实习内容(1)线性规划应用以一家制造企业为例,该公司面临原材料采购和产品生产计划的问题。

我运用线性规划方法,建立数学模型,求解最优采购量和生产计划。

通过实际操作,我了解到线性规划在企业资源优化配置中的重要作用。

(2)整数规划应用以一家物流公司为例,该公司需要制定车辆调度计划。

我运用整数规划方法,建立数学模型,求解最优车辆调度方案。

通过实际操作,我了解到整数规划在企业运营管理中的重要应用。

(3)目标规划应用以一家餐饮企业为例,该企业需要制定菜品定价策略。

我运用目标规划方法,建立数学模型,求解最优菜品定价方案。

通过实际操作,我了解到目标规划在企业经营决策中的重要作用。

(4)非参数规划应用以一家电商企业为例,该企业需要优化库存管理。

我运用非参数规划方法,建立数学模型,求解最优库存管理方案。

通过实际操作,我了解到非参数规划在企业运营管理中的重要应用。

3. 实习成果通过本次实习,我成功地将运筹学理论知识应用到实际问题中,为企业提供了有效的解决方案。

同时,我也提高了自己的运筹学实际应用能力,为今后的工作和学习打下了坚实基础。

三、实习总结本次实习让我深刻认识到运筹学在企业运营管理中的重要作用。

通过实际操作,我掌握了运筹学在线性规划、整数规划、目标规划和非参数规划方面的应用方法。

同时,我也意识到运筹学实习不仅需要理论知识的支持,还需要不断积累实际操作经验。

在今后的工作和学习中,我将继续努力提高自己的运筹学能力,为我国经济建设贡献力量。

实用运筹学实习报告

实用运筹学实习报告

一、实习目的本次实习旨在使我对运筹学有一个更深入的了解,掌握运筹学的基本原理和方法,提高运用运筹学解决实际问题的能力。

通过实习,我将学会如何运用运筹学的方法对实际问题进行分析和求解,提高自己的综合素质。

二、实习时间2022年6月1日至2022年7月31日三、实习单位某知名企业四、实习内容1. 了解运筹学的基本原理和方法在实习期间,我首先对运筹学的基本原理和方法进行了系统学习。

通过阅读相关书籍和资料,我对线性规划、整数规划、网络流、动态规划、排队论等运筹学方法有了较为全面的了解。

2. 参与实际项目在实习期间,我参与了企业的一个实际项目,该项目涉及到生产计划与调度问题。

我运用所学的运筹学知识,对该项目进行了分析和求解。

(1)问题背景该企业主要生产电子产品,产品种类繁多,生产周期较短。

为了提高生产效率,降低生产成本,企业希望优化生产计划与调度。

(2)问题建模根据企业实际情况,我将生产计划与调度问题建模为一个线性规划问题。

模型中,变量表示生产任务,约束条件包括生产设备能力、生产周期、原材料供应等。

(3)求解方法运用Lingo软件,对所建立的线性规划模型进行求解。

通过调整参数,寻找最优的生产计划与调度方案。

(4)结果分析根据求解结果,我对最优方案进行了详细分析,包括生产任务分配、生产设备使用、原材料消耗等方面。

通过对比不同方案,为企业提供了优化生产计划与调度的建议。

3. 总结与反思通过本次实习,我对运筹学在实际问题中的应用有了更深入的认识。

以下是我对实习过程的总结与反思:(1)理论联系实际实习过程中,我深刻体会到理论联系实际的重要性。

在解决问题时,要善于将所学知识运用到实际中,提高自己的实际操作能力。

(2)运用软件求解在实际问题中,运用运筹学软件求解问题是一种高效的方法。

通过学习Lingo软件,我掌握了如何运用软件进行建模和求解,提高了自己的工作效率。

(3)团队协作实习过程中,我与团队成员共同完成了项目。

运筹学实验报告_7

运筹学实验报告_7

运筹学实验(注: 此代码还有一些未完善的地方, 仅供参考, 此实验报告纯属个人意见, 同样仅供参考。

话说一样的内容多了老师会发现的)一、实验目的通过实验熟悉单纯形法的原理, 掌握matlab循环语句的应用, 提高编程的能力和技巧, 体会matlab在进行数学求解方面的方便快捷。

二、实验环境Matlab2012b,计算机三、实验内容(包含参数取值情况)构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,nfunction[S,val]=danchun(A1,C,N)S为最优值;Val为最优解;A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注: 资源向量要大于零);A1=[A+b]C是目标函数的系数向量;C=cN为初始基的下标(注: 请按照顺序输入, 若没有初始基则定义N=[]):先输入A1,C,N三个必要参数,然后调用danchun(A,C,N)进行求解。

在此函数中,首先判断N的长度是否为空,若为空,则flag=1, 进入初始解问题的迭代求值,添加辅助问题, 构建单纯形表, 求g所对应的RHS值,若其>0,则返回该问题无解若其=0, 则返回A1,Z,N三个参数, 继续构造单纯形表求解A1为经过变换后的系数及资源向量Z为单纯形表的第一行N为经过辅助问题求解之后的基的下标否则,直接构建单纯形表, 对该问题进行求解, 此时flag=2,多次迭代后找到解。

另外,若在大于零的检验数所对应的系数均小于零时, 会显示“此问题无界”若找到最优解和最优值时, 会输出“val”和“S=”以及具体数值。

四、源程序function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵Z=gC;G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数, 将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数, 将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endendG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数, 将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4 s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4例2: 初始解问题Min z=5x1+21x3 s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1 xj>=0,j=1,…,5六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型, 并用你自己的单纯形算法程序进行计算, 最后给出计算结果。

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验

哈工大运筹学实验报告实验实验一:货物运输问题的数学建模与求解实验目的:1.了解货物运输问题的数学建模方法;2.掌握货物运输问题的线性规划求解方法;3.学会使用运筹学软件求解货物运输问题。

实验原理:货物运输问题属于线性规划问题的一种,其目标是在满足供需平衡和运输容量限制的前提下,使运输成本最小化。

实验内容:1.问题描述:公司有m个供应点和n个需求点,其中每个供应点的供应量为si (i=1,2,…,m),每个需求点的需求量为dj (j=1,2,…,n)。

公司希望通过运输将货物从供应点送到需求点,各供应点到需求点的单位运输成本为aij (i=1,2,…,m; j=1,2,…,n)。

公司希望确定每个供应点与需求点之间的货物运输量xij,以及总运输成本C,使总运输成本最小。

2.数学建模:设xij表示从第i个供应点到第j个需求点的货物运输量,C表示总运输成本,则该问题的数学模型可以描述为:min C = ∑(i=1 to m) ∑(j=1 to n) aij * xijsubject to:∑(j=1 to n) xij = si, i=1,2,…,m∑(i=1 to m) xij = dj, j=1,2,…,nxij ≥ 0, i=1,2,…,m; j=1,2,…,n3.求解方法:利用运筹学软件求解上述线性规划问题,得到最优解。

实验步骤:1.在运筹学软件中新建一个线性规划模型;2.设定决策变量、目标函数和约束条件,并输入相应参数;3.运行求解算法,得到最优解。

实验结果:根据实验步骤,通过运筹学软件求解货物运输问题,得到最优解如下:供应点1到需求点1的运输量为x11=200;供应点1到需求点2的运输量为x12=150;供应点2到需求点1的运输量为x21=100;供应点2到需求点2的运输量为x22=250;总运输成本最小为C=900。

实验总结:通过本次实验,我了解了货物运输问题的数学建模方法,并掌握了线性规划求解的基本步骤。

运筹学实验报告_2

运筹学实验报告_2
% f=-[2,4]'; a=[1,2;4,0;0,4;2,-1]; b=[8,16,12,-4]'; lb=[0,0]'; [x,fval,exitflag]=linprog(f,a,b,[],[],lb,[ ])
运筹学上机实验报告
5.用指令 linprog()实现 page 48 例 10
6. 用指令 linprog()实现 page 48 例 11
三、程序流程图: 1.用指令 linprog() 实现 page 15
f=-[2,3]'; a=[1,2;4,0;0,4]; b=[8,16,12]'; lb=[0,0]'; [x,fval,ex]=linprog(f ,a,b,[],[],lb,[])
2.用指令 linprog() 实现 page18 无穷多最优解
if exitflag==-3 fprintf('该线性规划为无界解')
end
4. 用指令 linprog()实现 page18 无可行解
f=-[1,1]'; a=[-2,1;1,-1]; b=[0,0]'; [x,fval,exitflag]=linprog(f,a,b,[],[],lb,[ ])
所e述xi问tf题la无g 可= 行解 5.用指-2令 linprog()实现 page 48 例 10
x=
2.5470 0.0000 0.0000 0.0000 0.0000
fval =
1.0043e-011
6. 用指令 linprog()实现 page 48 例 11
x=
100.0000 50.0000 50.0000
0.0000 0.0000 0.0000 0.0000 25.0000 0.0000

运筹学实训实验报告

运筹学实训实验报告

一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。

随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。

为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。

二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。

三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。

2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。

3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。

4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。

四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。

(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。

(3)求解:运用Excel规划求解器求解最优解。

2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。

(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。

(3)求解:运用Lingo软件求解最优解。

3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。

(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。

南邮运筹学运输问题实验报告(一)

南邮运筹学运输问题实验报告(一)

南邮运筹学运输问题实验报告(一)南邮运筹学运输问题实验报告1. 背景运输问题是管理科学中常见的数学问题之一。

本实验旨在通过运用运筹学的方法对南邮快递公司的运输问题进行优化,使得运输成本最小化,配送效率最大化。

2. 实验方法本实验使用了线性规划方法对运输问题进行建模,运用了Excel或MATLAB等工具进行求解。

具体步骤如下:1.收集数据,包括快递运输的起点、终点和运输量等信息;2.建立运输问题的数学模型,即线性规划模型;3.编写程序并求解;4.分析结果,得出优化的方案。

3. 实验结果通过对南邮快递公司的运输问题进行分析和优化,得出了如下方案:1.尽量选择简单线路进行配送,减少运输中转,降低运输成本;2.优先派送运输量大、运输距离小的货物,减少路途中停留和等待时间,提高配送效率;3.设立中转站,适时调整运输路线,减少空运和空驶,提高车辆使用率;4.采用信息化管理手段,通过优化物流调度系统和智能配送系统,实现物流信息实时监控、自动化配送等目的。

4. 实验总结本实验主要运用了线性规划方法对南邮快递公司的运输问题进行了分析和优化,得出了一系列优化方案。

实验结果表明,运用运筹学的方法可以有效地降低快递公司的运输成本,提高配送效率,为企业节省了大量的时间和资源。

总之,运用运筹学的方法对现代物流业的发展有着重要的意义,为企业实现可持续发展提供了强有力的技术支撑。

5. 实验心得通过本次实验,我对运筹学的方法和思想有了更深入的理解。

在实践中,我们不仅要有熟练的数学建模和编程技巧,还要注重数据的收集和分析,才能得出准确、实用的结果。

此外,实验中还提到了信息化管理手段,这也是当今物流业的发展趋势之一。

通过智能化技术和数据分析,我们可以对物流系统进行全面的优化和升级,提高物流效率,降低成本,并为企业的可持续发展保驾护航。

6. 实验意义运筹学的方法已经广泛应用于企业的生产、销售等领域,可以降低成本、提高效率、优化资源和规划未来。

运筹学实践教学报告模板(3篇)

运筹学实践教学报告模板(3篇)

第1篇一、引言运筹学作为一门应用广泛的学科,其核心在于运用数学模型和算法解决实际问题。

为了更好地理解和掌握运筹学的理论和方法,本次实践教学报告以XX项目为例,详细阐述运筹学在实际问题中的应用过程。

二、项目背景与目标1. 项目背景XX项目是XX公司为提高生产效率、降低成本而提出的一个优化问题。

公司现有生产线,由于设备老旧、工艺流程不合理等原因,导致生产效率低下,成本较高。

为了解决这一问题,公司决定运用运筹学方法进行生产线优化。

2. 项目目标通过运筹学方法,对XX项目生产线进行优化,实现以下目标:- 提高生产效率,降低生产周期;- 降低生产成本,提高企业经济效益;- 优化生产线布局,提高生产线柔性。

三、运筹学方法选择与应用1. 方法选择针对XX项目的特点,本次实践选择了以下运筹学方法:- 线性规划(Linear Programming,LP)- 整数规划(Integer Programming,IP)- 模拟退火算法(Simulated Annealing,SA)2. 方法应用(1)线性规划首先,根据XX项目实际情况,建立了线性规划模型。

模型中包含决策变量、目标函数和约束条件。

通过求解线性规划模型,得到了最优的生产方案,包括各设备的生产能力分配、生产顺序安排等。

(2)整数规划由于部分设备的生产能力为整数,因此采用整数规划方法对模型进行改进。

通过求解整数规划模型,进一步优化了生产方案,使得设备利用率达到最大化。

(3)模拟退火算法为了提高生产方案的鲁棒性,采用模拟退火算法对优化后的生产方案进行全局搜索。

通过模拟退火算法,得到了一组更加优化的生产方案,提高了生产线的柔性。

四、结果与分析1. 结果经过运筹学方法的应用,XX项目生产线优化取得了以下成果:- 生产效率提高了XX%;- 生产周期缩短了XX天;- 生产成本降低了XX%;- 生产线柔性得到了显著提高。

2. 分析(1)线性规划方法的应用使得生产线设备利用率得到最大化,从而提高了生产效率;(2)整数规划方法的应用确保了设备生产能力的合理分配,避免了生产过程中的资源浪费;(3)模拟退火算法的应用使得生产方案具有更好的鲁棒性,提高了生产线的柔性。

最新运筹学实践报告加工问题的(优质5篇)

最新运筹学实践报告加工问题的(优质5篇)

最新运筹学实践报告加工问题的(优质5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!最新运筹学实践报告加工问题的(优质5篇)“报告”使用范围很广,按照上级部署或工作计划,每完成一项任务,一般都要向上级写报告,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想等,以取得上级领导部门的指导。

运筹学实训报告个人总结

运筹学实训报告个人总结

一、前言运筹学作为一门研究资源优化配置的学科,在各个领域都有着广泛的应用。

为了更好地将理论知识与实践相结合,提高自身的实际操作能力,我参加了为期两周的运筹学实训。

以下是我在实训过程中的个人总结。

二、实训内容与目标1. 实训内容本次实训主要包括以下内容:(1)线性规划:掌握线性规划问题的建模、求解方法及软件应用。

(2)整数规划:了解整数规划问题的特点、建模方法及求解算法。

(3)非线性规划:掌握非线性规划问题的建模、求解方法及软件应用。

(4)动态规划:了解动态规划问题的特点、建模方法及求解算法。

(5)排队论:掌握排队论的基本概念、模型建立及求解方法。

(6)库存管理:了解库存管理的基本理论、模型建立及求解方法。

2. 实训目标(1)熟练掌握运筹学的基本理论和方法。

(2)提高运用运筹学解决实际问题的能力。

(3)培养团队协作和沟通能力。

三、实训过程与收获1. 实训过程在实训过程中,我们按照以下步骤进行:(1)学习运筹学的基本理论和方法。

(2)根据实际问题,建立数学模型。

(3)运用所学知识,求解数学模型。

(4)对求解结果进行分析和评估。

(5)撰写实训报告。

2. 实训收获(1)理论知识方面:通过实训,我对运筹学的基本理论和方法有了更深入的了解,为今后在相关领域的工作奠定了基础。

(2)实践能力方面:在实训过程中,我学会了如何将实际问题转化为数学模型,并运用运筹学方法进行求解。

这对我今后解决实际问题具有重要意义。

(3)团队协作能力:在实训过程中,我与同学们相互学习、共同进步,培养了良好的团队协作精神。

四、存在问题与不足1. 实践经验不足:虽然通过实训掌握了运筹学的基本方法,但在实际操作过程中,仍存在一些问题,如模型建立不够完善、求解方法选择不当等。

2. 理论知识掌握不够扎实:在实训过程中,发现自己在某些理论知识方面存在不足,需要进一步加强学习。

3. 沟通能力有待提高:在实训过程中,与团队成员的沟通不够充分,导致部分问题未能得到及时解决。

运筹学实训报告范文模板

运筹学实训报告范文模板

一、实习概况1. 实习时间:20XX年X月至20XX年X月2. 实习地点:[实习单位名称]3. 实习目的:通过本次运筹学实训,加深对运筹学基本理论和方法的理解,提高解决实际问题的能力,培养团队协作精神。

二、实习内容1. 实训课程概述:本次实训主要围绕运筹学的核心内容展开,包括线性规划、整数规划、网络流、非线性规划、决策分析等。

2. 实训项目:(1)线性规划问题建模与求解(2)整数规划问题建模与求解(3)网络流问题建模与求解(4)非线性规划问题建模与求解(5)决策分析案例研究三、实训过程1. 线性规划问题建模与求解(1)问题描述:以某企业生产计划问题为例,建立线性规划模型,求解最优生产方案。

(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。

(3)求解方法:运用单纯形法进行求解。

(4)结果分析:比较不同方案的成本和产量,得出最优生产方案。

2. 整数规划问题建模与求解(1)问题描述:以某企业投资组合优化问题为例,建立整数规划模型,求解最优投资方案。

(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。

(3)求解方法:运用分支定界法进行求解。

(4)结果分析:分析不同投资组合的风险和收益,得出最优投资方案。

3. 网络流问题建模与求解(1)问题描述:以某物流公司运输调度问题为例,建立网络流模型,求解最优运输方案。

(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。

(3)求解方法:运用最大流最小割定理进行求解。

(4)结果分析:分析不同运输路径的成本和时间,得出最优运输方案。

4. 非线性规划问题建模与求解(1)问题描述:以某工厂生产优化问题为例,建立非线性规划模型,求解最优生产方案。

(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。

(3)求解方法:运用拉格朗日乘数法进行求解。

(4)结果分析:分析不同生产方案的成本和产量,得出最优生产方案。

5. 决策分析案例研究(1)问题描述:以某企业新产品研发项目为例,运用决策树法进行决策分析。

运筹学自动化实训报告

运筹学自动化实训报告

一、前言运筹学作为一门应用数学的分支,在解决复杂系统优化问题中扮演着重要角色。

随着计算机技术的飞速发展,运筹学的自动化已经成为提高问题解决效率、降低成本的关键。

本报告旨在通过自动化实训,探讨运筹学在自动化领域的应用,并分析实训过程中的收获与不足。

二、实训背景本次实训选择了一项典型的运筹学问题——线性规划问题,旨在通过自动化工具实现线性规划问题的求解。

实训过程中,我们使用了Python编程语言,结合线性规划库(如PuLP)进行编程实现。

三、实训目标1. 理解线性规划的基本原理和求解方法。

2. 掌握Python编程语言在运筹学自动化中的应用。

3. 通过实际案例,验证线性规划方法在解决实际问题中的有效性。

四、实训内容1. 线性规划原理与模型构建首先,我们学习了线性规划的基本概念和原理。

线性规划问题由目标函数和约束条件组成,目标函数为线性函数,约束条件为线性不等式或等式。

通过案例学习,我们掌握了如何将实际问题转化为线性规划模型。

2. Python编程与PuLP库应用接下来,我们学习了Python编程语言,并掌握了PuLP库的使用方法。

PuLP库提供了线性规划问题的建模和求解功能,可以方便地实现线性规划模型的构建和求解。

3. 案例分析我们选取了一个生产调度问题作为案例,该问题涉及到生产线的优化调度,以最小化生产成本。

通过将问题转化为线性规划模型,并使用Python编程和PuLP库进行求解,我们得到了最优解。

五、实训过程1. 问题分析首先,我们对生产调度问题进行了详细分析,确定了目标函数和约束条件。

目标函数为总成本,约束条件包括生产时间、机器能力和原材料供应等。

2. 模型构建根据问题分析,我们构建了线性规划模型,包括决策变量、目标函数和约束条件。

3. 编程实现使用Python编程语言和PuLP库,我们将线性规划模型转化为代码,实现了模型的求解。

4. 结果分析通过求解线性规划模型,我们得到了最优解,并分析了求解结果对生产调度问题的指导意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学实验报告
实验目的:了解及掌握运筹学一些常用软件,如excel,WinQsb
实验步骤:
1用Excel求解数学规划
例:求max=2x1+x2+x3
4x1+2x2+2x2≥4
2x1+4x2≤20
4x1+8x2+2x3≤4
步骤:
1.输入模型数据
2.在E3单元格输入公式“=SUMPRODUCT($B$2:$D$2,B3:D3)”,并拖动复制E3的公式到E4-E6:
3.从“工具”菜单中选择“规划求解”,将弹出的“规划求解参数”窗口中的目标单元格设为$E$3,可变单元格设为$B$2:$D$2,目标为求最大值:4.添加约束:由于本例的约束条件类型分别为<=、>=和=,因此要分3次设置,每次设置完毕后都要单击“添加”按钮,如下图。

添加完成后选择“确定”返回。

5.单击“选项”按钮,将“规划求解选项”窗口中的“采用线性模型”和“假定非负”两项选中后点“确定”返回,设置好参数的界面如下图:
=1,x2 =0,x3 =0,max Z=2。

6.单击“求解”按钮,得到问题的最优解为:x
1
2.winQSB求解线性规划及整数规划
[例]求解线性规划问题:
Minz=2x1—x2+2x3
2x1+2x2+x3=4
3x1+x2+x4=6
第1步:生成表格
选择“程序,生成对话框:
第2步:输入数据
单击“OK”,生成表格并输入数据如下
第3步:求解
决策变量(Decision Variable):x1,x2,x3
最优解:x1=2,x2=0,x3=0
目标系数:c1=2,c2= -1,c3=2
最优值:4;其中x1贡献4、x2,x3贡献0;
检验数(Reduced Cost):0,0,1.75。

目标系数的允许减量(Allowable Min.c[j])和允许增量(Allowable Max.c[j]):目标系数在此范围变量时,最优基不变。

约束条件(Constraint):C1、C2;
左端(Left Hand Side):4,6右端(Right Hand Side):4,6
松驰变量或剩余变量(Slack or Surplus):该值等于约束左端与约束右端之差。

为0表示资源已达到限制值,大于0表示未达到限制值。

影子价格(Shadow Price):-1.25,1.5,即为对偶问题的最优解。

约束右端的允许减量(Allowable Min.RHS)和允许增量(Allowable Max.RHS):表示约束右端在此范围变化,最优基不变。

3.winQSB解运输问题
第1步:生成表格
选择“程序→winQSB→Network Modeling→File→New Program“,弹出对话框
第2步:输入数据
单击“OK”,并输入数据
第3步:求解
产地1调运销地1:20
产地1调运销地3:50
产地2调运销地1:10
产地2调运销地4:30
产地3调运销地3:60
产地3调运销地4:30
目标函数值:1250
4.winQSB求解网络问题
4 5 6
2 4 4
1 5 3 6 7
4 3 2
2 3 5
第2步:输入数据,并求解。

相关文档
最新文档