八年级上册数学期中测试卷(沪教版)

合集下载

2020-2021学年八年级数学上学期期中测试卷02(沪教版)(解析版)

2020-2021学年八年级数学上学期期中测试卷02(沪教版)(解析版)

八年级第一学期数学期中考试(二)一、单选题(本大题共6题,每题3分,共18分)1.在下列方程中,一元二次方程的个数是()①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2﹣5x=0.A.1个B.2个C.3个D.4个【答案】A【解析】①3x2+7=0,是一元二次方程,故本小题正确;②ax2+bx+c=0,a≠0时是一元二次方程,故本小题错误;③(x﹣2)(x+5)=x2﹣1,整理后不是一元二次方程,故本小题错误;④3x2﹣=0,是分式方程,不是一元二次方程,故本小题错误.故选A.2.下列二次根式中属于最简二次根式的是()A14B48C abD44a+【答案】A【解析】如果一个二次根式符合下列两个条件:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.那么,这个根式叫做最简二次根式.只有A符合定义.故答案选A3.实数24b b ac±-是方程的根()A.20ax bx c++=B.20ax bx c-+= C.20ax bx c--=D.20ax bx c+-=【答案】B【解析】A方程20ax bx c++=的根为24b b acx-±-=,故A错误B 方程20ax bx c -+=的根为242b b ac x a ±-=,故B 正确C 方程20ax bx c --=的根为242b b ac x a +±=,故C 错误 D 方程20ax bx c +-=的根为24b b ac x +-±=,故D 错误 4.下列变形正确的是( )A .(16)(25)1625--=-⨯-B .111161642442=⨯=⨯=C .2()a b +=|a +b |D .222524-=25﹣24=1 【答案】C【解析】A 、()()1625162516254520-⨯-=⨯=⨯=⨯=,故本选项不符合题意;B 、1656516==442,故本选项不符合题意; C 、2(a b)+=|a+b|,故本选项符合题意;D 、()()222524?2524252449-=+⨯-==7,故本选项不符合题意; 故选C .5.已知k 1<0<k 2,则函数y=k 1x 和2k y x=的图象大致是( ) A . B .C .D . 【答案】D【解析】试题分析::∵k 1<0<k 2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D .6.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(a 0)++=≠ax bx c 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .a c =B .a b =C .a b =D .a b c ==【答案】A【解析】 ∵一元二次方程ax 2+bx+c=0(a≠0)有两个相等的实数根∴△=b 2−4ac=0,又a+b+c=0,即b=−a−c ,代入b 2−4ac=0得(−a−c)2−4ac=0,即(a+c)2−4ac=a 2+2ac+c 2−4ac=a 2−2ac+c 2=(a−c)2=0,∴a=c故选:A二、填空题(本大题共12题,每题3分,共36分)73的有理化因式是____________+3【解析】一般二次根式的有理化因式是符合平方差公式的特点的式子3 +3+38.化简201920202)2)⨯的结果为_________.【答案】2.【解析】201920202)2)⨯=20192)2)]2)⋅2019(34)2)=-⋅=2.故答案为:2.9.在实数范围内因式分解2243=x x +- _____________.【答案】2x x ⎛++ ⎝⎭⎝⎭ 【解析】2x 2+4x-3=0的解是x 1,x 2,所以可分解为2x 2+4x-3=2()().即: 2x 2+4x-3=22222x x ⎛⎫⎛+-++ ⎪ ⎪⎝⎭⎝⎭.故答案为: 2x x ⎛+⎝⎭⎝⎭. 10.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为______.【答案】6或12或10【解析】解:∵2680x x -+=,∴()()240x x --=,解得:2x =或4x =,∵等腰三角形的底和腰是方程2680x x -+=的两根,∴当2是等腰三角形的腰时,2+2=4,不能组成三角形,舍去;当4是等腰三角形的腰时,2+4>4,则这个三角形的周长为2+4+4=10. 当边长为2的等边三角形,得出这个三角形的周长为2+2+2=6.当边长为4的等边三角形,得出这个三角形的周长为4+4+4=12.∴这个三角形的周长为6或12或10.故答案为:6或12或10.11.计算: =_________.2【解析】因为2<22==212.已知a ,b ,c 为三角形三边,则++.【答案】a b c ++【解析】由三角形的三边关系定理得:,,a b c a c b b c a +>+>+>0,0,0a b c b a c b c a ∴+->--<+->++a b c a c b b c a =+-++-++-a b c =++故答案为:a b c ++.13.方程22(2)(3)20mm x m x --+--=是一元二次方程,则m=_____. 【答案】-2【解析】试题分析:根据一元二次方程的定义,二次项系数不为0,未知数的次数为2,可得22022m m -≠⎧⎨-=⎩,可求得m=-2. 故答案为:-214.对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.【答案】r c【解析】试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r =,其中自变量是r ,因变量是C .故答案为,.r C15.如图,点M 是反比例函数k y x=(0k >)的图像上一点,MP x ⊥轴,垂足为点P ,如果MOP △的面积为7,那么k 的值是___________.【答案】14【解析】∵M 是反比例函数k y x =(0k >)的图像上一点 设M 横坐标x a =∴,k M a a ⎛⎫ ⎪⎝⎭∵MP x ⊥轴,垂足为点P∴P 点横坐标等于M 点横坐标∴(),0P a∴=a OP ,k MP a= 又∵MP x ⊥轴,垂足为点P∴=90MPO ∠∴MOP △为直角三角形∴11222k k S OP MP a a =⨯=⨯=△MOP ∵7S =△MOP∴=72k ∴14k =故答案为:14.16.若关于x 的一元二次方程2124102x mx m --+=有两个相等的实数根,则2(2)2(1)m m m ---的值为__.【答案】72【解析】由题意可知:△=4m 2−2(1−4m )=4m 2+8m−2=0,∴m2+2m=12,∴(m−2)2−2m(m−1)=−m2−2m+4=−12+4=72,故答案为7 2 .17.若A、B两点关于y轴对称,且点A在双曲线12yx=上,点B在直线3y x上,设点A的坐标为(a,b),则a bb a+=________________.【答案】16【解析】试题解析:∵点A的坐标为(a,b),A、B两点关于y轴对称,∴B(-a,b),∵点A在双曲线y=-12x上,点B在直线y=x+3上,∴a b=-12,-a+3=b,即ab=-12,a+b=3,∴原式=2()2a b abab+-=16.18.某超市销售一种水果,每月可售出500千克,每千克盈利10元.经市场分析,售价每涨1元,月销售量将减少10千克.如果该超市销售这种水果每月盈利8000元,那么该水果的单价涨了多少元?设水果单价涨了x元,根据题意,可列方程为_____.【答案】(10+x)(500﹣10x)=8000【解析】设水果单价涨了x元,则每千克水产品获利(10+x)元,月销售量减少10x千克;由题意可列方程(10+x)(500﹣10x)=8000.故答案为:(10+x)(500﹣10x)=8000.三、解答题(本大题共7题,19-22每题5分,23-24每题8分,25题10分,共46分).19.计算:(1181224÷3(2)(13(3)+(3)2.【答案】(1)2;(2)3.【解析】解:(1)原式==﹣=;(2)原式=1﹣=.20.解方程:(1)2230x x --=(2)23(1)24x -=(3)23250x x +-=【答案】(1)13x =,21x =-;(2)1211x x ==-,;(3)153x =-,21x = 【解析】解:(1)2230x x --=, (3)(1)0x x -+=,∴13x =,21x =-.(2)()23124x -=, 2(1)8x -=,1x -=±∴1211x x ==-,.(3)23250x x +-=,(35)(1)0x x +-=, ∴153x =-,21x =. 21.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.【答案】(1) 2m <;(2) m 的值是1.【解析】解:(1)根据题意得:()()22410m --->,解得:2m <.故m 的取值范围为2m <;(2)由(1)得:2m <m 为非负整数,0m ∴=或1,把0m =代入原方程得:2210x x --=,解得:112x =-,212x =+,0m =不合题意舍去;把1m =代入原方程得:220x x -=,解得:10x =,22x =.故m 的值是1.22.如图,平面直角坐标系xOy 中,点(),1A a 在双曲线3y x=上,函数y kx b =+的图象经过点A ,与y 轴上交点()0,2B -.(1)求直线AB 的解析式;(2)设直线AB 交x 轴于点C ,求三角形OAC 的面积.【答案】(1)2y x =-;(2)1.【解析】(1)将(),1A a 代入3y x =得31a=,解得3a = ()3,1A ∴将()3,1A ,()0,2B -代入y kx b =+得312k b b +=⎧⎨=-⎩ 解得12k b =⎧⎨=-⎩故直线AB 的解析式为2y x =-;(2)如图,过点A 作AH OC ⊥由点A 的坐标得:1AH =对于2y x =-当0y =时,20x -=,解得2x =()2,0C ∴ 2OC ∴= 则1121122OAC S OC AH =⋅=⨯⨯=.23.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一式子的平方,如243(13)+=+,然后小明以进行了以下探索: 设23(3)a m +=+(其中a ,b ,m ,n 均为整数),则有223323a b m n mn +=++,所以223a m n =+,2b mn =,这样小明找到了一种类似3a b +请仿照小明的方法探索解决下列问题:(1)当a ,b ,m ,n 均为整数时,若25(5)a b m n ++,则a=_____,b=_______; (2)请找一组正整数,填空:5(____+______)2; (3)若245(5)a m +=+,且a ,m ,n 均为正整数,求a 的值.【答案】(1)225m n +,2mn ;(2)5(答案不唯一);(3)9或21.【解析】解:(1)∵(255a m +=+ = 2m 5mn + 25n , ∴a=225m n +,b=2mn .(2)令m=2,n=1,则a=22+5×12=9,b=2×2×1=4,∴()2;故答案为;(3)由题意,得22542a m nmn ⎧=+⎨=⎩∵42mn=,且m,n为正整数∴m=2,n=1或m=1,n=2∴222519a=+⨯=或2215221a=+⨯=.24.某水果店销售一种水果的成本价是5元/千克.在销售过程中发现,当这种水果的价格定在7元/千克时,每天可以卖出160千克.在此基础上,这种水果的单价每提高1元/千克,该水果店每天就会少卖出20千克.()1若该水果店每天销售这种水果所获得的利润是420元,则单价应定为多少?()2在利润不变的情况下,为了让利于顾客,单价应定为多少?【答案】(1)若该水果店每天销售这种水果所得利润是420元,则单价应为8元或12元.()2因为让利于顾客,所以定价定为8元.【解析】解:(1)若该水果店每天销售这种水果所得利润是420元,设单价应为x元,由题意得:(x-5)[160-20(x-7)]=420,化简得,x2-20x+96=0,解得x1=8,x2=12.答:若该水果店每天销售这种水果所得利润是420元,则单价应为8元或12元.(2)因为让利于顾客,所以定价定为8元.【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.如图,正方形OAPB、ADFE的顶点A、D.B在坐标轴上,点B在AP上,点P、F在函数kyx=上,已知正方形OAPB的面积是9.(1)求k 的值和直线OP 的解析式;(2)求正方形ADFE 的边长(3)函数k y x =在第三象限的图像上是否存在一点Q ,使得△ABQ 的面积为10.5?若存在,求出Q 点坐标;若不存在,请说明理由.【答案】(1)9y x =;直线OP 的解析式为y=x ;(2)正方形ADFE 的边长为得3352-+;(3)不存在.【解析】分析: (1)利用正方形的性质得到P 点坐标为(3,3),再把P 点坐标代入k y x =即可得到k 的值;然后利用待定系数法求直线OP 的解析式;(2)设正方形ADFE 的边长为a ,利用正方形的性质易表示F 点的坐标为(a+3,a ),然后把F (a+3,a )代入9y x =,再解关于a 的一元二次方程即可得到正方形ADFE 的边长;(3)如图,连接QA ,QB ,QO ,AB ,设Q (x ,y )(x <0),利用S △ABQ =S △AOQ + S △BOQ + S △ABO =10.5列出关于x 的方程求解即可.解:(1)∵正方形OAPB 的面积为9,∴PA=PB=3,∴P 点坐标为(3,3),把P (3,3)代入k y x =得,k=3×3=9, 即9y x=;设直线OP 的解析式为y=k 1x ,把P (3,3)代入y=k 1x 得,k 1=1,∴直线OP 的解析式为y=x ;(2)设正方形ADFE 的边长为a ,则F 点的坐标为(a+3,a ),把F(a+3,a)代入9yx=得,a(a+3)=9,解得a1=3352-+,a2=3352--,∴正方形ADFE的边长为得335 -+;(3)∵P(3,3)且四边形AOBP是正方形,∴AO=BO=3,设Q(x,9x)(x<0),连接QO,QB,QA,AB,如图所示,假定△ABQ的面积为10.5,则有,S△BOQ+S△AOQ+S△AOB=10.5即,11913||3||3310.5 222xx⨯⨯+⨯⨯+⨯⨯=∵x<0∴方程整理得,2490x x++=∵△=2244419200b ac-=-⨯⨯=-<∴此方程无实数解,故函数9yx=在第三象限的图像上不存在一点Q,使得△ABQ的面积为10.5。

沪教版八年级第一学期(上)期中数学试卷(含答案)

沪教版八年级第一学期(上)期中数学试卷(含答案)

沪教版数学八上期中测试卷一、填空题(共14小题;共70分)1-当X _________________ 时,√xT5是二次根式. 2. 化简:V16ab i(α > 0) = ______________ .3. √=64 + √64=_______________ .4. 分母有理化:7J π= --------------------------------------- •5. 计算:(W+ 2)'(% —2)°= ______________ .6. 计算:(32 + 42)7=________________ .7. 方程X 2-2√3X + 3 = 0 中,根的判斷式△= ___________________________ . 8. 方程2X 2-3X -2 = 0 的根的情况是 ________________________ . 9. 方程x 2-3x-2Ar = O没有实数根,则k 的取值范囲是 _____________________ .10. 如果最简二次根式√3x -10和√5同类根式,那么X= ____________________________ . 11. 在实数范囲内分解因式X 2-3= ______________________ .12. 正比例函数y = kx 过点A (3, —2),则该函数解析式是 __________________________ . 13. 正比例函数y = (3a-2)x 的图象过第一、三象限,则a 的取值范围是 _________________ •14. 已知点Λ在函数y = -(k≠O) 上,过点Λ作两坐标轴的垂线,垂足分别为・\M 9 N 9且由四点 O, A 9 M 9 N 所囲成的四边形的而积是12 ,则k 的值 是 .二. 选择题(共4小题;共20分) 15. 下列说法正确的是(•.)18.如果二次三项式^X 2 + 3X + 4 在实数范围内能分解因式,则m 的取值范围是A.任何数的平方根都有两个B.负数没有平方根C.只有正数才有平方根 16. “\/-十可以化简为(..)A. — J_aB. Q_aD.正数的两个平方根互为倒数C. — y/uD ・ ∖fu17.下列各数中,不能使√(x -5)2 = 5-x成立的X 的取值是(. A. 6B. 5C. 4D. 3A W<4 且 w≠°B. /n 0 O9 D. O < /H ≤ —或 m < O10 三、解答题(共9小题;共63分) 计算题・(1) √0W6- √(-l)3+ √(≡2) + √3 × √5 ÷ .20.请回答:(1) √1.96×105∙√4×10-2 ;(2) (2√5)2 + l√32 + ^-l√5∂2Λ∕^- 3√^ + (√z ^) × √z5 +23. 解方程:√3 (x + √3) = √2 (x - √2)24. 如图,正比例函数y = k λx 的图象与反比例函数y =-的图象交于A 9 B 两・\点,点A 坐标为(√I2√J) •C. 91619.21. 22. (√5 + 2)(2 - √5) +1 ______ 3 3- √7 ^ √7 + 2(2)(1) 分别求出这两个函数的解析式;(2) 求点B的坐标•25. 已知y = y i + y2, y↑与X成正比例,2y = 一4 : X = 3时,7 = 6亍,求『与兀},2与X成反比例,且当X = -I时, 之间的函数关系式•26.已知X是√3-√2的相反数,y是√3-√2的倒数,求X I-Xy + y2的值.(2)若P 为射线OA 上的一点,则:① 设P 点横坐标为X, ΔOPB 的而积为S,写出S 关于 指出自变量X 的取值范围;② 当'POB 是直角三角形时,求P 点坐标•点B 坐标为(4.0).的函数解析式,答案第一部分1.2-52. 3. 4.4bVab 4√5-25.√5 + 26. 7.5 O8.有两个不相等的实数根f 99.k <——810.511.(X + (X —12.2丿=_亍X213. a > —3 14.±12第二部分15.B16.17.A A18.D第三部分19.(1) 3.04(2) - + 3√3"20.(1) 28√Tθ .(2) 20 + √2 .21.24∣-√5 ・O22.5 √7 2 " "F •23.% = -5√3-5√2 •24. (1) y = - 9 y = 2x .X Z(2) (-√3.-2√3).225. y = 2x + -・X26. X = —y/3 - 41 , y= √3 —χ∕2 , X I-Xy^r y1 =. 1127. (1) y = 2x .(2)① S = 4x(x>0).②PI (F ,尸2 (4.8).。

沪教版八年级上册数学期中测试(含答案)

沪教版八年级上册数学期中测试(含答案)

沪教版八年级上册数学期中模拟测试姓名_______ 学号__________成绩_________一.选择题(每题3分,共15分)1.的最小值是是有理数,则已知42a 2+-a a ( )8 D.6 C.5 B .3A.2.关于x 的一元二次方程0m x 2x 2=-+有实数根,则m 的取值范围是( )A.m ≥-1B.m >-1C.m ≤-1D.m <13.方程02x 2-x x =-+)(的两个根为( )A.x=-1B. x=-2C.x 1=1,x 2=-2D.x 1=-1,x 2=24.下列等式中,计算正确的是( ) A.yx 1y 1x 1+=+ B.q p )q p -3532-=( C.ab b ·a = D.ab b a b a 2222++=+)( 5.下列各式中互为有理化因式的是( ) A.b a b a -+和 B.1x 1x ---和 C.25-25+-和 D.b y -a x b y a x 和+二.填空题(每空2分,共30分)6.计算:已知x 2+y 2-4x+6y+13=0,则x+y=_______7.若2<x<3,则______|3x |2x 2=-+-)(8.若b<0,化简式子:______ab b a 33=-9.马大姐要用13米长的篱笆围成一个面积为20米的长方形土地,其中一面靠墙,那么长、宽分别是______、 _______(写出一种答案即可)10. 多项式3kx 2+(6k -1)x+3k+1(k ≠0)在实数范围内可以分解因式时,实数k 的取值范围是________11. 分母有理化:______312=+ 12. 计算:______5415-54=÷)( 13.若方程0m 3x 1-m 2x 22=++)(两根互为相反数,则m=_________ 14.在方程2x 32x 32=+中,______ac 4-b 2的值为15.如果5m x )1m (2x 22+++-是一个完全平方式,则m=________16.把式子yx y x -+分母有理化的结果是__________ 17.若m<0,化简______n m n2= 18.小杰把1000元压岁钱按一年的定期存入银行,到期后取出200元用来购买书和文具,剩下的800元和应得的利息又全部按一年的定期存入银行,若存款年利率为x ,这样到期后可得本利和(本金加利息之和)共得892.5元,由题意列方程为_____________________19.已知6x x -96x x 9-=--,且x 为偶数,那么1-x 4x 5-x x 122++)(的值为___________ 三、计算题(20、21题每题5分,22、23题6分,23、24题8分,共30分) 20.3-2762+⨯ 21.π)(-3-322120++22. 解方程:(用公式法)a x x 22=-23.已知01x 3x2=+-,求2x 1x 22-+的值.24.03-x 1-22x 22-32=+)()(四、解答题(25,26题8分,27题9分,共计25分)25.有一块长为32米,宽为20米的长方形绿地,准备修筑同样宽的三条直路,把绿地分成六块,种植不同的花草,要使绿地面积为504㎡,求小道的宽度.26.某工厂生产某种产品,今年生产200件,计划通过技术改造,使今后两年的产量比前一年增长一个相同的百分数,这样三年的总产量达到1400件,求这个百分数.27. 已知关于x 的方程0)1k (kx 2x k 22=++++)(,(1)如果此方程有一个实数根,求k 的值;(2)如果此方程有两个实数根,求k 的取值范围;(3)如果此方程无实数根,求k 的取值范围.沪教版八年级上册数学期中模拟测试答案1.A2.A3.D4.C5.B6.17.18.ab a b )(-9. 2.5,8或4,5 10.k ≤241 11.1-3 12.34- 13.-1 14. 36 15. 2 16.y -x y x 22- 17.m n 2- 18.[1000(1+x )-200]·(1+x )=892.5 19. 6 20.分)(解:原式233362⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-+⨯=分)(23-3332⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=分)(134⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=21. 分)()(解:原式21-3-2232⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=分)(21-32-432⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=分)(13⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=22. 分)(10a x x 22⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=--分)(2a 412⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=∆分)(22a 411x 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+±=.2a 411x 2+±=∴原方程的解为:…………………………(1分)23.分)(分)(分)分)(分)(152x 1x 17x 1x 1(92x 1x 1.3x 1x 2.x 31x ,01x 3x 22222222⋯⋯⋯⋯⋯⋯⋯⋯=-+∴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+∴⋯⋯⋯⋯⋯⋯⋯⋯=++∴⋯⋯⋯⋯⋯⋯⋯⋯=+∴⋯⋯⋯⋯⋯⋯⋯⋯=+∴=+-24.分)()()解:由原方程得:(203-x 1-22x 122-22⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=++ 分)(141x )12(2]x )12[(2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+-+-分)(14]1x )12[(2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+-21x 1-2±=+)开方得:(…………………………(1分) x 1=分)(13-23-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯x 2=12+…………………………(1分).12x ,323x 21+=--=∴原方程的解为…………………………(1分) 25.分)(米答:所以路宽分)((舍去)分)(分)(分)(分)(分)()()(分)(米解:设路宽是12134x ,2x 1034)-x )(2x (1068x 36x 10136x 72-x 21504x 2x 32-x 406401504x 2-32·x -201.x 21222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯==⋯⋯⋯⋯=-⋯⋯⋯⋯=+-⋯⋯⋯⋯⋯⋯=+⋯⋯⋯⋯⋯⋯=+-⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26.分)(答:这个百分数为分)((舍去)分)(或分)(分)(分)((:方程两边同时除分)()()(分)(解:设这个百分数是1%10014x ,1x 101-x 04x 10)1x )(4x (10)x 21)(x 31(106)x 1()x 17)x 1()x 1(120021400x 1200x 12002001x 21222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-==⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯==+∴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+-++⋯⋯⋯⋯⋯⋯⋯⋯=-+++=++++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=++++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯27.分)(解得:分)())(()即(分)(时,方程无实数根)当(分)(且解得:分)(且()(,需满足:)若方程有两个实数根(分)(时,当分)(,解得此时,,方程只有一个实数根)当方程是一次方程时(132k 101k k 24-k 210312k 32k 20k 20,1)k)(k 24-k 22104-k 22k 22k 0k 2122⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯->⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯<++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯<∆⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-≠-≤⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯≥+≥++=∆⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯≠=-=⋯⋯⋯⋯⋯⋯⋯⋯-==+。

沪教版八年级(上)期中数学试卷(含解析)

沪教版八年级(上)期中数学试卷(含解析)

八年级(上)期中数学试卷一、精心选一选(本大题共12小题;每小题3分,共36分;在每小题提供的四个选项中,只有一个是正确的)1.在平面直角坐标系中,点P (0,5)在( )A .第一象限B .第二象限C .x 轴D .y 轴2.在函数y =√2−x 中,自变量x 的取值范围是( )A .x ≠2B .x ≤2C .x >2D .x ≥23.已知点A (a +1,4),B (3,2a +2),若直线AB ∥x 轴,则a 的值为( )A .2B .1C .﹣4D .﹣34.如图,直角△ABC 中,∠A =45°,∠CBD =60°,则∠ACB 的度数等于( )A .10°B .15°C .30°D .45°5.若a 、b 、c 为△ABC 的三边长,且满足|a ﹣4|+√b −2=0,则c 的值可以为( )A .5B .6C .7D .86.一个正比例函数的图象经过点(4,﹣2),它的表达式为( )A .y =﹣2xB .y =2xC .y =−12xD .y =12x7.如图,直线y =kx +b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是( )A .x >﹣4B .x >0C .x <﹣4D .x <08.下列语句中,不是命题的是( )A .两点之间线段最短B .对顶角相等C .不是对顶角不相等D .过直线AB 外一点P 作直线AB 的垂线9.直线y =2x +2沿y 轴向下平移5个单位后得到的直线解析式为( )A .y =2x ﹣3B .y =2x +7C .y =2x +8D .y =2x +1210.关于函数y =﹣2x +1,下列结论正确的是( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .当x >12时,y <0D .y 随x 的增大而增大11.已知等腰三角形的一边长是9cm ,另一边长是5cm ,那么这个等腰三角形的周长是( )A .19cmB .23cmC .16cmD .19cm 或23cm12.如图,△ABC 顶点坐标分别为A (1,0)、B (4,0)、C (1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )A .4B .8C .8√2D .16二、填空题(本大题共6小题,每小题3分,共18分.)13.已知一次函数y =﹣x +b 的图象过点P (2,4),则b = . 14.如图,已知函数y =2x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得方程组{2x −y +b =0ax −y −3=0的解是 .16题图14题图15.已知:点A (x 1,y 1),B (x 2,y 2)是一次函数y =﹣2x +5图象上的两点,当x 1>x 2时,y 1 y 2.(填“>”、“=”或“<”)16.如图,已知在△ABC 中,∠B 与∠C 的平分线交于点P .当∠A =70°时,则∠BPC 的度数为 .17.将命题“同角的补角相等”改写成“如果…那么…”形式为.18.在平面直角坐标系中,点A1(1,1),A2(3,4),A3(5,9),A4(7,16),…,用你发现的规律确定A10的坐标为.三、耐心解一解(本大题共6小题,满分46分)19.已知点A(3,0)、B(0,2)、C(﹣2,0)、D(0,﹣1)在同一坐标系中描出A、B、C、D各点,并求出四边形ABCD的面积.20.已知直线y=2x+3,求:(1)直线与x轴,y轴的交点坐标;(2)若点(a,1)在图象上,则a值是多少?21.在△ABC中,若∠A:∠B:∠C=2:3:4,求∠A,∠B和∠C的度数.22.如图,直线l1在平面直角坐标系中与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.23.△ABC中,AD平分∠BAC,AE⊥BC,垂足为E.∠B=38°,∠C=70°.求∠DAE的度数.24.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A 城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(3)当两车相距100千米时,求甲车行驶的时间.参考答案与试题解析一、精心选一选(本大题共12小题;每小题3分,共36分;在每小题提供的四个选项中,只有一个是正确的)1.在平面直角坐标系中,点P (0,5)在( )A .第一象限B .第二象限C .x 轴D .y 轴【解答】解:点P (0,5)在y 轴上,故选:D .2.在函数y =√2−x 中,自变量x 的取值范围是( )A .x ≠2B .x ≤2C .x >2D .x ≥2【解答】解:由函数y =√2−x 有意义,得2﹣x ≥0.解得x ≤2,故选:B .3.已知点A (a +1,4),B (3,2a +2),若直线AB ∥x 轴,则a 的值为( )A .2B .1C .﹣4D .﹣3【解答】解:∵直线AB ∥ox 轴,∴2a +2=4,解得a =1.故选:B .4.如图,直角△ABC 中,∠A =45°,∠CBD =60°,则∠ACB 的度数等于()A .10°B .15°C .30°D .45°【解答】解:∵∠CBD 是△ABC 的一个外角,∴∠ACB =∠CBD ﹣∠A =15°,故选:B .5.若a 、b 、c 为△ABC 的三边长,且满足|a ﹣4|+√b −2=0,则c 的值可以为() A .5 B .6 C .7 D .8【解答】解:∵|a ﹣4|+√b −2=0,∴a ﹣4=0,a =4;b ﹣2=0,b =2;则4﹣2<c <4+2,2<c <6,5符合条件;故选:A .6.一个正比例函数的图象经过点(4,﹣2),它的表达式为( )A .y =﹣2xB .y =2xC .y =−12xD .y =12x【解答】解:设该正比例函数的解析式为y =kx ,根据题意,得 4k =﹣2,k =−12.则这个正比例函数的表达式是y =−12x .故选:C . 7.如图,直线y =kx +b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是()A .x >﹣4B .x >0C .x <﹣4D .x <0【解答】解:由函数图象可知x >﹣4时y >0.故选:A .8.下列语句中,不是命题的是( )A .两点之间线段最短B .对顶角相等C .不是对顶角不相等D .过直线AB 外一点P 作直线AB 的垂线【解答】解:A 、是,因为可以判定这是个真命题;B 、是,因为可以判定其是真命题;C 、是,可以判定其是真命题;D 、不是,因为这是一个陈述句,无法判断其真假.故选:D .9.直线y =2x +2沿y 轴向下平移5个单位后得到的直线解析式为( )A .y =2x ﹣3B .y =2x +7C .y =2x +8D .y =2x +12【解答】解:∵向下平移5个单位,∴新函数的k =﹣2,b =2﹣5=﹣3,∴得到的直线所对应的函数解析式是:y =﹣2x ﹣3,故选:A .10.关于函数y =﹣2x +1,下列结论正确的是( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .当x >12时,y <0D .y 随x 的增大而增大【解答】解:A 、当x =﹣2时,y =﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B 、k =﹣2<0,b =1经过第一、二、四象限,故此选项错误;C 、由y =﹣2x +1可得x =−y−12,当x >12时,y <0,故此选项正确;D 、y 随x 的增大而减小,故此选项错误;故选:C .11.已知等腰三角形的一边长是9cm ,另一边长是5cm ,那么这个等腰三角形的周长是( )A .19cmB .23cmC .16cmD .19cm 或23cm【解答】解:①当腰是5cm 时,三角形的三边是:5cm ,5cm ,9cm ,能构成三角形,则等腰三角形的周长=5+5+9=19cm ;②当腰是9cm 时,三角形的三边是:5cm ,9cm ,9cm ,能构成三角形,则等腰三角形的周长=5+9+9=23cm ;因此这个等腰三角形的周长为19或23cm .故选:D .12.如图,△ABC 顶点坐标分别为A (1,0)、B (4,0)、C (1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )A .4B .8C .8√2D .16【解答】解:如图所示,当△ABC 向右平移到△DEF 位置时,四边形BCFE 为平行四边形,C 点与F 点重合,此时C 在直线y =2x ﹣6上,∵C (1,4),∴FD =CA =4,将y =4代入y =2x ﹣6中得:x =5,即OD =5,∵A (1,0),即OA =1,∴AD =CF =OD ﹣OA =5﹣1=4,则线段BC 扫过的面积S =S 平行四边形BCFE =CF •FD =16.故选:D .二、填空题(本大题共6小题,每小题3分,共18分.)13.已知一次函数y =﹣x +b 的图象过点P (2,4),则b = 6 .【解答】解:∵一次函数y =﹣x +b 的图象过点P (2,4),∴﹣2+b =4,解得b =6.故答案为:6.14.如图,已知函数y =2x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得方程组{2x −y +b =0ax −y −3=0的解是 {x =−2y =−5. 【解答】解:因为函数y =2x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),所以方程组{2x −y +b =0ax −y −3=0的解为{x =−2y =−5. 故答案为{x =−2y =−5. 15.已知:点A (x 1,y 1),B (x 2,y 2)是一次函数y =﹣2x +5图象上的两点,当x 1>x 2时,y 1 < y 2.(填“>”、“=”或“<”)【解答】解:∵一次函数y =﹣2x +5中k =﹣2<0,∴该一次函数y 随x 的增大而减小,∵x 1>x 2,∴y 1<y 2.故答案为:<.16.如图,已知在△ABC 中,∠B 与∠C 的平分线交于点P .当∠A =70°时,则∠BPC 的度数为 125° .【解答】解:∵△ABC 中,∠A =70°,∴∠ABC +∠ACB =180°﹣∠A =180°﹣70°=110°,∴BP ,CP 分别为∠ABC 与∠ACP 的平分线,∴∠2+∠4=12(∠ABC +∠ACB )=12×110°=55°,∴∠P =180°﹣(∠2+∠4)=180°﹣55°=125°.故答案为:125°.17.将命题“同角的补角相等”改写成“如果…那么…”形式为 如果两个角是同一个角的补角,那么这两个角相等 .【解答】解:“同角的补角相等”的条件是:两个角是同一个角的补角,结论是:这两个角相等.则将命题“同角的补角相等”改写成“如果…那么…”形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案是:如果两个角是同一个角的补角,那么这两个角相等.18.在平面直角坐标系中,点A 1(1,1),A 2(3,4),A 3(5,9),A 4(7,16),…,用你发现的规律确定A 10的坐标为 (19,100) .【解答】解:∵点A 1(1,1),A 2(3,4),A 3(5,9),A 4(7,16),…,∴点A 10的横坐标是2×10﹣1=19,纵坐标是102=100,∴A 10的坐标(19,100).故答案为:(19,100).三、耐心解一解(本大题共6小题,满分46分)19.已知点A (3,0)、B (0,2)、C (﹣2,0)、D (0,﹣1)在同一坐标系中描出A 、B 、C 、D 各点,并求出四边形ABCD 的面积.【解答】解:如图所示:S ABCD =S △AOB +S △BOC +S △COD +S △AOD =12(3×2+2×2+2×1+1×3)=152. 所以,四边形ABCD 的面积为152.20.已知直线y =2x +3,求:(1)直线与x 轴,y 轴的交点坐标;(2)若点(a ,1)在图象上,则a 值是多少?【解答】解:(1)令y =0,则2x +3=0,解得:x =﹣1.5;令x =0,则y =3.所以,直线与x 轴,y 轴的交点坐标坐标分别是(﹣1.5,0)、(0,3);(2)把(a ,1)代入y =2x +3,得到2a +3=1,即a =﹣1.答:(1)直线与x 轴,y 轴的交点坐标坐标分别是(﹣1.5,0)、(0,3);(2)若点(a ,1)在图象上,则a 值是﹣1.21.在△ABC 中,若∠A :∠B :∠C =2:3:4,求∠A ,∠B 和∠C 的度数.【解答】解:设∠A =2x °,则∠B =3x °,∠C =4x °.∴2x +3x +4x =180(三角形内角和定理)解方程,得x =20∴∠A =2×20°=40°∠B =3×20°=60°∠C =4×20°=80°.22.如图,直线l 1在平面直角坐标系中与y 轴交于点A ,点B (﹣3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)已知直线l 2:y =x +b 经过点B ,与y 轴交于点E ,求△ABE 的面积.【解答】解:(1)由平移法则得:C 点坐标为(﹣3+1,3﹣2),即(﹣2,1).设直线l 1的解析式为y =kx +c ,则{3=−3k +c 1=−2k +c ,解得:{k =−2c =−3, ∴直线l 1的解析式为y =﹣2x ﹣3.(2)把B 点坐标代入y =x +b 得,3=﹣3+b ,解得:b =6,∴y =x +6.当x =0时,y =6,∴点E 的坐标为(0,6).当x =0时,y =﹣3,∴点A 坐标为(0,﹣3),∴AE =6+3=9,∴△ABE 的面积为12×9×|﹣3|=272. 23.△ABC 中,AD 平分∠BAC ,AE ⊥BC ,垂足为E .∠B =38°,∠C =70°.求∠DAE 的度数.【解答】解:∵∠B =38°,∠C =70°,∴∠BAC =180°﹣38°﹣70°=72°∵AD 平分∠BAC ,∴∠BAD =12∠BAC =36°∵AE ⊥BC ,∴∠BEA =90°.∵∠B =38°,∴∠BAE =180°﹣90°﹣38°=52°∴∠DAE =∠BAE ﹣∠BAD =52°﹣36°=16°.24.A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A城的距离y (千米)与行驶时间 x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车的速度及乙车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;(3)当两车相距100千米时,求甲车行驶的时间.【解答】解:(1)设甲车行驶过程中y 与x 之间的函数解析式为y 甲=k 1x +b 1,当0≤x ≤6时,将点(0,0),(6,600)代入函数解析式得:{0=b 1600=6k 1+b 1,解得:{k 1=100b 1=0, ∴y 甲=100x ;当6≤x ≤14,将点(6,600),(14,0)代入函数解析式得:{600=6k 1+b 10=14k 1+b 1,解得:{k 1=−75b 1=1050, ∴y 甲=﹣75x +1050.综上得:y 甲={100x(0≤x ≤6)−75x +1050(6≤x ≤14). (2)当x =7时,y 甲=﹣75×7+1050=525,乙车的速度为:525÷7=75(千米/小时).∵乙车到达B 城的时间为:600÷75=8(小时),∴乙车行驶过程中y 乙与x 之间的函数解析式为:y 乙=75x (0≤x ≤8).(3)设两车之间的距离为W (千米),则W 与x 之间的函数关系式为:W =|y 甲﹣y 乙|={100x −75x =25x(0≤x ≤6)−75x +1050−75x =−150x +1050(6≤x ≤7)75x −(−75x +1050)=150x −1050(7≤x ≤8)600−(−75x +1050)=75x −450(8≤x ≤14), 当W =100时,有{25x =100(0≤x ≤6)−150x +1050=100(6≤x ≤7)150x −1050=100(7≤x ≤8)75x −450=100(8≤x ≤14), 解得:x 1=4,x 2=613,x 3=723. 答:当两车相距100千米时,甲车行驶的时间为4、613或723小时.。

沪教版八年级第一学期(上)期中数学试卷(含答案)

沪教版八年级第一学期(上)期中数学试卷(含答案)

沪教版八上数学期中测试卷一、填空题(共15小题;共60分)1. 求值:√18=.2. 若最简二次根式√2a+5b+3与2√3是同类二次根式,则a+ b=.3. 不等式(1−√2)x<1的解集为.4. 如果f(x)=xx−1,那么f(3)=.5. 等式√x2−9=√x−3⋅√x+3成立的条件是.6. 实数a,b在数轴上的对应点如图所示,则∣a−b∣+√a2的结果为.7. 方程x2+2x=0的根是.8. 若关于x的一元二次方程(m−1)x2+x+m2+2m−3=0有一个根为零,则m的值为.9. 当k时,关于x的方程3x2−2x+k−1=0有两个实数根.10. 在实数范围内分解因式:x2−6x+2=.11. 函数y=√3x−2的定义域是.12. 已知y是x的正比例函数,且当x=2时,y=1,则y关于x的函数表达式为.13. 已知正比例函数y=(3k−1)x,若y随x的增大而增大,则k的取值范围是.14. 一种型号的数码相机,原来每台售价5000元,经过两次降价后,现在每台售价为3200元,假设两次降价的百分率均为x,则x=.15. 对于实数a,b,定义运算“∗”:a∗b={a2−ab,a≥bab−b2,a<b.例如4∗2,因为4>2,所以4∗2=42−4×2=8.若x1,x2是一元二次方程x2−7x+12=0的两个根,则x1∗x2=.二、选择题(共5小题;共20分)16. 下列结论中正确的有( )(1)√6m(a2+b2)不是最简二次根式;是同类二次根式;(2)√8a与√12a(3)√a与√a互为有理化因式;(4)(x−1)(x+2)=x2是一元二次方程.A. 0个B. 1个C. 2个D. 3个17. 一元二次方程x2+2x+2=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 无实数根18. 点A(x1,y1),B(x2,y2)在直线y=−3x上,且x1<x2,则( )A. y1<y2B. y1=y2C. y1>y2D. 无法比较y1,y2的大小19. 在水管放水的过程中,放水的时间x(分钟)与流出的水量y(m3)是两个变量.已知水管每分钟流出的水量是0.2m3,放水的过程共持续10分钟,则y关于x的函数图象是( )A.B.C.D.20. 定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)为“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A. a=cB. a=bC. b=cD. a=b=c三、解答题(共9小题;共72分)21. 计算:2a √4a+√1a−2a√1a3.22. 计算:2√6x7÷4√x33÷12√x2.23. 解方程:2x(x−2)=x2−3.24. 用配方法解方程2x2−4x−7=0.25. 先化简,再求值:x+1x ÷(x−1+x22x),其中x=√2+1.26. 已知a,b,c分别是△ABC的三边,其中a=1,c=4,且关于x的方程12x2−bx+3b−4=0有两个相等的实数根,试判断△ABC的形状.27. 已知:正比例函数y=kx(k≠0)过A(−2,3).(1)求比例系数k的值;(2)在x轴上找一点P,使S△PAO=6,并求点P的坐标.28. 如图,要建一个面积为140平方米的仓库,仓库的一边靠墙,这堵墙的长为18米,在与墙垂直的一边要开一扇2米宽的门,已知围建仓库的现有木板材料可使新建板墙的总长为32米,那么这个仓库的宽和长分别为多少?29. 如图①所示,在平面直角坐标系中,点A的坐标为(−9,0),直线l的解析式为y=−2x,在直线l上有一点B使得△ABO的面积为27.(1)求点B的坐标;(2)如图②,当点B在第二象限时,四边形OABC为直角梯形,OA∥BC,求梯形OABC的面积;(3)在(2)的条件下是否存在直线m经过坐标原点O,且将直角梯形OABC 的面积分为1:5的两部分?若存在,请直接写出直线m的解析式;若不存在,请说明理由.答案第一部分1. 3√22. −23. x>−1−√24. 325. x≥36. b−2a7. x1=0,x2=−28. −39. ≤4310. (x−3−√7)(x−3+√7)11. x≥2312. y=12x13. k>1314. 20%15. 4或−4第二部分16. C17. D18. C19. C20. A第三部分21. 3a√a.22. 6x√x.23. x1=1,x2=3.24. x1=1+32√2,x2=1−32√2.25. 原式=2x−1=√2.26. △ABC 为等腰三角形.27. (1) k =−32.(2) P (4,0) 或 P (−4,0).28. 这个仓库的宽为 10 米,长为 14 米.29. (1) 点 B 的坐标为 (3,−6) 或 (−3,6).(2) 36.(3) y =−3x 和 y =−423x .。

沪教版八年级第一学期(上)期中数学试卷(含答案)

沪教版八年级第一学期(上)期中数学试卷(含答案)

沪教版八上数学期中测试一、选择题(共6小题;共24分)1. 下列二次根式中是最简二次根式的是A. B. C. D.2. 在下列二次根式中,与是同类二次根式的是A. B. C. D.3. 若,则的取值范围是A. B. C. D. 一切实数4. 方程的根的情况是A. 有两个不相等实根B. 有两个相等实根C. 没有实数根D. 有实数根5. 已知函数的图象过点,图象上有两点,,如果,那么A. B. C. D.6. 如图,在平面直角坐标系中,点在函数的图象上,点在函数的图象上,轴于点.若,则的值为B. D.二、填空题(共13小题;共52分)7. 函数的定义域是.8. 化简得.9. 方程的根是.10. 不等式的解集是.11. 若关于的方程有两个实数根,则的取值范围是.12. 当时,代数式和的值互为相反数.13. 在实数范围内因式分解:.14. 如果正比例函数的图象经过第二、四象限,那么的取值范围是.15. 已知与成反比例,当时,,则关于的函数解析式为.16. 上海玩具厂月份生产玩具个,后来生产效率逐月提高,月份生产玩县个,设平均每月增长率为,则可列方程.17. 如图,大正方形被分成两个小正方形和两个长方形,如果两个小正方形的面积分别为和,那么这个大正方形的面积为.18. 若关于的一元二次方程的一个根是,则.19. 如图,反比例函数,点是它在第二象限内的图象上一点,垂直轴于点,如果的面积为,那么该函数的解析式为.三、解答题(共11小题;共77分)20. .21. 化简:.22. 用配方法解方程.23. 解方程.24. 已知,,求的值.25. 已知关于的一元二次方程有实数根,求的最大整数解.26. 如图,在平面直角坐标系中,点为坐标原点,的边垂直于轴,垂足为点,反比例函数的图象经过的中点,且与相交于点,连接,,.(1)求反比例函数的解析式;(2)求的面积.27. 已知矩形的顶点在正比例函数的图象上,点在轴上,点在轴上,反比例函数的图象与边相交于点,与边交于,且,求反比例函数解析式及点的坐标.28. 将进货单价为元的商品按元售出时,能卖出件,已知这种商品每涨元,其销售量就减少件.如果希望能获得利润元,那么售价应定多少元?这时应进货多少件?29. 有一块长米,宽米的长方形绿地,其中有三条笔直的道路(图中阴影部分道路的一边与长方形绿地的一边平行,且道路的出入口,,,,,的长度相同),其余的部分种植绿化,已知道路的面积为平方米,求道路出入口的宽度.30. 已知,且与成正比例,与成反比例,又当,时,的值均为,求与的函数解析式.答案第一部分1. D2. C3. B4. A5. B6. A第二部分7. 且8.9. ,10.11. 且或13.14.15.16.17.19.第三部分.21. .22. ,.23. ,.24. 化简得,,所以.25. 因为,所以,所以的最大整数解是.26. (1)设点的坐标为,则点的坐标为,因为点为线段的中点,所以点的坐标为.又点,均在反比例函数的图象上,则解得所以反比例函数的解析式为.(2)过作,易证,所以.27. 将代入,得,解得,从而求得点的坐标为.又因为,所以,,从而求得点的坐标为,所以反比例函数的解析式为.设点的坐标为,将代入,解得,所以点的坐标为.28. 设每种商品涨元,原来每件利润元.由题意列方程得,解得,.当时,,;当时,,.答:当每件定价元时,应进货件;当每件定价元时,应进货件,都可以获得利润元.29. 设道路出入口宽度为,则解得30. 设,,所以,因为时,都是,所以解得所以,与的函数解析式为.。

沪科版八年级上册数学第十一章《平面直角坐标系》测试卷(含答案)

沪科版八年级上册数学第十一章《平面直角坐标系》测试卷(含答案)

沪科版八年级上册数学第十一章《平面直角坐标系》测试卷(含答案)第11章平面直角坐标系一、填空题(每小题3分,满分30分)1、在平面直角坐标系中,点M(2020,-2020)在()A 第一象限B 第二象限C 第三象限D 第四象限2、已知点P的坐标为(1,-2),则点P到x轴的距离是()A 1B 2C -1D -23、根据下列表述,能确定一个点位置的是()A 北偏东10°B 合肥市长江东路C 解放电影院6排D 东经116°、北纬12°4、已知点A(a-2,2a+7),点B的坐标为(1,5),直线AB//y轴,则a的值是()A 1B 3C -1D 55、若点A(m+2,2m-5)在y轴上,则点A的坐标是()A (0,-9)B (2.5,0)C (2.5,-9)D (-9,0)6、若点A(-3,-2)向右平移5个单位,得到点B,再把点B向上平移4个单位得到点C,则点C的坐标为()A (2,2)B (-2,-2)C (-3,2)D (3,2)7、若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A 第一象限B 第二象限C 第三象限D 第四象限8、在平面直角坐标系中,已知A(-2,3)、B(2,1),将线段AB平移后,A点的坐标变为(-3,2),则点B的坐标变为()A (-1,2)B (1,0)C (-1,0)D (1,2)9、在平面直角坐标系中,到两坐标轴的距离都是3的点有()A 1个B 2个C 3个D 4个10、无论x为何值,P(2x-6,x-5)不可能在()A 第一象限B 第二象限C 第三象限D 第四象限二、填空题(每小题4分,满分20分)11、教室里,大明坐在第3排第5列,用(3,5)表示,小华坐在第6排第4列表示为12、如图表示的象棋盘上,若“士”的坐标是(-2,-2),“相”的坐标是(3,2),则“炮”的坐标是13、已知点P(x,y)位于第四象限,并且x≤y+4(x、y为整数),写出一个符合上述条件的点P的坐标14、已知点M(1-2t,t-5),若点M在x轴的下方,y轴的右侧,则t的取值范围是15、已知点A(0,1)、B(0,2),点C在x轴上,且S△ABC=2,则点C的坐标三、解答题(每小题10分,共50分)16、(10分)已知:点A(m-1,4m+6)在第二象限。

2022-2023学年沪科版八年级数学上册期中测试卷含答案

2022-2023学年沪科版八年级数学上册期中测试卷含答案

八年级上册数学期中试卷一、单选题(共10题;共40分)1.在平面直角坐标系坐标中,第二象限内的点A 到x 轴的距离是3,到y 轴的距离是2,则A 点坐标为( ) A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)2.在平面直角坐标系中,点B 的坐标是 (4,−1) ,点A 与点B 关于y 轴对称,则点A 的坐标是( )A .(4,1)B .(−1,4)C .(−4,−1)D .(−1,−4)3.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )A .B .C .D .4.把直线y =3x 向下平移2个单位,得到的直线是( )A .y =3x ﹣2B .y =3(x ﹣2)C .y =3x+2D .y =3(x+2)5.在同一直角坐标系中,若直线y =kx +3与直线y =−2x +b 平行,则( )A .k =−2,b ≠3B .k =−2,b =3C .k ≠−2,b ≠3D .k ≠−2,b =36.函数y =ax +b 与函数y =cx +d 的图象是两条相交直线,则二元一次方程组{y =ax +b y =cx +d 有( )解.A .0个B .1个C .2个D .3个7.如图中三角形的个数是( )A .1B .2C .3D .48.下列各组线段能构成三角形的是( )A .2cm ,2cm ,4cmB .2cm ,3cm ,4cmC .2cm ,2cm ,5cmD .2cm ,3cm ,6cm9.如图,直线 y =ax +b 与 x 轴交于点 A(4,0) ,与直线 y =mx 交于点 B(2,n) ,则关于 x 的不等式组 0<ax −b <mx 的解为( )A .−4<x <−2B .x <−2C .x >4D .2<x <410.如图,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且△ABC 的面积是32,则图中阴影部分面积等于 ( )A .16B .8C .4D .2二、填空题(共4题;共20分)11.在△ABC 中,△A =35°,△B =65°,则△C = °.12.“同一平面内,若a△b ,c△b ,则a△c”这个命题的条件是 ,结论是 ,这个命题是 命题.13.已知关于x 的方程ax −5=7的解为x =1,则一次函数y =ax −12与x 轴交点的坐标为 . 14.已知 y 是关于x 的一次函数,下表列出了部分对应值,则a的值为.x 1 2 3 y3a5三、解答题(共9题;共90分)15.如图,这是一所学校的平面示意图,建立适当的平面直角坐标系,并用坐标表示教学楼、图书馆、校门、实验楼、国旗杆的位置.16.已知直线y =kx +b 经过点(0,2),(−1,3)两点,求这条直线的表达式.17.已知y =y 1+y 2,并且y 1与x 成正比例,y 2与x −2成反比例.当x =3时,y =7;当x =1时,y =1,求:y 关于x 的函数解析式.18.如图所示,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并说明理由.解: ▲ .证明:∵∠1+∠2=180°( ▲ ) ∠1=∠DFH ( ▲ )∴( ▲ ) ∴EH ∥AB ( ▲ ) ∴∠3=∠ADE ( ▲ ) ∵∠3=∠B∴∠B =∠ADE ( ▲ ). ∴DE ∥BC∴∠AED =∠C ( ▲ )19.如图,在靠墙(墙长为18m )的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m ,求鸡场的长y (m )与宽x (m )的函数关系式,并求自变量的取值范围.20.如图,直线 l 1 , l 2 相交于点 P ,直线 l 1 的函数表达式为 y =3x +7 ,点 P 的横坐标为 −2 ,且直线 l 2 与 y 轴交于点 A(0,−2) ,求直线 l 2 的函数表达式.21.如图,在△ABC 中,△B =2△C ,AE 平分△BAC 交BC 于E .(1)若AD△BC 于D ,△C =40°,求△DAE 的度数;(2)若EF△AE交AC于F,求证:△C=2△FEC.22.已知经过点A(4,−1)的直线y=kx+b与直线y=−x相交于点B(2,a),求两直线与x轴所围成的三角形的面积.23.一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离y1千米,轿车离甲地的距离y2千米,y1、y2关于x的函数图象如图所示:①根据图象直接写出y1、y2关于x的函数关系式;②当两车相遇时,求此时客车行驶的时间.③相遇后,两车相距200千米时,求客车又行驶的时间.答案解析部分1.【答案】B【解析】【解答】解:∵第二象限的点A到x轴的距离是3,到y轴的距离是2,∴点A的横坐标是-2 ,纵坐标是3,∴点A的坐标为(−2,3).故答案为:B.【分析】根据点A到x轴的距离等于其纵坐标的绝对值,到y轴的距离是其横坐标的绝对值以及第二项象限点的横坐标为负,纵坐标为正,可得点A的坐标.2.【答案】C【解析】【解答】解:∵点A与点B关于y轴对称∴ A (-4,-1)故答案为:C.【分析】利用关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得到点A的坐标.3.【答案】C【解析】【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故答案为:C.【分析】在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,据此判断.4.【答案】A【解析】【解答】解:把直线y=3x向下平移2个单位,可得y=3x﹣2.故答案为:A.【分析】将一次函数y=kx+b向下平移m个单位,可得y=kx+b-m,据此解答.5.【答案】A【解析】【解答】解:∵直线y=kx+3与直线y=−2x+b平行,∴k=−2,b≠3.故答案为:A.【分析】直线y=kx+b与直线y=mx+n平行的条件为k=m且b≠n,据此解答.6.【答案】B【解析】【解答】解:函数y=ax+b与函数y=cx+d的图象是两条相交直线,∴只有一个交点,∴二元一次方程组{y=ax+by=cx+d有唯一解,即1个解,故答案为:B.【分析】根据一次函数的图象与二元一次方程组的关系求解即可。

2024-2025学年八年级数学上学期期中模拟卷(沪教版八上第16章~18.2)(全解全析)

2024-2025学年八年级数学上学期期中模拟卷(沪教版八上第16章~18.2)(全解全析)

2024-2025学年八年级数学上学期期中模拟卷(沪教版)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪教版第16章二次根式+第17章一元二次方程+18.2正比例函数。

5.难度系数:0.7。

第一部分(选择题共12分)一、选择题(本大题共6小题,每小题2分,满分12分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列各式中属于最简二次根式的是().A B C D【答案】A属于最简二次根式,故正确;==故选:A.2x的值可以是()A.3-B.2C.1D.0.5【答案】A【详解】解:由题意得02xx -≥,∴020x x ³ìí->î或020x x £ìí-<î,∴2x >或0x £,故选A .3.如果2a b ==,那么a 与b 的关系是( )A .a >b 且互为倒数 B .a >b 且互为相反数C .ab =-1D .ab =1【答案】B【详解】解:∵b ==(2-0<,20a =>,a b =-,∴a >b 且互为相反数.故选B .4.下列方程中是关于x 的一元二次方程的是( )A .()()130x x -+=B .20ax bx c ++=(其中a 、b 、c 是常数)C .2211x x-=D .()()2321x x x --=-【答案】A【详解】解:A .()()130x x -+=,整理,得2230x x +-=,是一元二次方程,故符合题意;B .当a=0时,20ax bx c ++=(其中a 、b 、c 是常数)不是一元二次方程,故不符合题意;C .2211x x-=不是整式方程,所以不是一元二次方程,故不符合题意;D .()()2321x x x --=-,整理,得570x -=,不是一元二次方程,故不符合题意.故选A .5.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .100×80﹣100x ﹣80x =7644B .(100﹣x )(80﹣x )+x 2=7644C .(100﹣x )(80﹣x )=7644D .100x +80x =356【答案】C【详解】设道路的宽应为x 米,由题意有(100-x )(80-x )=7644,故选:C .6.如图,在同一直角坐标系中,正比例函数1y k x =,2y k x =,3y k x =,4y k x =的图象分别为1l ,2l ,3l ,4l ,则下列关系中正确的是( )A .1234k k k k <<<B .2143k k k k <<<C .1243k k k k <<<D .2134k k k k <<<【答案】B【详解】解:根据直线经过的象限,知20k <,10k <,40k >,30k >,根据直线越陡k 越大,知21k k >,43k k <,所以2143k k k k <<<.故选B .第二部分(非选择题 共88分)二、填空题(本大题共12小题,每小题3分,满分36分)7-= .【详解】解:原式﹣.8m = .【答案】3【详解】解:=又∵可以合并,∴215m -=解得:3m =.故答案为:3.9.函数 ()36f x x =-,则 14f æö=ç÷èø【答案】32【详解】解:∵()36f x x =-,∴11333634422f æö=-´=-=ç÷èø;故答案为:32.10.解不等式:x <的解集是 .【答案】x >【详解】x <,移项,得:x <合并同类项,得:(1x <系数化为1,得:x >即x >.11.当x =3420252022x x --的值为 【答案】1-【详解】解:∵x =∴()2212022x -=,∴24420210x x --=,∴()()3224202520224420214412023x x x x x x x --=--+-+-()2212023x =--20222023=-1=-.故答案为:1-.12.若()22230m m x ---=是关于x 的一元二次方程,则m 的值是.【答案】2-【详解】解:∵()22230m m x ---=是关于x 的一元二次方程,∴222m -=且20m -¹,解得:2m =-.故答案为:2-13.方程 ()22x x x +=+ 的解是 .【答案】11x =,22x =-【详解】解:()22x x x +=+,∴()()220x x x +-+=,∴()()120x x -+=,∴10x -=,20x +=,解得:11x =,22x =-;故答案为:11x =,22x =-14.方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,则正整数a 的值为 .【答案】2或3【详解】解:方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,所以:a -1≠0,故当a ≠1时,原方程为一元二次方程,∵(a -1)x 2+2(a +1)x +a +5=0有两个实根,∴△=[2(a +1)]2-4(a -1) (a +5)≥0,解得:a ≤3∴此时a ≤3且a ≠1故正整数a 的值为:a =2或者3故答案为:2或3.15.一元二次方程29200x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为 【答案】13或14【详解】解:29200x x -+=,(4)(5)0x x --=,所以4x =或5x =,当4为腰,5为底时,周长=4+4+5=13,当5为腰,4为底时,周长=5+5+4=14,故答案为13或14.16.在实数范围内因式分解:222x x --= .【答案】(11x x --【详解】解:对于方程2220x x --=,24212´-△()=,1x ==所以,222x x --=(11x x =--+.故答案为:(11x x --+ .17.已知函数23(1)m y m x -=+是正比例函数,且y 随x 的增大而减小,则m = .【答案】-2【详解】解:由题意得:m 2-3=1,且m +1<0,解得:m =-2,故答案为:-2.18.如图,已知直线:a y x =,直线1:2b y x =-和点(1,0)P ,过点P 作y 轴的平行线交直线a 于点1P ,过点1P 作x 轴的平行线交直线b 于点2P ,过点2P 作y 轴的平行线交直线a 于点3P ,过点3P 作x 轴的平行线交直线b 于点4,P L ,按此作法进行下去,则点2024P 的横坐标为.【答案】10122【详解】解:Q 点(1,0)P ,1P 在直线y x =上,1(1,1)P \,12PP x Q P 轴,2P \的纵坐标1P =的纵坐标1=,2Q P 在直线12y x =-上,112x \=-,2x \=-,2(2,1)P \-,即2P 的横坐标为122-=-,同理,3P 的横坐标为122-=-,4P 的横坐标为242=,252P =,362P =-,372P =-,482P =¼,242n n P \=,2020P \的横坐标为2505101022´=,2021P \的横坐标为10102,2022P \的横坐标为10112-,2023P \的横坐标为10112-,∴点2024P 的横坐标为2506101222´=故答案为:10122三、解答题(本大题共9小题,满分52分.解答应写出文字说明,证明过程或演算步骤)19.(5分)【详解】解:原式=+..................................2分=..................................5分20.(5分)计算:æ÷çè【详解】æ÷çè(=................................2分(=÷=-................................5分21.(5分)解方程:()2326x x +=+.【详解】解:∵()2326x x +=+,∴()()2323x x +=+,∴()()23230x x +-+=,∴()()3230x x +-+=,................................2分∴320x +-=或30x +=,解得1231x ,x =-=-.................................5分22.(5分)用配方法解方程24720-+=x x ;【详解】解:∵24720-+=x x ,∴2472x x -=-∴27424x x æö-=-ç÷èø,................................1分∴22277742488x x ⎡⎤æöæö-+-=-⎢⎥ç÷ç÷èøèø⎢⎥⎣⎦,∴274942816x æö--=-ç÷èø∴2717864x æö-=ç÷èø................................3分∴78x -=,∴127788x x =+=................................5分23.(5分)先化简,再求值:222444+2x x x x x x x æö-+÷ç÷-èø,其中11=12x -æö---ç÷èø.【详解】解:222444+2x x x x x x x æö-+÷ç÷-èø()()()222442x x x x x x x +-æö++=÷ç÷-èø()222x x x x +=×+12x =+, ................................2分当)11=1212112x -æö---=--+=-+=ç÷èø时,原式12x =+1====.................................5分24.(5分)已知3y -与2x -成正比例,且当1x =时,6y =,求y 与x 之间的函数解析式.【详解】解:Q 3y -与2x -成正比例,\设()32y k x -=-,................................1分Q 当1x =时,6y =,()6321k \-=-,解得:3k =, ................................2分()332y x -=-\,整理得:39y x =-+,\y 与x 之间的函数关系式为:39y x =-+.................................5分25.(7分)甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为s (km )与甲行驶的时间为t (h )之间的关系如图所示.(1)结合图象,在点M、N、P三个点中,点_____代表的实际意义是乙到达终点.(2)求甲、乙各自的速度;(3)当乙到达终点时,求甲、乙两人的距离;(4)甲出发多少小时后,甲、乙两人相距180千米.【详解】(1)解:由图象可得,在点M时,0s=,此时两人相遇,点N之后,两人的距离增加速度减少,此时乙先到达终点,点P表示两人距离为240s=,此时甲到达终点;故答案为:N;................................1分(2)解:由图象可得,A、B两地相距240千米,甲走完全程需要6小时,∴甲的速度为240640÷=(千米/时)................................2分∵当2t=时,两人相遇,∴两人的速度之和为2402120÷=/时)∴乙的速度为1204080-=(千米/时)................................3分(3)解:当乙到达终点A地时,甲离开出发地A地有403120´=(千米),∴当乙到达终点时,求甲乙两人的距离是120千米;................................5分(4)解:相遇前,甲乙两人相距180千米,则()12401801202-÷=(小时),相遇后,甲乙两人相距180千米,则∵当乙到达终点时,求甲乙两人的距离是120千米,之后两人距离逐渐增大,∴()93180120402+-÷=(小时),综上所述,甲出发12小时或92小时时,甲、乙两人相距180千米.................................7分26.(7分)商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由.【详解】(1)解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套,每套拖把盈利()1208040x x --=-元.故答案为:()40x -,()202x +;................................2分(2)解:设每套拖把降价x 元,则每套的销售利润为()40x -元,平均每天的销售量为()202x +套,依题意得:()()402021242x x -+=,整理得:2302210x x -+=,解得:121317x x ==,.又∵需要尽快减少库存,∴17x =.................................5分答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元;(3)解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y --元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y --+=,整理得:2303000y y -+=.∵()22Δ43041300300<0b ac =-=--´´=-,∴此方程无实数解,即不可能每天盈利1400元.................................7分27.(8分)已知正比例函数y kx =经过点A ,点A 在第四象限,过点A 作AH x ^轴,垂足为点H ,点A 的横坐标为3,且AOH △的面积为3.(1)求正比例函数的解析式;(2)在x 轴上能否找到一点P ,使AOP V 的面积为5.若存在,求点P 的坐标;若不存在,请说明理由(3)在(2)的条件下,是否在正比例函数y kx =上存在一点M ,且M 在第四象限,使得2.3APM OPM S S D D =若存在,请求出点M 的坐标;若不存在,请说明理由【详解】(1)解:∵点A 的横坐标为3,且AOH △的面积为3∴1332AH ´´=,解得,2AH =,∴点A 的坐标为()3,2-,∵正比例函数y kx =经过点A ,∴32k =-,解得23k =-,∴正比例函数的解析式是23y x =-;................................2分(2)解:存在.设(),0P t ,∵AOP V 的面积为5,点A 的坐标为()3,2-,∴1252t ´´=,∴5t =或5t =-,∴P 点坐标为()5,0或()5,0-.................................4分(3)解:设2,3M x x æö-ç÷èø,如图,①点M 在OA 上时,当()5,0P 时,5OP =,又()3,2A -,若23APM OPM S S D D =时,11212232A M M OP y OP y OP y ´´-´´=´´´,∴1122125255223323x x ´´-´´=´´´,解得,95x =,∴296355y =-´=-,∴M 点的坐标为96,55æö-ç÷èø;同理,当点()5,0P -时,也可求出M 点的坐标也为96,55æö-ç÷èø;................................6分②点M 在OA 的延长线上时,当()5,0P 时,5OP =,若23APM OPM S S D D =时,11212232M A M OP y OP y OP y ´´-´´=´´´,∴1212125525232323x x ´´-´´=´´´,解得,9x =,∴2963y =-´=-,∴M 点的坐标为()9,6-;当点()5,0P -时,5OP =,若23APM OPM S S D D =时,同理可得,M 点的坐标为()9,6-;综上,点M 的坐标为96,55æö-ç÷èø或()9,6-.................................8分。

2021--2022学年沪教版八年级上册数学期中试卷

2021--2022学年沪教版八年级上册数学期中试卷

八年级第一学期数学期中综合复习卷--3班级 学号 姓名 成绩一、填空题(本大题共14题,每题2分,满分28分) 1.化简:27=______________. 2.当52x =时,二次根式21,1,25,32x x x x --+-中没有意义的是__________. 3.下列二次根式中:3211,2,3,,,18,26,,21221ab xy c x y y ab x x p +-+-,最简二次根式是__________________________________________.4.计算:28xy y ⋅=___________. 5.a m b n +的倒数是_________. 6.232x x =的根是 .7.已知关于x 的一元二次方程()222340m x x m -++-=有一个根为0,则m 的值是___________.8.已知某厂四月份生产机床a 台,五、六月份生产机床数量的月增长率都为x ,那么这三个月生产机床____________________台(用代数式表示). 9.在实数范围内分解因式:252a a -++=___________.10.如图,已知:AB ∥CD ,∠C =25°,∠E =30°,则∠A =__________.第10题 第11题 第12题11.如图,△ABC ≌△DCB ,A 、B 的对应顶点分别为点D 、C ,如果AB =7cm ,BC =12cm ,AC =9cm ,DO =2cm ,那么OC 的长是_____________ cm .12.将一副直角三角板如图摆放,点C 在EF 上,AC 经过点D .已知∠A =∠EDF =90°,AB =AC ,∠E =30°,∠BCE =40°,则∠CDF =_________________.13.如图,△ABD 与△AEC 都是等边三角形,AB ≠AC .下列结论中,正确的是 .①BE =CD ;②∠BOD =60°;③∠BDO =∠CEO .第13题 第14题14.如图,Rt △ABC 中,AC =BC ,∠ACB =90°,CF 交AB 于E ,BD ⊥CF ,AF ⊥CF ,DF =5,AF =3,则CF = . 二、选择题(本大题共4题,每题3分,满分12分)15.下列方程中,为一元二次方程的是…………………………………………… ( ) (A) 1)1(2-=+x x x ; (B) 01=+xx ; (C)21x x +=; (D) 55522-=-x x x .16.已知0a >,那么4ab-可化简为…………………………………………………( ) (A) 2b ab -; (B) 2ab b -; (C) 2ab b --; (D) 2ab b-. 17.如果二次三项式234ax x ++在实数范围内不能分解因式,那么a 的取值范围是( )(A) 9016a <<,且0a <; (B) 0a ≠; (C) 916a >; (D) 34a <且0a ≠.18.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E , AD 、BE 交于H ,且HD=DC ,那么下列结论中正确的是…………………( ) (A) △ADC ≌△BDH ; (B) HE=EC ; (C) AH=BD ; (D) △AHE ≌△BHD . 三、简答题 (本大题共7题,每题6分,满分42分)19.计算:1121231548333+--. 20.计算:()221101a a a a a ⎛⎫⎛⎫--+<< ⎪ ⎪⎝⎭⎝⎭.ABCDH E第18题21.计算: 32146512s st st t⋅. 22.解不等式:()1381182x x -<+.23.用配方法解方程:01422=+-x x .24.已知:如图,点E 、F 在线段BD 上,AD =BC ,DF =BE ,AF =CE .求证:AF //EC .25.当k 为何值时,关于x 的方程()22210k x kx --+=有两个相等的实数根?求出这时方程的根.四.解答题 (本大题共2题,满分18分)26.利用22米长的墙为一边,用篱笆围成一个长方形仓库,中间用篱笆分割出两个小长方形,总共用去篱笆36米,为了使这个长方形ABCD 的面积为96平方米,问AB 和BC 边各应是多少?ADE27.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.。

沪教版八年级上册数学期中测试(含答案)

沪教版八年级上册数学期中测试(含答案)

沪教版八年级上册数学期中模拟测试姓名_______ 学号__________成绩_________一.选择题(每题3分,共15分)1.的最小值是是有理数,则已知42a 2+-a a ( )8 D.6 C.5 B .3A.2.关于x 的一元二次方程0m x 2x 2=-+有实数根,则m 的取值范围是( )A.m ≥-1B.m >-1C.m ≤-1D.m <13.方程02x 2-x x =-+)(的两个根为( )A.x=-1B. x=-2C.x 1=1,x 2=-2D.x 1=-1,x 2=24.下列等式中,计算正确的是( ) A.yx 1y 1x 1+=+ B.q p )q p -3532-=( C.ab b ·a = D.ab b a b a 2222++=+)( 5.下列各式中互为有理化因式的是( ) A.b a b a -+和 B.1x 1x ---和 C.25-25+-和 D.b y -a x b y a x 和+二.填空题(每空2分,共30分)6.计算:已知x 2+y 2-4x+6y+13=0,则x+y=_______7.若2<x<3,则______|3x |2x 2=-+-)(8.若b<0,化简式子:______ab b a 33=-9.马大姐要用13米长的篱笆围成一个面积为20米的长方形土地,其中一面靠墙,那么长、宽分别是______、 _______(写出一种答案即可)10. 多项式3kx 2+(6k -1)x+3k+1(k ≠0)在实数范围内可以分解因式时,实数k 的取值范围是________11. 分母有理化:______312=+ 12. 计算:______5415-54=÷)( 13.若方程0m 3x 1-m 2x 22=++)(两根互为相反数,则m=_________ 14.在方程2x 32x 32=+中,______ac 4-b 2的值为15.如果5m x )1m (2x 22+++-是一个完全平方式,则m=________16.把式子yx y x -+分母有理化的结果是__________ 17.若m<0,化简______n m n2= 18.小杰把1000元压岁钱按一年的定期存入银行,到期后取出200元用来购买书和文具,剩下的800元和应得的利息又全部按一年的定期存入银行,若存款年利率为x ,这样到期后可得本利和(本金加利息之和)共得892.5元,由题意列方程为_____________________19.已知6x x -96x x 9-=--,且x 为偶数,那么1-x 4x 5-x x 122++)(的值为___________ 三、计算题(20、21题每题5分,22、23题6分,23、24题8分,共30分) 20.3-2762+⨯ 21.π)(-3-322120++22. 解方程:(用公式法)a x x 22=-23.已知01x 3x2=+-,求2x 1x 22-+的值.24.03-x 1-22x 22-32=+)()(四、解答题(25,26题8分,27题9分,共计25分)25.有一块长为32米,宽为20米的长方形绿地,准备修筑同样宽的三条直路,把绿地分成六块,种植不同的花草,要使绿地面积为504㎡,求小道的宽度.26.某工厂生产某种产品,今年生产200件,计划通过技术改造,使今后两年的产量比前一年增长一个相同的百分数,这样三年的总产量达到1400件,求这个百分数.27. 已知关于x 的方程0)1k (kx 2x k 22=++++)(,(1)如果此方程有一个实数根,求k 的值;(2)如果此方程有两个实数根,求k 的取值范围;(3)如果此方程无实数根,求k 的取值范围.沪教版八年级上册数学期中模拟测试答案1.A2.A3.D4.C5.B6.17.18.ab a b )(-9. 2.5,8或4,5 10.k ≤241 11.1-3 12.34- 13.-1 14. 36 15. 2 16.y -x y x 22- 17.m n 2- 18.[1000(1+x )-200]·(1+x )=892.5 19. 6 20.分)(解:原式233362⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-+⨯=分)(23-3332⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=分)(134⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=21. 分)()(解:原式21-3-2232⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=分)(21-32-432⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=分)(13⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=22. 分)(10a x x 22⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=--分)(2a 412⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=∆分)(22a 411x 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+±=.2a 411x 2+±=∴原方程的解为:…………………………(1分)23.分)(分)(分)分)(分)(152x 1x 17x 1x 1(92x 1x 1.3x 1x 2.x 31x ,01x 3x 22222222⋯⋯⋯⋯⋯⋯⋯⋯=-+∴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+∴⋯⋯⋯⋯⋯⋯⋯⋯=++∴⋯⋯⋯⋯⋯⋯⋯⋯=+∴⋯⋯⋯⋯⋯⋯⋯⋯=+∴=+-24.分)()()解:由原方程得:(203-x 1-22x 122-22⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=++ 分)(141x )12(2]x )12[(2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+-+-分)(14]1x )12[(2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+-21x 1-2±=+)开方得:(…………………………(1分) x 1=分)(13-23-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯x 2=12+…………………………(1分).12x ,323x 21+=--=∴原方程的解为…………………………(1分) 25.分)(米答:所以路宽分)((舍去)分)(分)(分)(分)(分)()()(分)(米解:设路宽是12134x ,2x 1034)-x )(2x (1068x 36x 10136x 72-x 21504x 2x 32-x 406401504x 2-32·x -201.x 21222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯==⋯⋯⋯⋯=-⋯⋯⋯⋯=+-⋯⋯⋯⋯⋯⋯=+⋯⋯⋯⋯⋯⋯=+-⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26.分)(答:这个百分数为分)((舍去)分)(或分)(分)(分)((:方程两边同时除分)()()(分)(解:设这个百分数是1%10014x ,1x 101-x 04x 10)1x )(4x (10)x 21)(x 31(106)x 1()x 17)x 1()x 1(120021400x 1200x 12002001x 21222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-==⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯==+∴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+-++⋯⋯⋯⋯⋯⋯⋯⋯=-+++=++++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=++++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯27.分)(解得:分)())(()即(分)(时,方程无实数根)当(分)(且解得:分)(且()(,需满足:)若方程有两个实数根(分)(时,当分)(,解得此时,,方程只有一个实数根)当方程是一次方程时(132k 101k k 24-k 210312k 32k 20k 20,1)k)(k 24-k 22104-k 22k 22k 0k 2122⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯->⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯<++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯<∆⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-≠-≤⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯≥+≥++=∆⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯≠=-=⋯⋯⋯⋯⋯⋯⋯⋯-==+。

2022-2023学年沪教版上海八年级上数学期中复习试卷含答案解析

2022-2023学年沪教版上海八年级上数学期中复习试卷含答案解析

2022-2023学年沪教新版八年级上册数学期中复习试卷一.选择题(共6小题,满分18分,每小题3分)1.下列二次根式中,最简二次根式的是()A.B.C.D.2.下列方程中有相等的实数根的是()A.x2+x+1=0B.x2+8x+1=0C.x2+x+2=0D.x2﹣x+=03.用配方法解下列方程,其中应在左右两边同时加上4的是()A.x2﹣2x=5B.x2﹣4x=5C.x2+8x=5D.x2+2x=54.若方程是关于x的一元二次方程,则m的取值范围是()A.m≠±1B.m≥﹣1且m≠1C.m≥﹣1D.m>﹣1且m≠15.已知(4﹣)•a=b,若b是整数,则a的值可能是()A.B.8+2C.4﹣D.2+6.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件①∠ADB=∠ADC,②∠B=∠C,③DB =DC,④AB=AC中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个二.填空题(共12小题,满分24分,每小题2分)7.=(a≥0,b≥0).8.如果x2+4(m﹣2)x+64是个完全平方式,那么m的值是.9.若两个最简二次根式与可以合并,则x=.10.计算:=.11.化简:=.(结果保留根号)12.一元二次方程2x2﹣3x+1=0的解为.13.在实数范围内分解因式:2x2﹣3x﹣1=.14.一副三角板如图所示叠放在一起,则图中∠α是°.15.等腰三角形的一边长为9cm,另一边长为4cm,则它的第三边长为cm.16.长方形铁片的长是宽的2倍,在它的四角各截去一个边长为5cm的小正方形,然后折起来做成一个无盖的铁盒,盒子容积为1.5立方分米,则铁片的长和宽分别为.17.=.18.对于实数a,b,定义运算“*”:a*b=.例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣4x﹣5=0的两个根,则x1*x2=.三.解答题(共5小题,满分25分,每小题5分)19.计算(1)(2)20.计算:﹣.21.用配方法解下列方程:(1)3x2﹣6x+2=0;(2)(x﹣2)(x+3)=1﹣5x.22.3x2﹣(x﹣2)2=5.23.解下列方程.(1)(x﹣2)(x﹣5)=﹣2;(2)4(x﹣3)2=9(2x+1)2.四.解答题(共4小题,满分33分)24.(7分)关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根.(1)求m的取值范围;(2)当m为正整数时,取一个合适的值代入求出方程的解.25.(7分)方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.26.(7分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC ≌△BED.27.(12分)如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF =120°.(1)直接写出DE与DF的数量关系;(2)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由;(3)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数.(要求:写出思路,画出图形,写出证明过程)参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.解:A.=2,被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项不符合题意;B.是最简二次根式,故本选项符合题意;C.=,被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;D.=,不是最简二次根式,故本选项不符合题意;故选:B.2.解:A、在方程x2+x+1=0中,Δ=12﹣4×1×1=﹣3<0,∴该方程没有实数根;B、在方程x2+8x+1=0中,Δ=82﹣4×1×1=60>0,∴该方程有两个不相等的实数根;C、在方程x2+x+2=0中,Δ=12﹣4×1×2=﹣7<0,∴该方程没有实数根;D、在方程x2﹣x+=0中,Δ=(﹣1)2﹣4×1×=0,∴该方程有两个相等的实数根.故选:D.3.解:A、∵x2﹣2x=5∴x2﹣2x+1=5+1;B、∵x2﹣4x=5∴x2﹣4x+4=5+4;C、∵x2+8x=5∴x2+8x+16=5+16;D、∵x2+2x=5∴x2+2x+1=5+1;故选:B.4.解:根据题意得,解得m>﹣1且m≠1.故选:D.5.解:(A)当a=时,∴原式=4﹣7,故选项A不符合题意;(B)当a=8+2时,原式=(4﹣)(8+2)=2×(16﹣7)=18,故选项B符合题意;(C)当a=4﹣时,∴原式=(4﹣)2=16﹣8+7=23﹣8,故选项C不符合题意;(D)当a=2+时,∴原式=(4﹣)(2+)=1﹣6,故选项D不符合题意,故选:B.6.解:∵∠1=∠2,AD公共,①如添加∠ADB=∠ADC,利用ASA即可证明△ABD≌△ACD;②如添加∠B=∠C,利用AAS即可证明△ABD≌△ACD;③如添加DB=DC,因为SSA,不能证明△ABD≌△ACD,所以此选项不能作为添加的条件;④如添加AB=AC,利用SAS即可证明△ABD≌△ACD;故选:C.二.填空题(共12小题,满分24分,每小题2分)7.解:=.故答案为:.8.解:∵x2+4(m﹣2)x+64=x2+4(m﹣2)x+82,x2+4(m﹣2)x+64是个完全平方式,∴4(m﹣2)x=±2•x•8,∴m﹣2=4或m﹣2=﹣4,解得m=6或m=﹣2.即m的值是﹣2或6.故答案为:﹣2或6.9.解:由题意,得:x2+3x=x+15,整理,得:x2+2x﹣15=0,解得x1=﹣5,x2=3;当x=3时,==3,不是最简二次根式,因此x=3不合题意,舍去;故x=﹣5.故答案为:﹣5.10.解:原式=,=+1,故答案为+1.11.解:原式=××=5.故答案为:5.12.解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1.13.解:解方程2x2﹣3x﹣1=0得,x1=,x2=,则2x2﹣3x﹣1=2(x﹣)(x﹣)=2(x﹣﹣)(x﹣+).14.解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75.15.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,所以三角形的第三边为9cm,故答案为:9.16.解:设铁片的宽为xcm,则长为2xcm,由题意得:(x﹣10)(2x﹣10)×5=1500解得:x1=20,x2=﹣5(舍去)则铁片的宽为20cm,长为40cm故答案为:40cm,20cm.17.解:原式==.故答案为:.18.解:∵(x+1))(x﹣5)=0,∴x+1=0或x﹣5=0,解得:x=﹣1或x=5,若x1=﹣1,x2=5时,x1*x2=(﹣1)×5﹣(﹣1)2=﹣6;若x1=5,x2=﹣1时,x1*x2=52﹣(﹣1)×5=30,故答案为:30或﹣6.三.解答题(共5小题,满分25分,每小题5分)19.解:(1)=3;(2)3﹣(+)=3﹣2﹣=.20.解:原式=﹣=﹣3﹣=﹣4.21.解:(1)移项,二次项系数话化1得:x2﹣2x=﹣,两边都加上1得:x2﹣2x+1=﹣+1,即:(x﹣1)2=,两边开平方得:x﹣1=±,∴x1=1+,x2=1﹣;(2)方程整理得:x2+6x=7,两边都加上9得:x2+6x+9=7+9,即:(x+3)2=16,两边开平方得:x+3=±4,∴x1=1,x2=﹣7.22.解:3x2﹣x2+4x﹣4﹣5=02x2+4x﹣9=0∵a=2,b=4,c=﹣9,△=16+72=88>0,∴x=∴x1=,x2=.23.解:(1)(x﹣2)(x﹣5)=﹣2x2﹣7x+12=0,(x﹣3)(x﹣4)=0,解得:x1=3,x2=4;(2)4(x﹣3)2=9(2x+1)2.[2(x﹣3)]2﹣[3(2x+1)]2=0,[2(x﹣3)﹣3(2x+1)][2(x﹣3)+3(2x+1)]=0,∴(﹣4x﹣9)(8x﹣3)=0,解得:x1=﹣,x2=.四.解答题(共4小题,满分33分)24.解:(1)∵关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根,∴Δ=(﹣2)2﹣4(m﹣2)=4﹣4m+8=12﹣4m.∵12﹣4m≥0,∴m≤3,m≠2.(2)∵m≤3且m≠2,∴m=1或3,∴当m=1时,原方程为﹣x2﹣2x+1=0.x1=﹣1﹣,x2=﹣1+.当m=3时,原方程为x2﹣2x+1=0.x1=x2=1.25.解:(1)设该厂第一季度加工量的月平均增长率为x,由题意得:a(1+x)2=(1+44%)a∴(1+x)2=1.44∴x1=0.2=20%,x2=﹣2.2(舍)答:该厂第一季度加工量的月平均增长率为20%.(2)由题意得:a+a(1+x)+a(1+x)2=182将x=20%代入得:a+a(1+20%)+a(1+20%)2=182解得a=50答:该厂一月份的加工量a的值为50.(3)由题意可知,三月份加工量为:50(1+20%)2=72六月份加工量为:50×2.1=105(吨)五月份加工量为:105﹣46.68=58.32(吨)设四、五两个月的加工量下降的百分率为y,由题意得:72(1﹣y)2=58.32解得:y1=0.1=10%,y2=1.9(舍)∴四、五两个月的加工量下降的百分率为10%∴72×(1﹣10%)+58.32+105=228.12(吨)答:该厂第二季度的总加工量为228.12吨.26.证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).27.解:(1)结论:DE=DF.如图1中,连接AD,作DN⊥AB,DM⊥AC垂足分别为N、M.∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵BD=DC,∴∠BAD=∠CAD,∴DN=DM,∵∠EDF=120°,∴∠EDF+∠BAC=180°,∠AED+∠AFD=180°,∵∠AED+∠DEN=180°,∴∠DFM=∠DEN,在△DNE和△DMF中,,∴△DNE≌△DMF(AAS),∴DE=DF;(2)AE+AF=是定值,如图1中,在△ADN和△ADM中,,∴Rt△ADN≌Rt△ADM(HL),∴AN=AM,∴AE+AF=AN﹣EN+AM+MF,由(1)可知EN=MF.∴AE+AF=2AN,∵BD=DC=,∠BDN=30°,∴BN=BD=,∴AN=AB﹣BN=,∴AE+AF=;(3)能围成三角形,最大内角为120°.如图2中,延长FD到M使得DF=DM,连接BM,EM.在△DFC和△DMB中,,∴△DFC≌△DMB(SAS),∴∠C=∠MBD=60°,BM=CF,∵DE=DF=DM,∠EDM=180°﹣∠EDF=60°,∴△EDM是等边三角形,∴EM=DE,∴EB、ED、CF能围成△EBM,最大内角∠EBM=∠EBC+∠DBM=60°+60°=120°.。

沪教版八年级数学上册期中测试卷-带参考答案

沪教版八年级数学上册期中测试卷-带参考答案

沪教版八年级数学上册期中测试卷-带参考答案一.选择题(共6小题,满分18分,每小题3分)1.在根式、与、和中,可以与进行合并的有()A.1个B.2个C.3个D.4个2.的一个有理化因式是()A.B.C.D.3.已知x=﹣1是一元二次方程x2﹣k2x+k﹣3=0的一个解,则k的值是()A.﹣2或1B.0C.0或1D.0或﹣14.下列计算结果正确的是()A.B.C.D.5.下列命题中,假命题的是()A.若a≥b,则ac2≥bc2B.到一条线段两个端点距离相等的点一定在这条线段的垂直平分线上C.斜边和一锐角分别对应相等的两个直角三角形一定全等D.若∠A:∠B:∠C=3:4:5,则△ABC为直角三角形6.关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根,则m的值可能是()A.3B.4C.5D.6二.填空题(共12小题,满分24分,每小题2分)7.计算:=;=.8.已知非零实数0 a,b满足|5﹣3a|+|b+3|++5=3a,则a+b=.9.若|2020﹣m|+=m,则m﹣20202=.10.在﹣,与,1四个实数中,最大的实数是.11.关于x的方程(m+5)x2﹣2mx﹣4=0是一个一元二次方程,那么m的取值范围是.12.关于x的不等式:2x﹣5>x的解集为.13.直接写出解:y2﹣2y+1=0.14.某玩具厂2022年1月份生产玩具5000个,后来生产效率逐月提高,第一季度生产玩具10000个,设2、3月份每月平均增长率为x,列方程为.15.实数范围内分解因式a4﹣6a2+9=.16.已知x1,x2是一元二次方程x2﹣2x﹣2022=0的两根,则代数式的值.17.如图,已知∠NBC=∠MEF,NB=ME,若以“SAS”为依据判定△NBC≌△MEF,还要添加的条件为.18.如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是5cm2和9cm2,则△CDE的面积为.三.解答题(共7小题,满分78分)19.计算:(1);(2);(3).20.解方程:(1)x2﹣4x+2=0;(2)x(x﹣5)+x﹣5=0.21.先化简,再求值:已知,求的值.22.已知x=1和x=﹣2是方程ax2+bx+c=0(a≠0)的解,试求方程ax2﹣bx+c=0(a≠0)的解.23.已知:如图,若AB∥CD,AB=CD且BE=CF.求证:AE=DF.24.如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长36米.若墙长为18米,要围成鸡场的面积为180平方米,则鸡场的长和宽各为多少米?25.【问题背景】(1)如图1,在△ABC中,AD平分∠BAC,AD⊥BC,垂足为D,求证:AB=AC,BD=CD;【变式迁移】(2)如图2,在△ABC中,∠ACB=90°,AD平分∠CAB,AD⊥DB,CE ⊥AD,垂足为E,M为BC的中点,连接ME,MD.求证:ME=MD.参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.解:,和∴在根式中,可以与进行合并的有共2个.故选:B.2.解:A根据二次根式的乘法法则,不是的一个有理化因式,故A不符合题意;B•=2•=2(x﹣y),是的一个有理化因式,故B 符合题意;C根据二次根式的乘法法则,+不是的一个有理化因式,故B不符合题意;D根据二次根式的乘法法则,﹣不是的一个有理化因式,故B不符合题意.故选:B.3.解:把x=﹣1代入方程x2﹣k2x+k﹣3=0中得:1+k2+k﹣3=0整理得:k2+k﹣2=0(k+2)(k﹣1)=0解得:k=﹣2或k=1故选:A.4.解:3+4不能合并,故选项A错误,不符合题意;=2﹣=,故选项B错误,不符合题意;=,故选项C错误,不符合题意;==3,故选项D正确,符合题意;故选:D.5.解:A若a≥b,则ac2≥bc2,正确,是真命题,不符合题意;B到一条线段两个端点距离相等的点一定在这条线段的垂直平分线上,正确,是真命题,不符合题意;C斜边和一锐角分别对应相等的两个直角三角形一定全等,正确,是真命题,不符合题意;D若∠A:∠B:∠C=3:4:5,则△ABC为直角三角形,错误,是假命题,符合题意.故选:D.6.解:∵关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根∴Δ=(﹣4)2﹣4m>0解得m<4.m的值可以是3故选:A.二.填空题(共12小题,满分24分,每小题2分)7.解:原式=×==3;原式==+.8.解:∵∴a﹣2≥0∴a≥2∴5﹣3a<0∴|5﹣3a|=3a﹣5.∵|5﹣3a|+|b+3|++5=3a∴3a﹣5+|b+3|++5﹣3a=0∴|b+3|+=0∴b+3=0,a﹣2=0.∴b=﹣3,a=2.∴a+b=﹣3+2=﹣1.故答案为:﹣1.9.解:由题意得:m﹣2021≥0解得:m≥2021∵|2020﹣m|+=m∴m﹣2020+=m∴=2020∴m﹣2021=20202则m﹣20202=2021故答案为:2021.10.解:∵﹣≈﹣1.732,≈1.414,=1.5∴1.5>1.414>1>﹣1.732∴>>1>﹣故答案为:.11.解:由关于x的方程(m+5)x2﹣2mx﹣4=0是一个一元二次方程得m+5≠0解得m≠﹣5.故答案为:m≠﹣5.12.解:2x﹣5>x2x﹣x>5(2﹣)x>5x<x<﹣10﹣5故答案为:x<﹣10﹣5.13.解:由原方程,得(y﹣1)2=0则y1=y2=1.故答案为:y1=y2=1.14.解:∵某玩具厂2022年1月份生产玩具5000个,2 3月份月产量的平均增长率为x∴该玩具厂2022年2月份生产玩具5000(1+x)个,3月份生产玩具5000(1+x)2个.又∵该玩具厂第一季度生产玩具10000个∴可列方程为5000+5000(1+x)+5000(1+x)2=10000.故答案为:5000+5000(1+x)+5000(1+x)2=10000.15.解:a4﹣6a2+9=(a2﹣3)2=[(a+)(a﹣)]2=(a+)2(a﹣)2.故答案为:(a+)2(a﹣)2.16.解:∵x1,x2是一元二次方程x2﹣2x﹣2022=0的两根∴x12﹣2x1=2022,x1x2=﹣2022∴x12﹣2x1+x1x2=2022﹣2022=0.故答案为:0.17.解:由题意∠NBC=∠MEF,NB=ME∵“SAS”为依据判定△NBC≌△MEF∴需要添加BC=EF.故答案为:BC=EF.18.解:过E作EH⊥CD于点H.∵∠ADG+∠GDH=∠EDH+∠GDH∴∠ADG=∠EDH.在△ADG和△HDE中∴△ADG≌△HDE(AAS).∴HE=AG.∵四边形ABCD和四边形DEFG都是正方形,面积分别是5cm2和9cm2.即AD2=5,DG2=9.∴在直角△ADG中,AG===2.∴EH=AG=2.∴△CDE的面积为CD•EH=××2=(cm2).故答案为:cm2.三.解答题(共7小题,满分78分)19.解:(1)==;(2)===10;(3)===.20.解:(1)∵x2﹣4x+2=0∴x2﹣4x=﹣2∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2∴x﹣2=±∴x1=2+,x2=2﹣;(2)∵x(x﹣5)+x﹣5=0∴(x﹣5)(x+1)=0则x﹣5=0或x+1=0解得x1=5,x2=﹣1.21.解:∵∴∴.22.解:∵x=1和x=﹣2是方程ax2+bx+c=0(a≠0)的解∴a+b+c=0,4a﹣2b+c=0由a+b+c=0可得a•(﹣1)2﹣b•(﹣1)+c=0,即当x=﹣1时,方程ax2﹣bx+c=0左右两边相等∴x=﹣1是方程ax2﹣bx+c=0的解;由4a﹣2b+c=0知a•22﹣2b+c=0,即当x=2时,方程ax2﹣bx+c=0左右两边相等∴x=2是方程ax2﹣bx+c=0的解.∴方程ax2﹣bx+c=0的解为x=﹣1和x=2.23.证明:∵AB∥CD∴∠B=∠C在△ABE与△DCF中∴△ABE≌△DCF(SAS)∴AE=DF.24.解:设养鸡场的宽为x米,根据题意得:x(36﹣2x+2)=180解得:x1=10,x2=9当x=10时,36﹣2x+2=18当x=9时,36﹣2x+2=20>18,(舍去)则养鸡场的宽是10米,长为18米.25.证明:【问题背景】∵AD平分∠BAC∴∠BAD=∠CAD∵AD⊥BC∴∠ADB=∠ADC=90°在△ADB与△ADC中∴△ADB≌△ADC(ASA)∴AB=AC,BD=CD;【变式迁移】延长DM交CE于N∵BD⊥AD,CE⊥AD∴CN∥BD∴∠NCM=∠MBD在△DBM与△NCM中∴△DBM≌△NCM(ASA)∴DM=MN∵M是DN的中点∵∠DEN=90°∴DM=EM=MN=DN∴ME=MD.。

八年级上册数学期中测试卷(沪教版)

八年级上册数学期中测试卷(沪教版)

八年级上册数学期中考试试卷(沪教版)得分:_________温馨提示:﹡你现在拿到的这份试卷满分为150分。

你将有120分钟的答题时间。

﹡这份试卷共有试题卷4页。

请你用钢笔或中性笔将答案填写在试卷上。

﹡请独立思考,诚信答题,你一定能考出好成绩!一、选择题(每小题4分,共40分)1、点(1,2)在下列哪个函数图象上 ( )A 、y=x-3B 、y=2x+2C 、y=x +1D 、y=x 2+22、下列函数y=πx , y=3-2x , y=x , y=x 2-2 ,其中一次函数共有 ( ) A.、1个 B 、2个 C 、3个 D 、4个 3、下列图象中,表示直线y=x-1的是( ).4、在△ABC 中,若∠A=54°,∠B=36°,则△ABC 是( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、等腰三角形 5、“命题都有逆命题,因此定理的逆命题都是正确的。

”这句话( ) A 、正确 B 、不正确 C 、无法判断 D 、以上答案都不对 6、三角形的两边长分别是3和5,第三边a 的取值范围是( )A 、2≤a <8B 、2<a ≤8C 、2<a <8D 、2≤a ≤84 7、直线y=kx +b 不经过第三象限,则k 、b 应满足 ( )A 、k>0, b<0B 、k <0, b>0C 、k<0 b<0D 、k<0, b ≥0 8、下图能说明∠1>∠2的是( )9、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s(米 关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )A B C DA .B .C .D . 10.已知一次函数y= ax+4与y = bx-2的图象在x 轴上相交于同一点,则ba的值是 ( )A 、4B 、-2C 、 12D 、 - 12二、填空(每题5分,共25分)11、在公式s =50t 中常量是_______,变量是________。

19-7直角三角形全等的判定-2022-2023学年八年级数学上册同步练习(沪教版)

19-7直角三角形全等的判定-2022-2023学年八年级数学上册同步练习(沪教版)

19.7直角三角形全等的判定(原卷版)【夯实基础】一、单选题1.(2022·上海市南洋模范中学八年级期末)判断两个直角三角形全等的方法不正确...的有( ) A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一条直角边对应相等D .两个锐角对应相等2.(2022·上海·八年级专题练习)下列条件,不能判定两个直角三角形全等的是( )A .两个锐角对应相等B .一个锐角和斜边对应相等C .两条直角边对应相等D .一条直角边和斜边对应相等 3.(2022·上海·八年级专题练习)如图,在ABC 和ADC △中,90B D ∠=∠=︒,CB CD =,130∠=︒,则2∠=( )A .30°B .40°C .50°D .60° 4.(2022·上海浦东新·八年级期末)如图,在等腰Rt ABC ∆中,90A ∠=︒,AB AC =,BD 平分ABC ∠,交AC 于点D ,DE BC ⊥,若10BC =cm ,则DEC 的周长为( )A .8cmB .10cmC .12cmD .14cm5.(2022·上海·八年级期末)如图,在Rt △ABC 中,∠ACB=90°,CD 与CE 分别是斜边AB 上的高与中线,以下判断中正确的个数有( )①∠DCB=∠A ;②∠DCB=∠ACE ;③∠ACD=∠BCE ;④∠BCE=∠BEC .A .1个B .2个C .3个D .4个二、填空题6.(2022·上海·八年级专题练习)命题“直角三角形的两个锐角互余”的逆命题为_____.7.(2022·上海·八年级期末)如图,已知△ABC 中,∠C =90°,AC =BC ,点D 在BC 上DE ⊥AB ,点E 为垂足,且DC =DE ,连接AD ,则∠ADB 的大小为_____________.三、解答题8.(2022·上海市南洋模范初级中学八年级期中)已知:如图,在ABC 中,90ACB ∠=︒,AD 为ABC 的外角平分线,交BC 的延长线于点D ,且2B D ∠=∠.求证:AB AC CD +=.9.(2022·上海市南洋模范初级中学八年级期中)如图,在ABC 中,(1)用直尺和圆规作A ∠的平分线,交边BC 于点M (不写作法,保留作图痕迹,在图上清楚地标注点M );(2)如果在(1)条件下点M 是BC 的中点,求证:B C ∠=∠.10.(2022·上海·八年级单元测试)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.11.(2022·上海·八年级期末)如图,AB、ED分别垂直于BD,点B、D是垂足,且AB=CD,AC=CE,求证:△ACE是直角三角形.12.(2022·上海·八年级阶段练习)如图,四边形ABCD中,BC=CD,CB⊥AB于B,CD⊥AD 于D求证:AB=AD.【能力提升】一、单选题1.(2021·上海·八年级专题练习)如图在Rt△ABC=90 ,如果CD、CM分别是斜边上的高和中线,AC=2,BC=4,那么下列结论中错误的是()A .∠ACD =∠B B .CM =5C .∠B =30︒D .CD =4552.(2022·上海·八年级期末)已知下列说法,其中结论正确的个数是( )①等腰三角形一边上的高就是这条边上的中线;②等腰三角形的对称轴就是底边上的中线;③若一条直线上的一点P 到线段两端的距离相等,则这条直线是这条线段的垂直平分线;④若两个直角三角形的一条直角边和斜边分别对应相等,则这两个直角三角形全等.A .1个B .2个C .3个D .4个3.(2022·上海·八年级专题练习)下列命题中,假命题是( )A .三角形三条边的垂直平分线的交点到三角形三个顶点的距离相等B .三角形三个内角的平分线的交点到三角形三条边的距离相等C .两腰对应相等的两个等腰三角形全等D .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等4.(2022·上海·八年级单元测试)下列命题中,是假命题的是( )A .斜边和一直角边对应相等的两个直角三角形全等;B .在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.C .每个命题都有逆命题;D .每个定理都有逆定理.二、填空题5.(2022·上海·八年级专题练习)如图,在四边形ABCD 中,∠ABC=∠ADC=90°,AC=26,BD=24,M 、N 分别是AC 、BD 的中点,则线段MN 的长为_____.6.(2020·上海市静安区实验中学八年级课时练习)如图:△ABC 中,∠ACB =90°,CD,CE,CF 分别是中线,角平分线,高,则DCE ∠ 和FCE ∠的大小关系:_________________7.(2020·上海市静安区实验中学八年级课时练习)等腰三角形的顶角为120°,底边上的高为3cm ,则它的腰长为______cm.8.(2020·上海市静安区实验中学八年级课时练习)如图,已知D 是直角三角形ABC 中BC 边的延长线上的一点,CD =AC ,∠ACB=60°,则BC ∶CD= ______9.(2020·上海市静安区实验中学八年级课时练习)如果一个直角三角形斜边上的中线与斜边所成的锐角为50︒角,那么这个直角三角形的较小的内角是________︒.10.(2020·上海市澧溪中学八年级阶段练习)如图,点A 为MON ∠的平分线上一点,过A 任意作一条直线分别与MON ∠的两边相交于B 、C ,P 为BC 中点,过P 作BC 的垂线交射线OA 于点D ,若105∠=︒MON ,则BDC ∠的度数为_度.11.(2022·上海·八年级专题练习)如图,AD 是ABC ∆的高,AD BD =,BE AC =,70BAC ∠=︒,则ABE ∠=__.三、解答题12.(2022·上海·八年级专题练习)已知:如图,,AD CD BC CD ⊥⊥,D C 、分别为垂足,AB 的垂直平分线EF 交AB 于点E ,交CD 于点F ,BC DF =.求证:(1)DAF CFB ∠=∠;(2)AF BF ⊥.13.(2022·上海·八年级专题练习)已知,如图,BD 是∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD ,PN ⊥CD ,垂足分别是M 、N .(1)求证:PM =PN ;(2)联结MN ,求证:PD 是MN 的垂直平分线.14.(2020·上海市静安区实验中学八年级课时练习)已知:如图,在△ABC 中,AD 是∠BAC的平分线,且BD=DC,DF,DE分别垂直于AB,AC,垂足分别为F,E;求证:BF=CE15.(2021·上海市莘光学校八年级期中)已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,将△ABC绕点B按顺时针方向旋转.(1)当C转到AB边上点C′位置时,A转到A′,(如图1所示)直线CC′和AA′相交于点D,试判断线段AD和线段A′D之间的数量关系,并证明你的结论.(2)将Rt△ABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△ABC旋转至A、C′、A′三点在一条直线上时,请直接写出此时旋转角α的度数.16.(2021·上海民办行知二中实验学校八年级期中)如图,点B在函数y=2x(x>0)的图象上,过点B分别作x轴和y轴的平行线交函数y=1x(x>0)的图象于点A,C.(1)若点B的坐标为(1,2),求A,C两点的坐标;(2)若点B是y=2x(x>0)的图象上任意一点,求△ABC的面积.(3)OC平分OA与x轴正半轴的夹角,将△ABC沿AC翻折后得到△AB'C,点B′落在OA上,求四边形OABC的面积.17.(2022·上海·八年级专题练习)如图,在△ABC中,(1)用直尺和圆规分别作∠ACB 的平分线、线段AB 的中垂线、它们的交点M (不写作法,保留作图痕迹,在图上清楚地标注点M );(2)过点M 作ME ⊥BC ,MF ⊥AC ,垂足分别为点E 、F .求证:BE =AF .18.(2022·上海·八年级专题练习)如图,在四边形ABCD 中,AB =AD ,BC>CD ,AC 平分∠BCD ,过点A 作AE ⊥BC ,垂足为点E .(1)求证:CE=CD +BE ;(2)如果CE =3BE ,求ABC ACD S S ∆∆:的值.19.(2022·上海·八年级专题练习)(1)已知,如图,在三角形ABC 中,AD 是BC 边上的高.尺规作图:作ABC ∠的平分线l (保留作图痕迹,不写作法,写出结论)﹔(2)在已作图形中,若l 与AD 交于点E ,且,BE AC BD AD ==,求证:AB BC =.20.(2022·上海·八年级单元测试)已知:如图,点D 是ABC 的边AC 上的一点,过点D 作DE AB ⊥,DF BC ⊥,E 、F 为垂足,再过点D 作DG AB ∥,交BC 于点G ,且DE DF =.(1)求证:DG BG =;(2)当D 点是AC 边的中点时,求证:BD AC ⊥.21.(2022·上海·八年级专题练习)已知:如图,AB ∥CD ,∠ABD =90°,∠AED =90°,BD =DE .求证:∠AFC =2∠ADC .22.(2022·上海市南洋模范初级中学八年级期中)如图,在ABC 中,D 是AB 的中点,DE AB ⊥,180ACE BCE ∠+∠=︒,EF AC ⊥于点F ,若12AC =,8BC =,求AF 的长.23.(2021·上海·八年级专题练习)如图,在△ABC 中,点D 是边BC 的中点,CE ∥AB ,AD 平分∠EAB(1)延长AD 、CE 相交于点F ,求证:AB =CE +AE(2)当点E 和点C 重合时,试判断△ABC 的形状,请画出图形,并说明理由.19.7直角三角形全等的判定(解析版)【夯实基础】一、单选题1.(2022·上海市南洋模范中学八年级期末)判断两个直角三角形全等的方法不正确...的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等【答案】D【分析】根据直角三角形全等的判定条件逐一判断即可.【详解】解:A、两条直角边对应相等,可以利用SAS证明两个直角三角形全等,说法正确,不符合题意;B、斜边和一锐角对应相等,可以利用AAS证明两个直角三角形全等,说法正确,不符合题意;C、斜边和一条直角边对应相等,可以利用HL证明两个直角三角形全等,说法正确,不符合题意;D、两个锐角对应相等,不可以利用AAA证明两个直角三角形全等,说法错误,符合题意;故选D.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.2.(2022·上海·八年级专题练习)下列条件,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一个锐角和斜边对应相等C.两条直角边对应相等D.一条直角边和斜边对应相等【答案】A【分析】根据SAS,AAS,ASA,SSS,HL,逐一判断即可解答.【详解】解:A、两个锐角对应相等,没有边之间的关系,不能判定两个直角三角形全等,故A符合题意;B、一个锐角和斜边对应相等,利用AAS可以判定两个直角三角形全等,故B不符合题意;C、两条直角边对应相等,利用SAS可以判定两个直角三角形全等,故C不符合题意;D、一条直角边和斜边对应相等,利用HL可以判定两个直角三角形全等,故D不符合题意;故选:A.【点睛】本题考查了直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解题的关键. 3.(2022·上海·八年级专题练习)如图,在ABC 和ADC △中,90B D ∠=∠=︒,CB CD =,130∠=︒,则2∠=( )A .30°B .40°C .50°D .60° 【答案】D【分析】由题意可证()Rt ABC Rt ADC HL ≌,有1CAD ∠=∠,由三角形内角和定理得2180CAD D ∠+∠+∠=︒,计算求解即可.【详解】解:∵90B D ∠=∠=︒∴△ABC 和△ADC 均为直角三角形在Rt ABC 和Rt ADC 中∵CB CD AC AC=⎧⎨=⎩ ∴()Rt ABC Rt ADC HL ≌∴1CAD ∠=∠∵2180CAD D ∠+∠+∠=︒∴2180903060∠=︒-︒-︒=︒故选D .【点睛】本题考查了三角形全等,三角形的内角和定理.解题的关键在于找出角度的数量关系.4.(2022·上海浦东新·八年级期末)如图,在等腰Rt ABC ∆中,90A ∠=︒,AB AC =,BD 平分ABC ∠,交AC 于点D ,DE BC ⊥,若10BC =cm ,则DEC 的周长为( )A.8cm B.10cm C.12cm D.14cm【答案】B【分析】根据角平分线上的点到角的两边距离相等可得DE=AD,利用“HL”证明Rt△ABD和Rt△EBD全等,根据全等三角形对应边相等可得AB=BE,然后求出△DEC的周长=BC,再根据BC=10cm,即可得出答案.【详解】解:∵BD是∠ABC的平分线,DE⊥BC,∠A=90°,∴DE AD=,在Rt△ABD和Rt△EBD中,∵BD BDAD DE=⎧⎨=⎩,()Rt ABD Rt EBD HL∴∆∆≌,∴AB=BE,∴△DEC的周长=DE+CD+CE=AD+CD+CE,=AC+CE,=AB+CE,=BE+CE,=BC,∵BC=10cm,∴△DEC的周长是10cm.故选:B.【点睛】本题考查的是角平分线的性质,全等三角形的判定与性质,熟记各性质并求出△DEC 的周长=BC是解题的关键.5.(2022·上海·八年级期末)如图,在Rt△ABC中,∠ACB=90°,CD与CE分别是斜边AB上的高与中线,以下判断中正确的个数有()①∠DCB=∠A;②∠DCB=∠ACE;③∠ACD=∠BCE;④∠BCE=∠BEC.A.1个B.2个C.3个D.4个【答案】C【分析】根据垂直的定义得到∠CDB=90°,根据余角的性质得到∠DCB=∠A,故①正确;根据直角三角形的性质得到AE=CE=BE,根据等腰三角形的性质得到∠A=∠ACE,于是得到∠DCB=∠ACE,故②正确;同理得到∠ACD=∠BCE,故③正确;由于BC不一定等于BE,于是得到∠BCE不一定等于∠BEC,故④错误.【详解】∵CD⊥AB,∴∠BDC=90°,∴∠DCB+B=90°,∵∠A+∠B=90,∴∠DCB=∠A,∴①正确;∵CE是RtABC斜边AB上的中线,∴EA=EC=EB,∴∠ACE=∠A,∴∠DCB=∠A,∴∠DCB=∠ACE,∴②正确;∵EC=EB,∴∠B=∠BCE,∵∠A+∠B=90,∠A+∠ACD=90,∴∠B= ∠ACD,∴∠ACD= ∠BCE,∴③正确;∵BC与BE不一定相等,∴∠BCE 与∠BEC 不一定相等,∴④不正确;∴正确的个数为3个,故答案为C.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.二、填空题6.(2022·上海·八年级专题练习)命题“直角三角形的两个锐角互余”的逆命题为_____.【答案】两个锐角互余的三角形是直角三角形【分析】把原命题的题设与结论部分交换即可得到其逆命题.【详解】解:命题“直角三角形的两个锐角互余”的逆命题为“两个锐角互余的三角形是直角三角形”.故答案为:两个锐角互余的三角形是直角三角形. 【点睛】本题考查了命题与逆命题,解题的关键在于找出原命题的条件和结论.7.(2022·上海·八年级期末)如图,已知△ABC 中,∠C =90°,AC =BC ,点D 在BC 上DE ⊥AB ,点E 为垂足,且DC =DE ,连接AD ,则∠ADB 的大小为_____________.【答案】112.5°【分析】根据等腰直角三角形性质求∠CAB =∠B =C 1180452,再证明Rt △ACD ≌Rt △AED (HL ),得出∠CAD =∠EAD =CAB 122.52即可 【详解】解:∵∠C =90°,AC =BC ,∴∠CAB =∠B =C 1180452,∵DE ⊥AB∴∠DEA =90°,在Rt △ACD 和Rt △AED 中,CD ED AD AD =⎧⎨=⎩, ∴Rt △ACD ≌Rt △AED (HL ),∴∠CAD =∠EAD =CAB 122.52,∴∠ADB =180°-∠DAB -∠B =180°-22.5°-45°=112.5°.故答案为:112.5°.【点睛】本题考查等腰直角三角形性质,三角形全等判定与性质,角平分线判定,三角形内角和,掌握等腰直角三角形性质,三角形全等判定与性质,角平分线判定,三角形内角和是解题关键.三、解答题8.(2022·上海市南洋模范初级中学八年级期中)已知:如图,在ABC 中,90ACB ∠=︒,AD 为ABC 的外角平分线,交BC 的延长线于点D ,且2B D ∠=∠.求证:AB AC CD +=.【答案】见解析【分析】作DE BA ⊥交BA 的延长线于点E ;构造Rt Rt (HL)ACD AED ≌,通过转化线段得出结论;【详解】证明:如图,作DE BA ⊥交BA 的延长线于点E ;∵90ACB ∠=︒∴DC AC ⊥∵AD 为ABC 的外角平分线;∴CD ED =在Rt ACD △和Rt AED △中CD ED AD AD=⎧⎨=⎩ ∴Rt Rt (HL)ACD AED ≌∴AE AC = ,ADC ADE ∠=∠∴EDC ADC ∠=∠2∵2B ADC ∠=∠∴B EDC ∠=∠∴ED BE AB AE AB AC ==+=+∵CD ED =∴AB AC CD +=【点睛】本题考查了角平分线的性质定理、全等三角形的判定与性质;熟练运用角平分线的性质构造全等三角形是解题的关键.9.(2022·上海市南洋模范初级中学八年级期中)如图,在ABC 中,(1)用直尺和圆规作A ∠的平分线,交边BC 于点M (不写作法,保留作图痕迹,在图上清楚地标注点M );(2)如果在(1)条件下点M 是BC 的中点,求证:B C ∠=∠.【答案】(1)见解析(2)见解析【分析】(1)根据尺规作已知角的角平分线的作图方法进行作图即可;(2)作MD AB ⊥交AB 于点D ;作ME AC ⊥交AC 于点E ;构造Rt Rt (HL)DMB EMC ≌;即可得出结论;【详解】(1)解:作图如下:(2)证明:如图,作MD AB ⊥交AB 于点D ;作ME AC ⊥交AC 于点E ;由(1)可知:AM 平分BAC ∠∴=DM EM∵点M 是BC 的中点∴BM CM =在Rt DMB 和Rt EMC △中DM EM BM CM=⎧⎨=⎩ ∴Rt Rt (HL)DMB EMC ≌∴B C ∠=∠【点睛】本题考查了尺规作图、角平分线的性质、全等三角形的判定与性质;熟练掌握角平分线的性质定理是解题的关键.10.(2022·上海·八年级单元测试)如图,在△ABC 中,AB =AC ,AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,求证:BE =CF .【答案】见解析【分析】证明Rt Rt BDE CDF ≌即可证明BE =CF .【详解】证明:∵AB =AC ,AD 为∠BAC 的平分线∴BD =CD ,∵DE ⊥AB ,DF ⊥AC∴DE =DF ,在Rt △BDE 和Rt △CDF 中==BD DC DE DF ⎧⎨⎩, ∴()Rt Rt HL BDE CDF ≌,∴BE =CF .【点睛】本题考查了HL 证明三角形全等,以及全等三角形的性质,掌握全等三角形的性质与判定是解题的关键.11.(2022·上海·八年级期末)如图,AB 、ED 分别垂直于BD ,点B 、D 是垂足,且AB =CD ,AC =CE ,求证:△ACE 是直角三角形.【答案】见解析【分析】先根据垂直的定义得到∠B =∠D =90°,再根据“HL ”判断Rt △ABC ≌Rt △CDE ,得到∠1=∠3,由于∠2+∠3=90°,所以∠1+∠2=90°,则可利用平角的定义得到∠ACE =90°,于是可判断△ACE 是直角三角形.【详解】证明:∵AB ⊥BD ,ED ⊥BD ,∴∠B =∠D =90°,在Rt △ABC 和Rt △CDE 中AB CD AC CE=⎧⎨=⎩ ∴Rt △ABC ≌Rt △CDE (HL ),∴∠1=∠3,∵∠2+∠3=90°,∴∠1+∠2=90°,∴∠ACE =90°,∴△ACE 是直角三角形.【点睛】本题考查了全等三角形的判断与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.12.(2022·上海·八年级阶段练习)如图,四边形ABCD 中,BC=CD ,CB ⊥AB 于B ,CD ⊥AD 于D求证:AB=AD .【答案】见解析【分析】连接AC ,证明Rt △ABC ≌Rt △ADC ,即可得到AB=AD .【详解】解:证明:如图,连接AC ,∵CD ⊥AD ,CB ⊥AB ,∴∠B=∠D=90°, 在Rt △ABC 和Rt △ADC 中,AC AC BC CD =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ADC (HL ),∴AB=AD .【点睛】本题考查了全等三角形的判定及性质的运用,解答时证明三角形全等是关键.【能力提升】一、单选题1.(2021·上海·八年级专题练习)如图在Rt △ABC =90︒,如果CD 、CM 分别是斜边上的高和中线,AC =2,BC =4,那么下列结论中错误的是( )A .∠ACD =∠BB .CM 5C .∠B =30︒D .CD 455【答案】C【分析】根据同角的余角相等判断A ;根据勾股定理和直角三角形的性质判断B ;根据三角形的面积公式计算,判断D .【详解】∵∠ACB =90°,∴∠ACD +∠BCD =90°.∵CD ⊥AB ,∴∠B +∠BCD =90°,∴∠ACD =∠B ,故A 正确,不符合题意;在Rt △ACB 中,AB 22AC BC =+=25.∵∠ACB =90°,CM 是斜边上的中线,∴CM 5=,故B 正确,不符合题意;2.(2022·上海·八年级期末)已知下列说法,其中结论正确的个数是()①等腰三角形一边上的高就是这条边上的中线;②等腰三角形的对称轴就是底边上的中线;③若一条直线上的一点P到线段两端的距离相等,则这条直线是这条线段的垂直平分线;④若两个直角三角形的一条直角边和斜边分别对应相等,则这两个直角三角形全等.A.1个B.2个C.3个D.4个【答案】A【分析】分别根据等腰三角形三线合一的性质、等腰三角形的对称性、线段垂直平分线的性质、直角三角形全等的判定定理分别对各项进行判断即可.【详解】解:①等腰三角形底边上的高就是这条边上的中线,故原说法错误;②等腰三角形的对称轴就是底边上的中线所在的直线,故原说法错误;③若一条直线上的一点P到线段两端的距离相等,只能说明这个点在这条线段的垂直平分线上,此说法错误;④若两个直角三角形的一条直角边和斜边分别对应相等,则这两个直角三角形全等,正确.故选:A.【点睛】本题考查轴对称的性质、轴对称图形、全等三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.3.(2022·上海·八年级专题练习)下列命题中,假命题是()A.三角形三条边的垂直平分线的交点到三角形三个顶点的距离相等B.三角形三个内角的平分线的交点到三角形三条边的距离相等C.两腰对应相等的两个等腰三角形全等D.一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等【答案】C【分析】由线段的垂直平分线的性质可判断A,由三角形的角平分线的性质可判定B,由SAS判定两个三角形全等可判断C ,由HL 判定两个直角三角形全等可判断D ,从而可得答案.【详解】解:三角形三条边的垂直平分线的交点到三角形三个顶点的距离相等,是真命题,故A 不符合题意;三角形三个内角的平分线的交点到三角形三条边的距离相等,是真命题,故B 不符合题意; 两腰对应相等的两个等腰三角形不一定全等,因为两腰的夹角不一定相等,故C 符合题意; 如图,90,,,,,C N AD MF AB MN BD DC NF FG,Rt ADB Rt MFN ≌,BD FN 则,BC NG,Rt ACB Rt MGN ≌一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等,是真命题,故D 不符合题意;故选C【点睛】本题考查的是线段垂直平分线的性质,角平分线的性质,全等三角形的判定与性质,掌握“判定命题真假的方法”是解本题的关键.4.(2022·上海·八年级单元测试)下列命题中,是假命题的是( )A .斜边和一直角边对应相等的两个直角三角形全等;B .在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上.C .每个命题都有逆命题;D .每个定理都有逆定理.【答案】D【分析】根据全等三角形的判定、角平分线的判定、命题和定理的定义判断即可.【详解】A 、斜边和一条直角边分别相等的两个直角三角形全等,是真命题;B 、根据角平分线的判定:在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上,是真命题;C 、每个命题都有逆命题,是真命题;D 、每个定理不一定都有逆定理,每个定理都有逆命题,而命题有真有假,故每个定理都有逆定理是假命题;故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空题5.(2022·上海·八年级专题练习)如图,在四边形ABCD中,∠ABC=∠ADC=90°,AC=26,BD=24,M、N分别是AC、BD的中点,则线段MN的长为_____.【答案】5【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到BM=DM=13,根据等腰三角形的性质得到BN=12,根据勾股定理得到答案.【详解】连接BM、DM,∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=12AC,DM=12AC,∴BM=DM=13,又N是BD的中点,∴BN=DN=12BD=12,∴MN=22BM BN=5,【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.6.(2020·上海市静安区实验中学八年级课时练习)如图:△ABC 中,∠ACB =90°,CD,CE,CF 分别是中线,角平分线,高,则DCE ∠ 和FCE ∠的大小关系:_________________【答案】相等【分析】根据角平分线的定义可得∠ACE=∠BCE ,再根据高线的定义以及直角三角形的性质可得∠BCF=∠A ,再根据直角三角形斜边上的中线等于斜边的一半可得AD=CD ,然后根据等边对等角的性质得到∠ACD=∠A ,最后根据图形写出角的关系即可得证.【详解】证明:∵CE 是∠ACB 的平分线,∴∠ACE=∠BCE .∵CF ⊥AB ,∠ACB=90°,∴∠BCF=∠A (同角的余角相等).∵CD 是AB 边上的中线,∠ACB=90°,∴AD=CD ,∴∠ACD=∠A (在同一个三角形中,等边对等角),∴∠DCE=∠ACE-∠ACD=∠ACE-∠A ,∠FCE=∠BCE-∠BCF=∠ACE-∠A ,∴∠DCE = FCE .故答案为:相等.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,准确识图,理清图中角度之间的关系是解题的关键.7.(2020·上海市静安区实验中学八年级课时练习)等腰三角形的顶角为120°,底边上的高为3cm ,则它的腰长为______cm.【答案】6【分析】画出图形,可求得底角为30度,结合已知,由含30°的直角三角形的性质可求得【详解】如图,AB=AC,AD⊥BC于点D,AD=3cm,∠BAC=120°,∵∠BAC=120°,AB=AC∴∠B=∠C=(180°-∠BAC)÷2=30°∵AD⊥BC=6cm.∴AB=3÷12故填:6.【点睛】此题考查等腰三角形的性质,含30°角的直角三角形的性质,求得30°的角是正确解题的关键.8.(2020·上海市静安区实验中学八年级课时练习)如图,已知D是直角三角形ABC中BC 边的延长线上的一点,CD=AC,∠ACB=60°,则BC∶CD= ______【答案】1:2【分析】由条件可求得∠BAC =30°,在Rt△ABC中利用含30°角直角三角形的性质可求得AC=2BC的长,进而求出结果.【详解】解:在Rt△ABC中,∠B=90°,∠ACB=60°,∴∠BAC=30°,∴AC=2BC,∵CD=AC,∴CD=2BC,∴BC∶CD=1:2,故答案为1:2.【点睛】本题考查了含30°角的直角三角形的性质,掌握在直角三角形中30°锐角所对的直角边等于斜边的一半是解题的关键.9.(2020·上海市静安区实验中学八年级课时练习)如果一个直角三角形斜边上的中线与斜边所成的锐角为50︒角,那么这个直角三角形的较小的内角是________︒.【答案】25【分析】由直角三角形斜边上的中线等于斜边的一半的性质,证明得到A ACD ∠=∠,再利用外角性质求出A ∠,再得到B ∠,从而得解.【详解】如图所示,∵CD 是Rt ABC ∆斜边上的中线,∴CD AD DB ==,∴A ACD ∠=∠,∵斜边上的中线与斜边所成的锐角为50︒,即50BDC ∠=︒,∴250BDC A ACD A ∠=∠+∠=∠=︒,解得:25A ∠=︒,另一个锐角902565B ∠=︒-︒=︒,∴这个直角三角形的较小内角是25︒.故答案为:25︒.【点睛】本题考查了直角三角形的性质和外角的性质,比较基础.10.(2020·上海市澧溪中学八年级阶段练习)如图,点A 为MON ∠的平分线上一点,过A 任意作一条直线分别与MON ∠的两边相交于B 、C ,P 为BC 中点,过P 作BC 的垂线交射线OA 于点D ,若105∠=︒MON ,则BDC ∠的度数为_度.【答案】75【分析】过D 作DE ⊥OM 于E ,DF ⊥ON 于F ,求出∠EDF ,根据角平分线性质求出DE =DF ,根据线段垂直平分线性质求出BD =CD ,证Rt △DEB ≌Rt △DFC ,求出∠EDB =∠CDF ,推出∠BDC =∠EDF ,即可得出答案.【详解】如图:过D 作DE ⊥OM 于E ,DF ⊥ON 于F ,则∠DEB =∠DFC =∠DFO =90°,∵∠MON =105°,∴∠EDF =360°−90°−90°−105°=75°,∵DE ⊥OM ,DF ⊥ON ,OD ∠MON ,∴DE =DF ,∵P 为BC 中点,DP ⊥BC ,∴BD =CD ,在Rt △DEB 和Rt △DFC 中,DB DC DE DF⎧⎨⎩==, ∴Rt △DEB ≌Rt △DFC (HL ),∴∠EDB =∠CDF ,∴∠BDC =∠BDF +CDF =∠BDF +∠EDB =∠EDF =75°.故答案为:75.【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,能正确作出辅助线是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等,角平分线上的点到角的两边的距离相等.11.(2022·上海·八年级专题练习)如图,AD 是ABC ∆的高,AD BD =,BE AC =,70BAC ∠=︒,则ABE ∠=__.【答案】20︒##20度【分析】:证明Rt BDE Rt ADC △≌△,根据全等三角形的性质得到DBE DAC ∠=∠,根据等腰直角三角形的性质求出45DAB DBA ∠=∠=︒,计算即可.【详解】解:AD 是ABC ∆的高,90ADB ADC ∴∠=∠=︒,在Rt BDE 和Rt ADC 中,BD AD BE AC =⎧⎨=⎩, Rt BDE Rt ADC HL ≌,DBE DAC ∠=∠∴,在Rt ADB 中,AD BD =,45DAB DBA ∴∠=∠=︒,70BAC ∠=︒,704525DAC ∴∠=︒-︒=︒,25DBE DAC ∴∠=∠︒=︒,452520ABE ABD DBE ∴∠=∠-∠=︒-︒=︒,故答案为:20︒.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,掌握全等三角形的判定定理是解题的关键.三、解答题12.(2022·上海·八年级专题练习)已知:如图,,AD CD BC CD ⊥⊥,D C 、分别为垂足,AB 的垂直平分线EF 交AB 于点E ,交CD 于点F ,BC DF =.求证:(1)DAF CFB ∠=∠;(2)AF BF ⊥. 【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据条件可以得出△ADF ≌△FCB 就可以得出∠DAF=∠CFB ;(2)根据∠DAF+DFA=90°可以得出∠AFB=90°,就可以得出△AFB 是等腰直角三角形, 从而求解.【详解】证明:(1)∵AB 的垂直平分线EF 交AB 于点E ,交CD 于点F ,∴AF=BF ,AE=BE .∵AD ⊥CD ,BC ⊥CD ,∴∠D=∠C=90°.在Rt △ADF 和Rt △FCB 中AF FB DF CB =⎧⎨=⎩, ∴△ADF ≌△FCB (HL ),∴∠DAF=∠CFB ;(2)∵∠D=90°,∴∠DAF+∠DFA=90°,∴∠CFB+∠DFA=90°,∴∠AFB=90°.∴AF BF ⊥.【点睛】本题考查了直角三角形的性质的运用,垂直平分线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键、13.(2022·上海·八年级专题练习)已知,如图,BD 是∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD ,PN ⊥CD ,垂足分别是M 、N .。

期中真题几何证明40题专练—2023-2024学年八年级数学上册(沪教版)(解析版)

期中真题几何证明40题专练—2023-2024学年八年级数学上册(沪教版)(解析版)

期中真题几何证明40题专练一.解答题(共40小题)1.(2022秋•宝山区校级期中)五边形ABCDE中,AB=AE,AD平分∠CDE,∠B+∠E=180°,求证:BC+DE=CD.【分析】在DC上截取DF=DE,连接AF,先证△ADF≌△ADE,再证△ACF≌△ACB,即可得证结果.【解答】证明:如图,在DC上截取DF=DE,连接AF,∵AD平分∠CDE,∴∠ADF=∠ADE,在△ADF和△ADE中,,∴△ADF≌△ADE(SAS),∴AF=AE,∠FAD=∠EAD,∵AB=AE,∠BAE=∠CAD,∴AB=AF,∠BAC=∠FAC,在△ACF和△ACB中,,∴△ACF≌△ACB(SAS)∴BC=CF,∵CD=CF+DF,∴CD=BC+DE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解题的关键是准确作出辅助线构造全等三角形.2.(2022秋•虹口区校级期中)如图,△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,且ED ⊥AB于点F,且AB=DE.(1)求证:BD=2EC;(2)若BD=10cm,求AC的长.【分析】(1)根据AAS证明△ABC≌△EDB得BD=BC,再根据E是BC的中点,即可得出结论;(2)根据(1)的结论,结合BD=10,即可求出AC的长.【解答】(1)证明:∵ED⊥AB,∠ACB=∠DBC=90°,∴∠BFE=∠DBC=90°,∴∠BEF+∠ABC=∠BDE+∠BEF=90°,∴∠ABC=∠BDE,在△ABC和△EDB中,,∴△ABC≌△EDB(AAS),∴BD=BC,∵E是BC的中点,∴BC=2CE,∴BD=2EC;(2)解:由(1)知,△ABC≌△EDB,∴BE=AC,∵BD=2CE,即BD=2BE,∵BD=10,∴AC=BE=5cm.【点评】本题考查了全等三角形的判定与性质,证明△ABC≌△EDB是解题的关键.3.(2022秋•静安区校级期中)如图,AD是△ABC的高,∠B=2∠C,BD=5,BC=25,求AB的长.【分析】在线段DC上截取DE=BD,连接AE,根据线段垂直平分线的性质得到AB=AE,求得∠B=∠AEB,根据三角形外角的性质得到∠AEB=∠CAE+∠C,求得AE=CE,于是得到结论.【解答】解:如图:在线段DC上截取DE=BD,连接AE,∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,∵∠B=2∠C,∴∠AEB=2∠C,∵∠AEB=∠CAE+∠C,∴∠C=∠CAE,∴AE=CE,∵BD=5,BC=25,∴DE=BD=5,∴AB=AE=CE=BC﹣BD﹣DE=15.【点评】此题主要考查的是等腰三角形的判定和性质,作出辅助线正确构建出等腰三角形是解答此题的关键.4.(2020秋•杨浦区校级期中)如图,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过B作BE⊥CD,分别交AC于点E、交CD于点F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和CD的数量关系,并证明你的猜想.【分析】(1)证得∠EBC=∠ACD,∠A=∠ACD,则结论可得出;(2)过点D作DG⊥AC于点G,根据ASA证明△DCG≌△EBC,可得出结论.【解答】(1)证明:∵BE⊥CD,∴∠BFC=90°,∴∠EBC+∠BCF=180°﹣∠BFC=90°,∵∠ACB=∠BCF+∠ACD=90°,∴∠EBC=∠ACD,∵AD=CD,∴∠A=∠ACD,∴∠A=∠EBC;(2)解:CD=BE.过点D作DG⊥AC于点G,∵DA=DC,DG⊥AC,∴AC=2CG,∵AC=2BC,∴CG=BC,∵∠DGC=90°,∠ECB=90°,∴∠DGC=∠ECB,在△DGC和△ECB中,,∴△DCG≌△EBC(ASA),∴CD=BE.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形的性质,关键是掌握全等三角形的判定定理.5.(2020秋•徐汇区校级期中)如图,AD∥BC,点E是AB的中点,联结DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:AD=BF;(2)当点G是FC的中点时,判断△FDC的形状.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E 为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE,根据全等三角形的性质即可得解;(2)连接EG,根据题意,结合全等三角形的性质得到GE⊥DF,GE是△FDC的中位线,根据三角形中位线的性质即可得出△FDC是直角三角形.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF;(2)解:△FDC是直角三角形,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE⊥DF,∵点G是FC的中点,DE=FE,∴GE∥CD,∴CD⊥DF,∴△FDC是直角三角形.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,利用AAS证明△ADE≌△BFE是解本题的关键.6.(2022秋•静安区校级期中)如图,AB=AC,AD=AE,∠BAD=∠CAE,BE与CD相交于点F.求证:(1)∠ADC=∠AEB;(2)FD=FE.【分析】(1)利用AAS证明△ABD≌△ACE即可;(2)连接DE,利用等腰三角形的性质和判定即可证明结论.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAD+∠EAD=∠CAE+∠DAE,∴∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠ADC=∠AEB;(2)连接DE,∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠ADC﹣∠ADE=∠AEB﹣∠AED,∴∠FDE=∠FED,∴FD=FE.【点评】本题主要考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握等腰三角形的性质和判定是解题的关键.7.(2022秋•杨浦区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:FM⊥EH.【分析】根据等腰三角形的性质可求∠B=∠C,根据ASA可证△BEF≌△CFH,根据全等三角形的性质可求EF=FH,再根据等腰三角形的性质可证FM⊥EH.【解答】证明:∵AB=AC,∴∠B=∠C,在△BEF与△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴FM⊥EH.ASA证明△BEF≌△CFH.8.(2021秋•浦东新区期中)如图,在△ABC中,BD平分∠ABC,∠A=2∠C,求证:BC=AB+AD.【分析】在BC上截取BE=BA,由“SAS”可证△ABD≌△EBD,可得∠BED=∠A,AB=BE,AD=DE,由外角的性质可得∠C=∠EDC,可证EC=ED,即可得结论.【解答】证明:如图,在BC上截取BE=BA,连接DE,∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴∠BED=∠A,AB=BE,AD=DE,∵∠A=2∠C,∴∠BED=2∠C,∵∠BED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴BC=BE+EC=AB+AD.【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.9.(2021秋•徐汇区校级期中)已知在△ABC中,AB=AC,在边AC上取一点D,以D为顶点,DB为一条边作∠BDF=∠A,点E在AC的延长线上,∠ECF=∠ACB.求证:(1)∠FDC=∠ABD;(2)DB=DF;(3)当点D在AC延长线上时,DB=DF是否依然成立?在备用图中画出图形,并说明理由.【分析】(1)根据角的和差即可得到结论;(2)过D作DG∥BC交AB于G,根据等腰三角形的性质和全等三角形的判定和性质定理即可得到结论;(3)过D作DG∥BC交AB于G,根据平行线的性质得到∠ADG=∠ACB,∠AGD=∠ABC,根据等腰三角形的性质得到∠ABC=∠ACB,根据全等三角形的判定和性质即可得到结论.【解答】(1)证明:∵∠BDC=∠A+∠ABD,即∠BDF+∠FDC=∠A+∠ABD,∵∠BDF=∠A,∴∠FDC=∠ABD;(2)过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AB﹣AG=AC﹣AD,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF;(3)仍然成立,如图2,过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AG﹣AB=AD﹣AC,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,∵∠ACB+∠BCF+∠FCD=180°,∴∠ACB+∠BCF+∠DGB=180°,∵∠DGB=∠ABC.∴∠ACB+∠BCF∠ABC=180°,∵∠A+∠ABC+∠ACB=180°,∴∠A=∠BCF,∵∠BDF=∠A,∴∠BCF=∠BDF,∴∠CBD=∠CFD,∵∠GBD=180°﹣∠ABC﹣∠CBD=180°﹣∠FCD﹣∠CFD=∠FDC,∴∠GBD=∠FDC,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.10.(2022秋•浦东新区期中)如图,已知在△ABC中,AB=AC,点D、E分别在AC、AB上,且AD=AE,点F在BC的延长线上,DB=DF.(1)求证:∠ABD=∠ACE.(2)求证:CE∥DF.【分析】(1)由“SAS”可证△ADB≌△AEC,可得∠ABD=∠ACE;(2)由等腰三角形的性质可得∠=∠F,由外角的性质可得∠ACE=∠CDF,可得结论.【解答】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE;(2)∵DB=DF,∴∠DBF=∠F,∵∠ABC=∠ABD+∠DBC,∠ACB=∠F+∠CDF,∴∠ABD=∠CDF,∴∠ACE=∠CDF,∴CE∥DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,掌握全等三角形的判定方法是本题的关键.11.(2020秋•浦东新区校级期中)已知:如图,点B、F、C、E在同一条直线上,AC∥DF,AC=DF,BF =CE.求证:AB∥DE.【分析】根据线段的和差求出BC=EF,由平行线的性质证得∠ACB=∠DFE,根据SAS定理推出△BAC≌△EDF,根据全等三角形的性质得出∠B=∠E,根据平行线的判定即可证得AB∥DE.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△BAC和△EDF中,,∴△BAC≌△EDF(SAS),∴∠B=∠E,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定,平行线的判定的应用,能推出△BAC和△EDF全等是解此题的关键.12.(2022秋•长宁区校级期中)已知:如图,△ABC中,AD平分∠BAC交BC于点D,CF∥AB且CD平分∠FCA,联结FD并延长交边AB于点E,说明CF=AC﹣AE的理由.【分析】由CF∥AB得∠FCB=∠ABC,由CD平分∠FCA得∠FCB=∠ACB,可得∠ACB=∠ABC,从而得AB =AC,由AD平分∠BAC可得CD=BD,再根据ASA证明△FCD≌△EBD,可得FC=BE,从而可得结论.【解答】解:∵CF∥AB,∴∠FCB=∠ABC,∵CD平分∠FCA,∴∠FCB=∠ACB,∴∠ACB=∠ABC,∴AB=AC,∵AD平分∠BAC,∴CD=BD,在△FCD和△EBD中,,∴△FCD≌△EBD(ASA),∴FC=BE,∵AC=AB=AE+EB=AE+CF,∴CF=AC﹣AE.【点评】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,角平分线的意义等知识,运用ASA证明△FCD≌△EBD是解答本题的关键.13.(2022秋•杨浦区期中)如图1所示,已知点E在直线AB上,点F,G在直线CD上且∠EFG=∠FEG,EF平分∠AEG,如图2所示,H是AB上点E右侧一动点,∠EGH的平分线GQ交FE的延长线于点Q,设∠Q=α,∠EHG=β,(1)若∠HEG=40°,∠QGH=20°,求∠Q的度数;(2)判断:点H在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.【分析】(1)先证明,再依据∠HEG=40°,即可得到∠FEG=70°,依据QG平分∠EGH,即可得到∠QGH=∠QGE=20°,根据∠Q=∠FEG﹣∠EGQ进行计算即可;(2)根据∠FEG是△EGQ的外角,∠AEG是△EGH的外角,即可得到∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG ﹣∠EGH,再根据FE平分∠AEG,GQ平分∠EGH,即可得出,,最后依据∠Q=∠FEG﹣∠EGQ进行计算,即可得到.【解答】解:(1)∵EF平分∠AEG,∴∠AEF=∠GEF,∵∠EFG=∠FEG,∴∠AEF=∠GFE,∴AB∥CD,∵∠HEG=40°,∴,∵QG平分∠EGH,∴∠QGH=∠QGE=20°,∴∠Q=∠FEG﹣∠EGQ=70°﹣20°=50°;(2)点H在运动过程中,α和β的数量关系不发生变化,∵∠FEG是△EGQ的外角,∠AEG是△EGH的外角,∴∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG﹣∠EGH,又∵FE平分∠AEG,GQ平分∠EGH,∴,,∴∠Q=∠FEG﹣∠EGQ==,即.【点评】本题主要考查了平行线的判定与性质,三角形外角性质的运用,解题的关键是利用三角形的外角性质:三角形的外角等于与它不相邻的两个内角的和.14.(2022秋•宝山区校级期中)如图,在五边形ABCDE中,(1)已知AB=AE,BC=ED,∠B=∠E,F是CD中点,求证:AF⊥CD.(2)已知AB=AE,BC=ED,∠C=∠D,F是CD中点,求证:AF⊥CD.(3)已知∠B=∠E,BC=ED,∠C=∠D,F是CD中点,求证;AF⊥CD.【分析】(1)连接AC,AD,根据全等三角形的判定和性质得出△ABC≌△AED,AC=AD,再由等腰三角形三线合一即可证明;(2)连接BF,EF,BCF≌△EDF,△ABF≌△AEF,∠CFB=∠DFE,∠AFB =∠AFE,结合图形得出∠AFC=∠AFD,即可证明;(3)连接BD,CE交于点G,根据全等三角形的判定和性质得出△BCD≌△EDC,△CGF≌△DGF,∠AFC=∠AFD,结合图形即可证明.【解答】解:(1)如图所示,连接AC,AD,在△ABC与△AED中,,∴△ABC≌△AED(SAS),∴AC=AD,∵F是CD中点,∴AF⊥CD;(2)如图所示,连接BF,EF,∵F是CD中点,∴CF=FD,在△BCF与△EDF中,,∴△BCF≌△EDF(SAS),∴BF=EF,∠CFB=∠DFE在△ABF与△AEF中,,∴△ABF≌△AEF(SSS),∴∠AFB=∠AFE,∴∠AFB+∠CFB=∠DFE+∠AFE,即∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD;(3)如图所示,连接BD,CE交于点G,∵F是CD中点,∴CF=FD,在△BCD与△EDC中,,∴△BCD≌△EDC(SAS),∴∠CDB=∠DCE,∴CG=DG,在△CGF与△DGF中,,∴△CGF≌△DGF(SAS),∴∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD.【点评】题目主要考查全等三角形的判定和性质,线段中点的性质及等腰三角形的判定和性质等,理解题15.(2022秋•宝山区校级期中)如图,△ABC和△ABD,AB=AD,点E、F在边BC上,点A、F、D共线,∠BAC=∠AFC,∠EAC=∠FCD,求证:AE=CD.【分析】根据三角形内角和定理得出∠CAD=∠ABC,再由三角形外角的性质及全等三角形的判定和性质即可证明.【解答】证明:∵∠BAC=∠AFC,∴180°﹣∠BAC﹣∠ACB=180°﹣∠AFC﹣∠ACB,即∠CAD=∠ABC,∵∠EAC=∠FCD,∴∠EAC+∠ACB=∠FCD+∠ACB,即∠AEB=∠ACD,在△AEB与△DCA中,,∴△AEB≌△DCA(AAS),∴AE=CD.【点评】题目主要考查全等三角形的判定和性质,三角形内角和定理及外角的性质,熟练掌握全等三角形的判定和性质是解题关键.16.(2022秋•虹口区校级期中)如图,△ABC和△BDE都是等边三角形,且点A、D、E在同一直线上,证明AE=BE+CE.【分析】根据等边三角形的性质,得出∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,再根据角之间的数量关系,得出∠ABD=∠CBE,再根据“边角边”,得出△ABD≌△CBE,再根据全等三角形的性质,得出AD=CE,再根据等量代换,即可得出结论.【解答】证明:∵△ABC和△BDE都是等边三角形,∴∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,∴∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+∠CBE,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,∴AE=DE+AD=BE+CE.【点评】本题考查了等边三角形的性质、全等三角形的判定与性质,解本题的关键在熟练掌握相关的性质定理.17.(2022秋•普陀区校级期中)如图,在△ABC中,AD平分∠BAC,E是BC的中点,过点E作FG⊥AD 交AD的延长线于H,交AB于F,交AC的延长线于G.求证:(1)AF=AG;(2)BF=CG.【分析】(1)由FG⊥AD交AD的延长线于H,∠AHF=∠AHG=90°,可根据全等三角形的判定定理“ASA”证明△AHF≌△AHG,得AF=AG;(2)作CL∥AB交FG于点L,则∠AFG=∠CLG,由AF=AG,得∠AFG=∠G,则∠CLG=∠G,得CL=CG,再证明△BEF≌△CEL,得BF=CL,所以BF=CG.【解答】证明:(1)∵AD平分∠BAC,∴∠FAH=∠GAH,∵FG⊥AD交AD的延长线于H,∴∠AHF=∠AHG=90°,在△AHF和△AHG中,,∴△AHF≌△AHG(ASA),∴AF=AG.(2)作CL∥AB交FG于点L,则∠B=∠ECL,∠AFG=∠CLG,∵AF=AG,∴∠AFG=∠G,∴∠CLG=∠G,∴CL=CG,∵E是BC的中点,∴BE=CE,在△BEF和△CEL中,,∴△BEF≌△CEL(ASA),∴BF=CL,∴BF=CG.【点评】此题重点考查全等三角形的判定与性质、等腰三角形的判定与性质、平行线的性质等知识,正确地作出所需要的辅助线构造全等三角形是解题的关键.18.(2022秋•浦东新区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:∠EFM=∠HFM.【分析】证明△BEF≌△CFH(ASA),△EFM≌△HFM(SSS)即可求解.【解答】证明:∵AB=AC,∠BEF=∠CFH,BE=CF,∴∠B=∠C,在△BEF和△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴EM=HM,FM为公共边,∴△EFM≌△HFM(SSS),∴∠EFM=∠HFM.【点评】本题主要考查全等三角形的判定和性质,掌握三角形全等的判定方法和性质是解题的关键.19.(2017秋•上海期中)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B即可得出结论,再根据等腰三角形的性质即可得出∠DEF的度数.【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中,,∴△BDE≌△CEF(SAS).∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=70°.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.20.(2022秋•静安区校级期中)已知:如图,AD∥CF,∠A=∠C=90°,DB平分∠ADF,AD+CF=DF.求证:FB平分∠CFD.【分析】在DF上取一点E,使DE=AD,进而利用SAS证明△ADB与△EDB全等,进而证明△FCB与△FEB 全等,进而解答即可.【解答】证明:在DF上取一点E,使DE=AD,∵DB平分∠ADF,∴∠ADB=∠EDB,在△ADB与△EDB中,,∴△ADB≌△EDB(SAS),∴AB=BE,∠BAD=∠BED,AD=DE,∴∠BAD=∠BED=90°,∵AD∥CF,∴∠C=∠A=90°,∵DF=AD+CF,∴EF=DF﹣DE=DF﹣AD=CF,在Rt△BEF与Rt△BCF中,,∴Rt△BEF≌Rt△BCF(HL),∴∠EFB=∠CFB,即FB平分∠CFD.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.21.(2022秋•静安区校级期中)已知如图,AB=AC,AD=AE,∠BAE=∠CAD,BD与CE相交于点F,求证:FB=FC.【分析】由已知条件证得△ABD≌△ACE,连接BC,要证FB=FC,可利用等式性质来证得.【解答】证明:∵∠BAE=∠CAD(已知),∴∠BAE+∠EAD=∠CAD+∠DAE(等式性质),即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴∠ABD=∠ACE(全等三角形对应角相等),连接BC.∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵∠ABD=∠ACE(已证),∴∠ABC﹣∠ABD=∠ACB﹣∠ACE(等式性质),即∠FBC=∠FCB.∴FB=FC(等角对等边).【点评】本题主要考查了两个三角形的判定和性质,关键是根据SAS证得△ABD≌△ACE.22.(2022秋•闵行区校级期中)如图,已知点A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD,求证:BC∥EF.【分析】证△ABC≌△DEF(SAS),得∠BCA=∠EFD,再由平行线的判定即可得出结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】考查了全等三角形的判定与性质、平行线的判定与性质等知识,熟练掌握平行线的判定与性质,证明三角形全等是解题的关键.23.(2022秋•杨浦区期中)如图,已知△ABC和△CDE都是等边三角形,点D、A、C在同一直线上,延长BA交边DE于点F,联结AE、BD.(1)试说明△ADB≌△F AE的理由;(2)延长EA交BD于点H,求∠DHE的度数.【分析】(1)证△ADF是等边三角形,得AD=FA=DF,∠DFA=60°,再证CD=BF,则AB=FE,然后证∠BAD=∠EFA,进而证△ADB≌△FAE(SAS);(2)由全等三角形的性质得∠ABD=∠FEA,再证∠DHE=∠FEA+∠FAE,即可得出结论.【解答】(1)证明:∵△ABC和△CDE都是等边三角形,∴AB=AC,∠DAF=∠BAC=60CDE=60°,CD=DE,∴△ADF是等边三角形,∴AD=FA=DF,∠DFA=60°,∴AC+AD=AB+FA,即CD=BF,∴BF﹣FA=DE﹣DF,即AB=FE,∵∠BAD=180°﹣∠DAF=180°﹣60°=120°,∠EFA=180°﹣∠DFA=180°﹣60°=120°,∴∠BAD=∠EFA,在△ADB和△FAE中,,∴△ADB≌△FAE(SAS);(2)解:由(1)得:△ADB≌△FAE,∴∠ABD=∠FEA,∵∠DHE=∠ABD+∠BAH,∠FAE=∠BAH,∴∠DHE=∠FEA+∠FAE,∵∠DFA=∠FEA+∠FAE,∴∠DHE=∠DFA=60°.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.24.(2022秋•闵行区期中)如图,点D,E在△ABC的边BC上,AD=AE,BD=CE,求证:∠B=∠C.【分析】方法一:利用全等三角形的性质证明即可.方法二:作AM⊥BC于M.证明AN垂直平分线段BC 即可;【解答】证明方法一:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=∠AED+∠AEC=°,∴∠ADB=∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠C.证明方法二:作AM⊥BC于M.∵AD=AE,∴DM=EM,∵BD=CE,∴DM+BD=EM+CE,即:BM=CM,又∵AM⊥BC,即AM为BC的垂直平分线,∴AB=AC,∴∠B=∠C.【点评】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(2022秋•普陀区期中)已知:如图,在四边形ABCD中,BC=DC,点E在边AB上,∠EBC=∠EDC.(1)求证:EB=ED.(2)当∠A=90°,求证:∠BED=2∠BDA.【分析】(1)由BC=DC,得出∠CBD=∠CDB,再由∠EBC=∠EDC,推出∠EBD=∠EDB,即可得出结论;(2)由三角形内角和定理得出∠BDA+∠ABD=90°=∠A,再由(1)得∠EBD=∠EDB,则∠BDA+∠EDB=∠A,然后由三角形的外角性质即可得出结论.【解答】证明:(1)∵BC=DC,∴∠CBD=∠CDB,∵∠EBC=∠EDC,∴∠EBC﹣∠CBD=∠EDC﹣∠CDB,即∠EBD=∠EDB,∴EB=ED;(2)∵∠A=90°,∴∠BDA+∠ABD=90°=∠A,由(1)得:∠EBD=∠EDB,∴∠BDA+∠ABD=∠BDA+∠EDB=∠A,∴∠BED=∠A+∠ADE=∠BDA+∠EDB+∠ADE=∠BDA+∠BDA=2∠BDA.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理、三角形外角的性质等知识,熟练掌握等腰三角形的判定与性质是解题的关键.26.(2021秋•奉贤区校级期中)在△ABC中,AB=AC,点D是直线BC上的一点(不与点B、C重合),以AD为腰右侧作等腰三角形△ADE,且AD=AE,∠BAC=∠DAE,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度.(2)设∠BAC=α,∠BCE=β.①点D是在线段BC上移动时,如图2,则α、β之间有怎样的数量关系?试说明理由.②点D是在射线CB上移动时,则α、β之间有怎样的数量关系?试直接写出结论.【分析】(1)证明△BAD≌△CAE,得∠B=∠ACE,即可证明;(2)①与(1)同理证明△BAD≌△CAE,得∠ABD=∠ACE,则∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°;②同理证明△ADB≌△AEC,得∠ABD=∠ACE,由∠ABD=∠BAC+∠ACB,则∠BAC=∠BCE.【解答】解:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①α+β=180°,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;②α=β,理由如下:∵∠DAE=∠BAC,∴∠DAB=∠EAC,在△ADB与△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∴∠BAC=∠BCE,∴α=β.【点评】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,三角形外角的性质等知识,证明△ADB≌△AEC是解题的关键.27.(2021秋•浦东新区期中)如图,在△ABC中,AD平分∠BAC,DE∥AC,过点E作EF⊥AD于点O,交BC的延长线于F,连接AF,求证:AF=DF.【分析】根据平行线的性质和等腰三角形的判定和性质解答即可.【解答】证明:∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA,∴AE=DE,∵EF⊥AD,∴EF垂直且平分AD,∴F在AD的垂直平分线上,∴AF=DF.【点评】此题考查等腰三角形的判定和性质,关键是根据平行线的性质和等腰三角形的判定和性质解答.28.(2020秋•浦东新区期中)如图,已知在△ABC中,AB=AC,D是AB上一点,延长AC至点E,使CE =BD.联结DE交BC于点F,求证:DF=EF.【分析】过点D作DG∥AC交BC于点G,由“AAS”可证△DFG≌△ECF,可得DF=EF.【解答】证明:如图,过点D作DG∥AC交BC于点G,∵AB=AC,∵DG∥AC,∴∠ACB=∠DGB,∠DGF=∠ECF,∴∠ACB=∠DGB=∠B,∴DG=DB,∵CE=BD,∴DG=CE,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS)∴DF=EF.【点评】本题考查了全等三角形的判定和性质、等腰三角形的判定与性质等知识,添加恰当辅助线构造全等三角形是解题的关键.29.(2022秋•奉贤区校级期中)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【分析】根据BE∥DF,可得∠ABE=∠D,再利用ASA求证△ABC和△FDC全等即可.【解答】证明:∵BE∥DF,在△ABE和△FDC中,,∴△ABE≌△FDC(ASA),∴AE=FC.【点评】此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.30.(2020秋•普陀区期中)如图,已知AB=AC,BD=CD,过点D作DE⊥AB交AB的延长线于点E、DF ⊥AC交AC的延长线于点F,垂足分别为点E、F.(1)求证:∠DBE=∠DCF.(2)求证:BE=CF.【分析】(1)连接AD,证△ABD≌△ACD(SSS),得∠ABD=∠ACD,即可得出结论;(2)证△BDE≌△CDF(AAS),即可得出结论.【解答】证明:(1)连接AD,如图:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠ABD=∠ACD,∴∠DBE=∠DCF.(2)∵DE⊥AB,DF⊥AC,∴∠E=∠F=90°,由(1)得:∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定和性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.31.(2017秋•静安区期中)如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【分析】(1)根据SAS证明△AED与△BFD全等,再利用等量代换证明即可;(2)根据角平分线的定义和等腰三角形的性质进行证明即可.【解答】证明:(1)∵D为AB的中点,∴BD=AD,在△AED与△BFD中,,∴△AED≌△BFD(SAS),∴∠E=∠DFB,∵DF∥AC,∴∠C=∠DFB,∴∠C=∠E;(2)∵DF平分∠AFB,∴∠AFD=∠DFB,∵∠E=∠DFB,∴∠AFD=∠AED,∵ED=DF,∴∠DAF+∠AFD=90°,∵EF∥AC,∴∠AFD=∠FAC,∴∠DAF+∠FAC=90°,∴AC⊥AB.【点评】本题考查了全等三角形的判定与性质,关键是根据平行线的性质、全等三角形的判定与性质等知识进行解答.32.(2021秋•浦东新区期中)如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE=AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.33.(2022秋•奉贤区校级期中)(1)已知:如图①,△ABC是等边三角形,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:线段EF、DF之间有怎样的数量关系?并证明你的猜想.(2)已知:如图②,在△ABC中,∠B=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:上述(1【分析】(1)证明△EAC≌△DCA(ASA),可得EC=DA,然后根据线段的和差即可得结论;(2)在CA上截取CG=CD,证明△CDF≌△CGF(SAS),可得DF=GF,∠DFC=∠GFC,再证明△AEF≌△AGF(ASA),可得EF=GF,进而可得结论.【解答】解:(1)EF=DF,证明:∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,∵AD、CE分别平分∠BAC、∠ACB,∴∠FAC=BAC,∠FCA=BCA,∴∠FAC=∠FCA,∴FA=FC,在△EAC和△DCA中,,∴△EAC≌△DCA(ASA),∴EC=DA,∵FA=FC,∴EF=DF;(2)EF=DF仍成立,理由如下:如图,在CA上截取CG=CD,在△CDF和△CGF中,,∴△CDF≌△CGF(SAS),∴DF=GF,∠DFC=∠GFC,∵∠DFC=∠FAC+∠FCA=BAC+BCA=60°,∴∠GFC=60°,∠AFE=60°,∴∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣(BAC+BCA)=180°﹣60°=120°,∴∠AFG=120°﹣60°=60°,∴∠AFE=∠AFG,在△AEF和△AGF中,,∴△AEF≌△AGF(ASA),∴EF=GF,∴EF=DF.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,三角形的内角和定理,遇到角平分线,作角平分线上的点到两边的距离构造出全等三角形是解题的关键.34.(2021秋•台江区期中)如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【分析】(1)利用SAS ABC≌△AED;(2)根据全等三角形的性质得到∠ABC=∠AED,根据等腰三角形的性质得到∠ABE=∠AEB,得到∠OBE=∠OEB,根据等腰三角形的判定定理证明.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD,在△BAC和△EAD中,,∴△BAC和≌EAD;(2)∵△BAC≌△EAD,∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠OBE=∠OEB,∴OB=OE.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.35.(2022秋•宝山区校级期中)如图,已知在△ABC中,AB=AC,点D、E分别在边AB、AC上,且AD =AE.(1)求证:DE∥BC;(2)如果F是BC延长线上一点,且∠EBC=∠EFC,求证:DE=CF.【分析】(1)根据等腰三角形的性质和三角形内角和证明即可;(2)根据AAS证明△BDE与△EFC全等即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵AD=AE,∴∠ADE=∠AED,∵∠A=∠A,∴∠ADE=∠ABC,∴DE∥BC;(2)∵∠EBC=∠EFC,∠ABC=∠ACB,∴∠DBE+∠EBC=∠CEF+∠EFC,∴∠DBE=∠CEF,∠DEB=∠EFC,在△BDE与△EFC中,,∴△BDE≌△EFC(AAS),∴DE=CF.【点评】本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定语言性质的运用,解答时证明三角形全等是关键.36.(2022秋•浦东新区期中)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【解答】解:如图,连接AD,在△ABD和△DCA中,,∴△ABD≌△DCA(SSS),∴∠B=∠C.【点评】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.37.(2022秋•徐汇区校级期中)已知:如图,在△ABC中,∠ACB=90°,AD为△ABC的外角平分线,交BC的延长线于点D,且∠B=2∠D.求证:AB+AC=CD.【分析】过点D作DE⊥AB,垂足为点E,由“在角的平分线上的点到这个角的两边的距离相等”可知DE=DC,再证明Rt△ACD≌Rt△AED,由此可得AC=AE,在证明BE=DE即可.【解答】证明:过点D作DE⊥AB,垂足为点E,又∵∠ACB=90°(已知),∴DE=DC(在角的平分线上的点到这个角的两边的距离相等).在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(H.L).∴AC=AE,∠CDA=∠EDA.∵∠B=2∠D(已知),∴∠B=∠BDE.∴BE=DE.又∵AB+AE=BE,∴AB+AC=CD.【点评】本题考查了全等三角形的判定与性质,关键是作辅助线使得AB与AC在同一条直线上才好证AB+AC =CD.38.(2021秋•徐汇区校级期中)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.【分析】求出∠A=∠DEC,∠B=∠C=90°,根据AAS证△ABE≌△ECD,推出AB=CE,求出AB+BC=2AB+BE =11,把BE=3代入求出AB即可.【解答】解:∵AB⊥BC,DC⊥BC,垂足分别是点B、C,∴∠B=∠C=90°.∴∠A+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∵∠AEB+∠AED+∠DEC=180°,∴∠AEB+∠DEC=90°,∴∠A=∠DEC,∵在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AB=CE,∵BC=BE+CE=BE+AB,∴AB+BC=2AB+BE=11,∵BE=3,∴AB=4.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.39.(2022秋•奉贤区校级期中)△ABC为等边三角形,D为AB边上的任意一点.连接CD.(1)在BD的左侧,以BD为一边作等边三角形BDE(尺规作图,保留作图痕迹,不写作法);(2)连接AE,试说明:CD=AE.【分析】(1)可以分别以B、D为圆心,以BD为半径作弧,相交于E;(2)由已知条件,证明△BCD≌△EAB即可.【解答】(1)解:如图:(2)证明:连接AE,如图,∵在△BCD与△BAE中,,∴△BCD≌△BAE(SAS)∴CD=AE.【点评】此题主要考查等边三角形的作法以及性质的运用,还涉及到全等三角形的判定,综合性强.求得三角形全等是正确解答本题的关键.40.(2022秋•静安区校级期中)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;。

19-6轨迹(第1课时)-2022-2023学年八年级数学上册同步练习(沪教版)

19-6轨迹(第1课时)-2022-2023学年八年级数学上册同步练习(沪教版)

9.6轨迹(第1课时)(原卷版)一、填空题1.(2022·上海市南洋模范初级中学八年级期中)底边为已知线段BC的等腰三角形ABC的顶点A的轨迹是_____.2.(2020·上海市静安区实验中学八年级课时练习)和线段AB两个端点距离相等的轨迹是__________________.3.(2022·上海·八年级专题练习)到点A的距离等于6cm的点的轨迹是________________.4.(2018·上海浦东新·八年级期末)经过定点A且半径为5cm的圆的圆心的轨迹是_____.5.(2020·上海市静安区实验中学八年级课时练习)到两个定点P、Q的距离相等的点的轨迹是__________.6.(2020·上海市静安区实验中学八年级课时练习)以线段MN为斜边的直角三角形直角顶点的轨迹是________.7.(2022·上海·八年级期末)经过已知线段AB的两个端点的圆的圆心的轨迹是_________.8.(2022·上海市风华初级中学八年级期末)经过定点P,且半径等于2cm的圆的圆心的轨迹__________.9.(2020·上海市静安区实验中学八年级课时练习)到定点的距离等于定长的点的轨迹是______.10.(2020·上海市静安区实验中学八年级课时练习)底边为定长的等腰三角形的顶点的轨迹是______.11.(2020·上海市澧溪中学八年级阶段练习)以线段AB为底边的等腰三角形ABC的顶点C 的轨迹是:________________.12.(2020·上海市静安区实验中学八年级课时练习)到点A的距离都为3的点的轨迹是:______.13.(2020·上海市静安区实验中学八年级课时练习)到已知角两边距离相等的点的轨迹是______.二、解答题14.(2022·上海·八年级单元测试)根据已知条件作出图形.已知,如图,点A是圆O上一点,在圆O上求作一点P,使得PO=PA.15.(2020·上海市静安区实验中学八年级课时练习)如图,已知∠AOB和边OB上一点E,求作:一点P,使P到∠AOB两边的距离相等,且OP=EP.16.(2022·上海·八年级单元测试)已知:∠O、点A及线段a(如图),求作:点P,使点P 到∠O的两边的距离相等,且PA=a.(要求尺规作图,保留作图痕迹,不写作法).19.6轨迹(第1课时)(解析版)一、填空题1.(2022·上海市南洋模范初级中学八年级期中)底边为已知线段BC的等腰三角形ABC的顶点A的轨迹是_____.【答案】底边BC的垂直平分线(除底边中点外)【分析】由等腰三角形三线合一的性质可以确定答案.【详解】在已知线段BC的等腰三角形ABC中,根据等腰三角形三线合一的性质,顶点A 必在底边BC的垂直平分线上.故答案为:底边BC的垂直平分线(除底边中点外).【点睛】本题考查了等腰三角形三线合一的性质,熟练掌握性质并运用是解题的关键.2.(2020·上海市静安区实验中学八年级课时练习)和线段AB两个端点距离相等的轨迹是__________________.【答案】线段AB的垂直平分线【分析】根据线段垂直平分线的性质解题即可.【详解】到线段AB两个端点的距离相等的点的轨迹是线段AB的垂直平分线,故答案为:线段AB的垂直平分线.【点睛】本题考查线段垂直平分线的性质,是重要考点,难度容易,掌握相关知识是解题关键.3.(2022·上海·八年级专题练习)到点A的距离等于6cm的点的轨迹是________________.【答案】以A为圆心,6cm为半径的圆【分析】到定点的距离等于定长的点的轨迹是圆,据此解题即可.【详解】根据圆的定义,到点A的距离等于定长6cm的点的轨迹是以点A为圆心,6cm为半径的圆,故答案为:以点A为圆心,6cm为半径的圆.【点睛】本题考查点的轨迹、圆的定义,是基础考点,难度容易,掌握相关知识是解题关键.4.(2018·上海浦东新·八年级期末)经过定点A且半径为5cm的圆的圆心的轨迹是_____.【答案】以点A为圆心,5cm为半径的圆.【分析】要求作经过定点A,且半径为5厘米的圆的圆心,则圆心应满足到点A的距离恒等于5cm,根据点和圆的位置关系与数量之间的联系进行分析.【详解】解:所求圆心的轨迹,就是到A点的距离等于5厘米的点的集合,因此应该是一个以点A为圆心,5cm为半径的圆.故答案为以点A为圆心,5cm为半径的圆.【点睛】此题考查了轨迹,就是到定点的距离等于定长的点的集合,因此应该是一个圆.5.(2020·上海市静安区实验中学八年级课时练习)到两个定点P、Q的距离相等的点的轨迹是__________.【答案】线段PQ的垂直平分线【分析】根据线段垂直平分线的判定定理,即可得到答案.【详解】解:到两个定点P、Q的距离相等的点的轨迹是线段PQ的垂直平分线;故答案为:线段PQ的垂直平分线.【点睛】本题考查了线段垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行解题.6.(2020·上海市静安区实验中学八年级课时练习)以线段MN为斜边的直角三角形直角顶点的轨迹是________.【答案】以MN为直径圆(除M、N两点外)【分析】根据直角三角形的性质,斜边即为外接圆的直径,故可确定答案.【详解】根据直角三角形的性质,斜边即为外接圆的直径,故以线段MN为斜边的直角三角形直角顶点的轨迹是以线段MN中点为圆心,MN为直径的圆(不包含M、N两点).故答案为:以MN为直径圆(除M、N两点外).【点睛】本题考查了直角三角形的外接圆,确定直角三角形外接圆的圆心位置是解题的关键.7.(2022·上海·八年级期末)经过已知线段AB的两个端点的圆的圆心的轨迹是_________.【答案】线段AB的垂直平分线【分析】利用圆的性质可以得到圆上的所有点到圆心的距离相等,从而得到所有圆心到A、B两点的距离相等,从而得到结论.【详解】解:∵圆上的所有点到圆心的距离相等,∴无论圆心O在哪里,总有OA=OB,即:所有圆心到A、B两点的距离相等,∵到A、B两点的距离相等的点在线段AB的垂直平分线上,故答案为:线段AB的垂直平分线.【点睛】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.8.(2022·上海市风华初级中学八年级期末)经过定点P,且半径等于2cm的圆的圆心的轨迹__________.【答案】以P点为圆心,2cm为半径的圆【分析】求圆心的轨迹实际上是求距P点2厘米能画一个什么图形.【详解】解:所求圆心的轨迹,就是到P点的距离等于2厘米的点的集合,因此应该是一个以点P为圆心,2cm为半径的圆;故答案为:以点P为圆心,2cm为半径的圆.【点睛】此题所求圆心的轨迹,就是到顶点的距离等于定长的点的集合,因此应该是一个圆.9.(2020·上海市静安区实验中学八年级课时练习)到定点的距离等于定长的点的轨迹是______.【答案】以定点为圆心,定长为半径的圆【分析】根据圆的定义即可得答案.【详解】在平面内,到定点距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆,故答案为以定点为圆心,定长为半径的圆【点睛】本题考查了圆的定义,圆是到定点的距离等于定长的点的轨迹.10.(2020·上海市静安区实验中学八年级课时练习)底边为定长的等腰三角形的顶点的轨迹是______.【答案】底边的垂直平分线(底边的中点除外)【分析】根据等腰三角形的性质,即已知等腰三角形的底边时,则第三个顶点到底边两个端点的距离相等,且不在底边上,结合线段的垂直平分线即可求解.【详解】∵线段垂直平分线上的点和线段两个端点的距离相等,∴底边为定长的等腰三角形的顶点的轨迹是底边的垂直平分线(底边的中点除外).故答案为底边的垂直平分线(底边的中点除外).【点睛】此题考查了点的轨迹问题,熟悉等腰三角形的性质和线段垂直平分线的性质是解题关键.11.(2020·上海市澧溪中学八年级阶段练习)以线段AB为底边的等腰三角形ABC的顶点C 的轨迹是:________________.【答案】线段AB的垂直平分线,不包括AB的中点.【分析】满足△ABC以线段AB为底边且CA=CB,根据线段的垂直平分线判定得到点C在线段AB的垂直平分线上,除去与AB的交点(交点不满足三角形的条件).【详解】解:∵△ABC以线段AB为底边,CA=CB,∴点C在线段AB的垂直平分线上,除去与AB的交点(交点不满足三角形的条件),∴以线段AB为底边的等腰三角形的顶点C的轨迹是线段AB的垂直平分线,不包括AB 的中点.故答案为:线段AB的垂直平分线,不包括AB的中点.【点睛】本题考查了轨迹:轨迹是动点按一定条件运动所经过的痕迹.也考查了线段的垂直平分线判定与性质.12.(2020·上海市静安区实验中学八年级课时练习)到点A的距离都为3的点的轨迹是:______.【答案】以点A为圆心,3为半径的圆.【分析】圆的定义是在同一平面内到定点的距离等于定长的点的集合,所以到定点A的距离等于3的点的集合是圆.【详解】根据圆的定义可知,到点A的距离等于3的点的集合是以点A为圆心,3为半径的圆.故答案为以点A为圆心,3为半径的圆.【点睛】此题考查圆的定义,正确理解定义是解题关键.13.(2020·上海市静安区实验中学八年级课时练习)到已知角两边距离相等的点的轨迹是______.【答案】这个角的平分线所在的直线【分析】根据角平分线的性质即可得答案.【详解】∵角平分线上的点到角两边的距离相等,∴在角的内部,到已知角两边距离相等的点的轨迹是这个角的平分线.故答案为:这个角的平分线所在的直线【点睛】本题考查角平分线的性质,即角平分线上的点到角两边的距离相等;熟练掌握性质是解题关键.二、解答题14.(2022·上海·八年级单元测试)根据已知条件作出图形.已知,如图,点A是圆O上一点,在圆O上求作一点P,使得PO=PA.【答案】答案见解析【分析】由题意,作OA的垂直平分线,与圆相交于两个点,即可得到点P.【详解】解:作线段OA的垂直平分线交圆O于点P,满足条件的点P有两点.如图所示:【点睛】本题考查了垂直平分线的性质,解题的关键是掌握垂直平分线的性质进行解题.15.(2020·上海市静安区实验中学八年级课时练习)如图,已知∠AOB和边OB上一点E,求作:一点P,使P到∠AOB两边的距离相等,且OP=EP.【答案】答案见解析【分析】根据题意,作∠AOB的平分线OC,作线段OE的垂直平分线DF,射线OC与直线DF交于点P.【详解】解:如图:作法:(1)作∠AOB的平分线OC(2)作线段OE的垂直平分线DF(3)射线OC与直线DF交于点P∴P点就是所求的点.【点睛】本题考查了垂直平分线的性质,角平分线的性质,以及作图的方法,解题的关键是熟练掌握所学的知识,正确的进行作图.16.(2022·上海·八年级单元测试)已知:∠O、点A及线段a(如图),求作:点P,使点P 到∠O的两边的距离相等,且PA=a.(要求尺规作图,保留作图痕迹,不写作法).【答案】答案见解析.【分析】先利用尺规作图作出∠O的平分线,再以点A为圆心,线段a的长度为半径画弧,与角平分线的交点即为所求.【详解】解:如图所示,点P1和点P2即为所求.【点睛】考查作图-复杂作图,解题的关键是熟练掌握角平分线的尺规作图和角平分线的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学期中考试试卷(沪教版)
一、选择题(每小题4分,共40分)
1、点(1,2)在下列哪个函数图象上 ( )
A 、y=x-3
B 、y=2x+2
C 、y=x +1
D 、y=x 2
+2
2、下列函数y=πx , y=3-2x , y=x , y=x 2
-2 ,其中一次函数共有 ( ) A.、1个 B 、2个 C 、3个 D 、4个 3、下列图象中,表示直线y=x-1的是( ).
4、在△ABC 中,若∠A=54°,∠B=36°
,则△ABC 是( )
A 、锐角三角形
B 、钝角三角形
C 、直角三角形
D 、等腰三角形 5、“命题都有逆命题,因此定理的逆命题都是正确的。

”这句话( ) A 、正确 B 、不正确 C 、无法判断 D 、以上答案都不对 6、三角形的两边长分别是3和5,第三边a 的取值范围是( )
A 、2≤a <8
B 、2<a ≤8
C 、2<a <8
D 、2≤a ≤84 7、直线y=kx +b 不经过第三象限,则k 、b 应满足 ( )
A 、k>0, b<0
B 、k <0, b>0
C 、k<0 b<0
D 、k<0, b ≥0 8、下图能说明∠1>∠2的是( )
9、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。


修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s(米 关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )
A B C D
A .
B .
C .
D .
10.已知一次函数y= ax+4与y = bx-2的图象在x 轴上相交于同一点,则b
a
的值是 ( ) A 、4 B 、-2 C 、 12 D 、 - 1
2
二、填空(每题5分,共25分)
11、在公式s =50t 中常量是_______,变量是________。

12、把直线y =-4x -6向上平移2个单位后所得直线解析式为 .
13、周长为10 cm 的等腰三角形,腰长y(cm)与底边长x(cm)的函数关系为________________自变量范围为________
14、如图,AB∥CD,∠B=680,∠E=200
,则∠D 的度数为 . 15、如图,延长四边形ABCD 对边AD ,BC 交于F ; DC ,AB 交于E ,如果∠AED ,∠AFB 平分线交于O , ∠A=60°,∠BCD=130°,则∠EOF= 。

三、(本题满分18分,每小题9分)
16、甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程 中路程与时间的函数关系的图象如图. 根据图象解决下列问题: (1) 先出发,先出发 分钟。

先到达终点,先到 分钟。

(2) 在什么时间段内,两人均行驶在途中(不包括起点和终点),在这一时间段内,请你根据下列情形填空:
当 时,甲在乙的前面时; 当 时,甲与乙相遇时; 当 时,甲在乙后面. (3) 分别求出甲、乙两人的行驶速度;
17、在平面直角坐标系中, (1)描出A(-2,-2),B(-5,4)C(2,1)D(0,-3);(6分) (2)求四边形ABCD 的面积。

(3分) 四、(每小题12分,共24分)
18、如图,在三角形ABC 中,∠A:∠C:∠B =1:2:3 (1)求∠C 的度数;(5分)
(2)若BD 是AC 边上的高,求∠DBC 的度数;(5分) (3)若BC=6,AB=8,AC=10,求AC 上的高BD 。

(2分)
F
D C
B
A
19、已知A(8,0)及在第一象限的动点P(x,y)在直线y=-x+10上,设△OPA的面积为S (1)求S关于x的函数表达式;(4分)
(2)求x的取值范围;(3分)
(3)求S=12时P点坐标;(3分)
(4)画出函数S的图像。

(2分)
五、(本大题满分22分,第20题10分,第21题12分)
20、如图,在三角形ABC中,BD平分∠ABC,∠1=∠3求证∶∠ADE=∠C
21、如图是某汽车行驶的路程S(km)与时间t(min)
的函数关系图.观察图中所提供的信息,
解答下列问题:
(1)汽车在前9分钟内的平均速度是多少?(5分)
(2)汽车在中途停了多长时间?(5分)
(3)当16≤t≤30时,求S与t的函数关系式。

(2分) 六、(本大题满分22分,第22题12分,第23题10分 )
22、已知等腰三角形的两边分别为3和6。

(1)求这个三角形的周长;(9分)
(2)若(1)中等腰三角形的顶角的外角平分线所在的直线与底角的外角平分线所在的直线交于P点,探索锐角∠P与原等腰三角形顶角的关系。

(3分)
23、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
(1)该公司对这两种户型住房有哪几种建房方案?(4分)
(2)该公司如何建房获得利润最大?(4分)
(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且
所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(2分)
注:利润=售价-成本
/min。

相关文档
最新文档