SPSS数据的基本统计分析
SPSS统计分析--第3章--基本统计分析
3.2.1 频数统计的主要功能
• “频率”过程可以产生频数分布表,以对数据按组进行归 类整理。还可以生成各种描述性统计指标,以及条形图、 饼图、直方图等常用的统计图。通过选择SPSS中的“分析 ”︱“描述统计”︱“频率”命令,可以对各变量的数据 分布特征有一个概括的整体的认识。
.
3.2.2 频数统计的操作过程
.
3.2.3 实例分析:大学新生的心理健康状况(1)
【例3.1】某大学为了了解学生的心理健康状况,要对初 入学的大一新生进行心理测评,并建立心理档案。现要对 某班学生的生活事件量表进行分析。请用SPSS做出此测试 结果的频数分布情况。
解:本例中,主要通过“频率”过程对本班生活事件量表 的总分进行描述,并得出全班学生此量表总分各分数的频 数情况及其百分比和累积百分比,可以从中了解到学生整 体得分的高低水平,也可以由此注意到需要给予较多关注 的个体或群体。下面将介绍具体的操作过程。
• 均值标准误差:描述样本均值与总体均值之间的平均差异程度 的统计量。
• 全距:也称极差,是数据的最大值与最小值之间的绝对离差。 • 方差:也是表示变量取值离散程度的统计量,是各变量值与算
数平均数离差平方的算术平均数。
.
• 标准差:表示变量取值距离均值的平均离散程度的统计量。标 准差值越大,说明变量值之间的差异越大,距均值这个“中心 值”的离散趋势越大。
• 均值:即算术平均数,是反映某变量所有取值的集中趋势或平 均水平的指标。如某企业职工的平均月收入可用均值。
• 中位数:即一组数据按升序排序后,处于中间位置上的数据值 。如评价社会的老龄化程度时,可用中位数。
• 众数:即一组数据中出现次数最多的数据值。如生产鞋的厂商 在制定各种型号鞋的生产计划时应该运用众数。
spss数据分析及基本统计分析
数据的编辑
• 常用的数学函数 – 取绝对值:abs(数字型表达式) – 求余数函数:mod(数字型表达式,模数),模数不 能为0该函数在需要对某一变量求模数的余数时使用, 如果对一个顺序编号或自然数序列求模数的余数,可 将该序列按模数等距分类,从而实行等距抽样; – 四舍五入函数:rnd(数字型表达式) – 开方函数:sqrt(数字型表达式)
SPSS基础培训
新浪微博:@数据挖掘与数据分析
目录
数据分析的流程
数据编辑 基本统计分析 交叉表
数据的编辑 • 常量 – 数值型常量:除了普通写法外还可以用科学计数法, 如:1.3E18; – 字符型常量:用单引号或双引号括起来如果字符中包 含单引号,则必须使用双引号; – 日期常量:日期个数的数据,一般需要使用日期函数 进行转换; • 变量 – 变量名长度不能超过8; – 三种基本的类型:数值、字符和日期; – 可以在variable view界面设定变量的长度及小数位、 变量的描述、变量值的描述、missing值、显示宽度、 对齐方式和变量的测度方式;
数据的编辑
• 常用的数据操作命令 – Data->Sort Cases – Transform->Rank Cases – Transform->Count – Transform->Recode – Transform->Automatic Recode – Transform->Compute – Data->Transpose – Data->Split Files – Data->Merge Files
表
• Basic Tables过程:对分类/定量资料进行各种复 杂格式的描述; • General Tables过程:在同一张表格内同时对分 类资料、连续资料和多选题数据进行汇总功能非 常强大,但使用上相对复杂; • Custom Tables过程:含有表格预览窗口,并可 在制表过程中控制结果; • Multiple Response Sets/Tables过程:专门为多 选题数据设计的制表过程; • Tables of Frequencies过程:在同一张表格中对 多个分类变量同时输出频数表;
SPSS统计分析数据特征的描述统计分析
SPSS统计分析数据特征的描述统计分析SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,用于对数据进行描述统计分析。
描述统计分析旨在帮助研究人员对数据进行简单的整理、描述和总结,以便更好地理解数据的特征和趋势。
下面将说明几种常用的描述统计分析方法。
1.频数统计频数统计是指对数据中各个变量的不同取值进行计数。
通过统计每个取值出现的次数,可以了解数据的分布情况和变量的特点。
SPSS提供了多种方式来进行频数统计,包括直方图、饼图等。
通过这些图表,可以清晰地看到变量的取值分布。
2.中心趋势测量中心趋势测量是描述数据集合中心位置的统计方法,常用的测量指标包括平均数、中位数和众数。
平均数是所有数据的算术平均值,中位数是将数据按大小排列后处于中间位置的数值,众数是出现次数最多的数值。
SPSS提供了计算这些测量指标的功能,以便更好地了解数据的中心位置。
3.离散程度测量离散程度测量是描述数据变异程度的方法,常用的度量指标包括标准差、方差和极差。
标准差是数据与平均数之间的平均偏差,方差是标准差的平方,表示数据的离散程度,极差是最大值与最小值之间的差异。
通过这些指标,可以判断数据的离散程度,以及是否存在异常值等问题。
4.偏度和峰度测量偏度和峰度是描述数据分布形态的指标。
偏度测量的是数据分布的偏斜程度,正偏斜表示分布右侧的极端值较多,负偏斜表示分布左侧的极端值较多。
峰度测量的是数据分布的尖峰程度,正峰度表示尖峰较高且尾巴较短,负峰度表示尖峰较低且尾巴较长。
通过偏度和峰度的测量,可以判断数据的分布形态是否符合正态分布。
5.相关分析相关分析旨在研究两个或多个变量之间的关系。
相关系数是用来衡量变量之间线性相关程度的指标,取值范围从-1到+1、接近-1的相关系数表示负相关,接近+1的相关系数表示正相关,接近0的相关系数表示无相关。
通过相关分析,可以了解不同变量之间的关系,以及它们对研究问题的影响程度。
spss数据的预处理基本统计分析心得感悟
spss数据的预处理基本统计分析心得感悟
在进行SPSS数据的预处理基本统计分析时,我有以下心得感悟:
1. 对数据进行清洗和筛选
在进行数据分析之前,需要对数据进行清洗和筛选,去除无用的数据和异常值,提高数据的准确性和可靠性。
2. 理解数据的分布情况
在进行基本统计分析时,需要理解数据的分布情况,包括数据的平均值、方差、标准差、偏度和峰度等统计指标。
这有助于了解数据是否符合正态分布,数据的离散程度,以及数据的分布形态。
3. 分析变量之间的关系
分析变量之间的关系可以使用相关分析、回归分析、t检验等方法。
通过分析变量之间的关系,可以了解不同变量之间的相关性,并找出影响变量的因素。
4. 对数据进行可视化处理
可视化处理是一种直观的分析方法,可以使用直方图、散点图等图表来表示数据的分布情况、变量之间的关系和趋势。
通过可视化处理可以更加直观地了解数据的特征和规律。
综上所述,进行SPSS数据的预处理基本统计分析需要仔细分析数据的特征,了解变量之间的关系,并运用统计分析和可视化处理等方法,以提高分析结果的精度和有效性。
《SPSS统计分析》第07章 基本统计分析
结束
返回
频数分布分析
频数分布分析过程
返回
频数分布主对话框
返回
选择输出统计量对话框
返回
图形选择对话框
返回
频数分布表--格式对话框
返回
表样式对话框
返回
自助抽样对话框
返回
频数分布分析实例
返回
例1
表7-1 种族变量的频数分布表
表7-2 幸福感变量的频数分布表
返回
例2 表7.5不同年龄人员和其受教育年限的描述统计
返回
例2 表7.6受教育年限变量的频数分布表
返回
age变量的直方图
返回
educ变量直方图
返回
描述统计
描述统计过程与实例
返回
基本参数
算术平均数、中位数和众数 四分位数和百分位数 全距、方差、标准差和标准误 偏度和峰度 列联表及其独立性检验 比率分析 正态分布的检验
描述统计分析主对话框
返回
P-P图和Q-Q图
返回
P-P概率图主对话框
返回
图7-32(a)为肺癌生存时间的Weibull 分布P-P概率图
返回
图7-32(b)为肺癌生存时间的趋降 Weibull分布P-P概率图
返回
data07-07pb变量转换前后的分布
返回
Q-Q概率图主对话框
返回
图7-35(a)是对某市150名3岁女童身 高数据所做的Q-Q正态概率图
返回
第5题操作步骤
(1) 读取数据文件data07-09,按分析→描述统计→交叉 表的顺序打开交叉分析主对话框。
(2) 将变量“家庭收入”选入行框中,将变量“订阅报 纸”选入列框中,设置行列变量。将变量“性别”选 入层1的1框中,作为控制变量。
spss4-2(基本统计分析)
频数分析表
Central tendency: 用于定义描述 集中趋势的一组指标: 均数(Mean)、中位数(Median)、 众数(Mode)、总和(Sum)。
频数分析表
Dispersion:定义描述 离散趋势的一组指标: Std.deviation:标准差 Variance:方差 Range :全距 Minimum:最小值 Maximum:最大值 S.E.mean:标准误
众数
(不唯一性)
无众数 原始数据: 8 10 5 9 12 6
一个众数 原始数据:
6
5
9
8
5
5
多于一个众数 原始数据: 25 28 28 36 42 42
中位数
(median)
1. 排序后处于中间位置上的值
50%
2. 不受极端值的影响
Me
50%
3. 主要用于顺序数据,也可用数值型数据,但不能 用于分类数据 4. 各变量值与中位数的离差绝对值之和最小,即
8
9
1
2
3
4
5
6
7
n 1 9 1 位置 5 2 2 中位数 1080
数值型数据的中位数
(10个数据的算例)
【例】:10个家庭的人均月收入数据
排 序: 660 750 780 850 1630 2000 位 置: 960 1080 1250 1500
9
10
n 1 10 1 位置 5.5 2 2
2 众数(Mode):出现频率最高的数 3 中位数(Median):将数据排序后位于正中间 的数值。适合于所有分布类型的数据 4 总和(Sum)
众数
(mode) 1. 出现次数最多的变量值
SPSS数据统计分析入门指南
SPSS数据统计分析入门指南第一章:SPSS简介与安装SPSS是一款专业的统计分析软件,它可以帮助研究人员快速、准确地进行数据分析。
首先,我们需要从官方网站下载并安装SPSS软件。
安装完毕后,打开软件,界面分为数据视图和变量视图。
第二章:导入数据与数据整理在SPSS中,我们可以通过 Excel、CSV、以及其他常用的数据格式导入数据。
首先,我们需要在数据视图中创建变量,并按照特定的格式将数据导入到这些变量中。
之后,我们可以对数据进行清理和整理,包括去除重复值、填充缺失值等。
第三章:描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述的方法。
在SPSS中,我们可以使用各种统计指标,如均值、标准差、最大值、最小值等来描述数据的分布特征。
同时,SPSS还可以绘制柱状图、饼图、直方图等图表,更直观地展示数据。
第四章:推断性统计分析推断性统计分析是通过样本数据对总体参数进行推断的方法。
SPSS提供了多种推断性统计分析的方法,如方差分析、回归分析、t检验等。
这些方法可以帮助研究人员进行数据的比较、预测和关联性分析。
第五章:相关性分析相关性分析是用来判断两个或多个变量之间相关程度的方法。
SPSS提供了Pearson相关系数、Spearman相关系数、判定系数等方法来度量变量间的相关性。
通过相关性分析,我们可以了解变量间的相互影响关系,为进一步研究和决策提供依据。
第六章:因子分析因子分析是一种用于降维和变量提取的方法。
SPSS可以对变量进行因子分析,并提取出主要因子来解释变量间的关系。
因子分析可以帮助我们找到变量的潜在结构,进一步简化数据分析,提高模型的可解释性。
第七章:聚类分析聚类分析是将样本按照某种特征进行分类的方法。
SPSS提供了多种聚类算法,如K-means聚类、层次聚类等。
聚类分析可以帮助我们发现数据中的相似性和差异性,从而对样本进行分类和比较。
第八章:时间序列分析时间序列分析是对时间序列数据进行建模和预测的方法。
(可视化整理)spss统计分析-实例分析
众数(Mode)统计学名词,在统计分布上具有 明显集中趋势点的数值,代表数据的一般水平( 众数可以不存在或多于一个)。 修正定义:是 一组数据中出现次数最多的数值,叫众数,有时 众数在一组数中有好几个。用M表示。 理性理解 :简单的说,就是一组数据中占比例最多的那个 数。
全距也称为极差,是数据的最大值与最小 值之间的绝对差。在相同样本容量情况下 的两组数据,全距大的一组数据要比全距 小的一组数据更为分散。 计算公式:最大值-最小值。
1.2 描述分析
计算基本描述统计量的操作
(1)分析—描述统计—描述 (2)将分析变量选择到变量框中 (3)单击选项按钮指定基本统计量
1.2 描述分析
1.2.2 应用例一
案例1-3:计算人均住房面积的基本描述统计量 ,并对本市户口和外地户口家庭的情况进行比较。 操作步骤:
• 调用命令Analyze\Descriptive Statistics \Descriptives
1.1频数分析
1.1频数分析
输出结果
1.1 频数分析_例1
例1-1 分析住房状况调查数据中户主的从业状况 和目前所住房屋的产权情况 思路:利用频数分布表及图形 条件:都是分类变量,直接分析 步骤:
• 调用命令:
• Analyze\Descriptive Statistics\Frequencies
常用统计量:均值、中位数、众数
1.2 描述分析
刻画离散程度的统计量
离散程度是指一组数据远离其“中心值”的程度。
如果数据都紧密地集中在“中心值”的周围,数据的离 散程度较小,说明这个“中心值”对数据的代表性好; 相反,如果数据仅是比较松散地分布在“中心值”的周 围,数据的离散程度较大,则此“中心值”说明数据特 征是不具有代表性的。
第4章 SPSS基本统计分析
练习3
• 完成上例
提纲
1
频数分析
2
计算基本描述统计量
复合分组下的频数分析 多选项分析
3
4
5
比率分析
多选项分析
实现思路 1)按多选项二分法或多选项分类法将多选项问题 分解成若干的问题,并设置若干个SPSS变量 2)采用多选项频数分析或多选项交叉分组下的频
• 选择若干个频数分析的变量
• 选择绘制统计图形
4、频数分析的扩展功能
计算分位数 • 分位数:是变量在不同百分位点上的取值。分位 点在0~100之间。 • 分位数差是一种描述数据离散程度的方式。分位 数差越大,表示数据在相应分位上的离散程度越 大
4、频数分析的扩展功能
频数分布表格式的定义 • 调整频数分布表中数据的输出顺序
– 按变量值的升序或降序输出 – 按频数值的升序或降序输出
• 压缩频数分布表
– SPSS默认如果变量取值的个数或取值区间的个数大于10,则 不输出相应的频数分布表
5、频数分析应用举例
分析月住房开销的分布,并对不同居住类型进行比较 • 1)“月住房开销”为定距型变量→先分组,再编 制频数分布表
• 2)计算月住房开销的四分位数→按照“居住类型” 将数据拆分,并重新计算四分位数→进行比较
• 累计百分比:即各百分比逐级累加起来的结果,
最终取值为100%。
2、频数分析中常用统计图
• 条形图:适用于定序和定类变量的分析。条形图
的纵坐标可以是频数,也可以是百分比。
• 饼图:饼图中圆内的扇形面积可以表示频数,也可
以表示百分比。
• 直方图:适用于定距型变量的分析。
3、频数分析的基本操作
SPSS数据的基本统计分析
SPSS数据的基本统计分析SPSS(统计软件包用于社会科学)是一种广泛使用的统计分析软件,它提供了一系列功能强大的工具,可以对数据进行基本的统计分析。
在本文中,将介绍SPSS数据的基本统计分析方法,包括数据导入、数据描述统计、数据绘图和假设检验。
数据导入SPSS可以导入多种数据格式,如Excel、CSV、TXT等。
在导入数据时,需要设置数据类型和变量属性,并进行数据清洗。
数据清洗包括处理缺失值、异常值和离群值等。
数据描述统计一旦数据导入SPSS,可以使用描述统计方法来了解数据的基本情况,包括数据的中心趋势、离散趋势和分布情况。
中心趋势:中心趋势是指一组数据的集中程度。
常见的中心趋势度量包括均值、中位数和众数。
SPSS可以计算这些统计量,并提供了描述统计分析的结果。
离散趋势:离散趋势是指一组数据的分散程度。
常见的离散趋势度量包括方差、标准差和极差。
SPSS可以计算这些统计量。
分布情况:了解数据的分布情况可以帮助研究人员判断数据是否满足正态分布或其他分布假设。
SPSS可以绘制直方图、箱线图和正态概率图等来展示数据的分布情况。
数据绘图数据绘图是一种可视化数据的方法,可以更直观地了解数据之间的关系和趋势。
SPSS提供了多种数据绘图方法,包括柱状图、折线图、散点图和饼图等。
可以通过简单的菜单选择来创建相应的图表,并设置图表的格式和风格。
假设检验假设检验是统计分析中非常重要的一步,可以帮助研究人员验证研究假设是否成立。
SPSS提供了各种假设检验方法,如t检验、方差分析、卡方检验和相关分析等。
t检验:用于比较两个样本均值是否存在差异。
SPSS可以进行独立样本t检验和配对样本t检验。
方差分析:用于比较多个样本均值是否存在差异。
SPSS可以进行单因素方差分析和多因素方差分析。
卡方检验:用于比较观察频数与期望频数之间是否存在差异。
SPSS 可以进行卡方检验和列联表分析。
相关分析:用于分析两个变量之间的相关性。
SPSS可以计算皮尔逊相关系数和斯皮尔曼等级相关系数。
第 章 SPSS 基本统计量的描述
存 (取 )款 金 额
直方图
二、计算基本描述统计量
目的:精确把握变量的总体分布状况。 基本操作: ✓ 描述统计-频率过程:统计 ✓ 描述统计- 描述过程 ✓ 描述统计- 探索过程 ✓ 均值比较-均值 过程(分组显示) 用途:计算变量的集中趋势、离散趋势、偏度、
峰度等指标,绘制统计图。
几个过程的基本描述统计量比较
农村户口
户口
城镇户口
饼图
Frequency
100
0 0.0
Std. Dev = 10945.57 Mean = 4738.1 10000.0 20000.0 30000.0 40000.0 50000.0 60000.0 70000.0 80000.0 90000.0N10=000208.02.00
McNemar:配对计数资料的卡方检验。零假设
为两变量的阳性率无差别源自2(bc 1)2
bc
Kappa一致性检验:系数取值-1~1。测量同 一观测对象在两变量(两变量服从二项分布) 上取值的一致性程度。其绝对值越接近1,说明 一致性程度越高。一般来说:
✓ 系数>=0.7,一致性程度较高;
✓ 0.4~0.7,一致性程度一般;
卡方检验操作:统计量选项
【单元格】:用于定义列联表单元格中需 要计算的指标:
计数:是否输出实际观察数和理论数;
百分比:是否输出行百分数、列百分数以及合 计百分数;
残差:选择残差的显示方式;
【格式】:用于选择行变量是升序还是降 序排列。
结果:城乡储户的收入水平没有明显差异。
Pearson卡方值的影响因素
C
2 2 n
A11A22A12A21
R1R2C1C2
2
第5章-SPSS基本统计分析
To tal 21
21 .0 10 0.0%
70 .0 % 70 .0 %
9 9.0 10 0.0% 30 .0 % 30 .0 %
30 30 .0 10 0.0% 10 0.0% 10 0.0%
2.描述离散程度的统计量
(1)标准差(standard deviation--Std Dev) (2)方差(variance) (3)极差(range):
最大值(minimum)-最小值(minimum) 极差很小表明所有数据几乎集中在一起 应用于相同样本容量的两组数据离散程度
比较
3.描述分布特征的统计量
2.Option 选项
四、分组计算描述统计量
1.菜单选项:Data->Split File; 2.选择拆分变量到Groups Based on 框中; 3.选择输出方式:Compare groups
/Organize output by groups; 4.点选Sort the file by grouping
文 化 程度
专科
1
高中
1
5
0
1
3
7
4
1
0
0
2
0
3
1
5
初中
0 0 6 6 0 3 0 3
To tal 3 6
12 21
1 5 3 9
一、交叉分组下的频数分析
交叉列联表单元格中的数据项:
(1)观察频数(Observed Counts)
(2)期望频数(Expected Counts)
SPSS基本统计分析(一)
SPSS基本统计分析(⼀)
导读
当我们拿到⼀些数据,⾸先要做的就是对它们进⾏基本的描述统计分析,例如均值、中位数、⽅差等。
SPSS中的基本统计分析包括频数分析、描述性统计分析、探索分析、列联表分析
等。
这节先来介绍前两种的SPSS操作过程。
⼀、频数分析
1⽬的
通过频数分析能够了解变量取值的状况,对把握数据的分布特征是很有帮助的。
2SPSS操作
2.1 操作步骤
对某⾼校40名⼤学⽣⾎清蛋⽩含量(g%)做频数分析。
将⾎清蛋⽩含量选⼊变量框中,勾选显⽰频率表复选框,点击统计会出现右边的对话框,勾选需要的统计量。
点击图表,选择想绘制的图表类型。
2.2 输出结果
需要的统计量都在表格中有所体现,并输出选择的图表类型,可以更清楚地观察数据特征和数据分布。
⼆.描述性统计分析
1主要作⽤:
调⽤此过程对变量进⾏描述性统计分析,计算均值,标准差、全距、标准误差等,并可将原始数据转化成Z分数。
精确把握变量的分布状况,了解数据的集中趋势、离散趋势、对称程度、陡峭程度。
2SPSS操作
2.1操作步骤
对20个新⽣婴⼉的体重(g)进⾏描述统计分析。
将体重选⼊变量框中,勾选将标准化值另存为变量复选框;点击选项,出现右侧对话框,选择所需统计量,这⾥为了便于展⽰,将所有统计量都选中。
2.2输出结果
在输出的描述统计表中,可以⼀⽬了然地看出变量的各统计量的值。
这时打开原数据集,会发现多了⼀列Z体重,这是由原数据转换成的Z分数(由普通正态分布转换成标准正态分布)。
SPSS基本统计分析
SPSS基本统计分析SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,广泛应用于社会科学研究、市场调研、医学研究等领域。
SPSS提供了各种统计分析方法和工具,既可以进行描述性统计分析,也可以进行推断性统计分析。
在SPSS中进行基本统计分析需要以下步骤:1. 导入数据:首先需要将数据导入SPSS软件中,可以选择从Excel等格式导入数据,也可以直接在SPSS中输入数据。
2.描述性统计:描述性统计是对数据的基本特征进行总结和分析,包括均值、中位数、最大值、最小值等。
可以使用频数统计、描述性统计和十分位数查看数据的分布情况。
3.数据清理:对数据进行清洗,去除异常值、缺失值等。
可以使用“变量查看”功能查看数据是否有问题。
4. 正态性检验:正态性检验用于检验数据是否服从正态分布。
可以使用直方图、正态Q-Q图、Kolmogorov-Smirnov检验等方法进行判断。
5.相关性分析:相关性分析用于评估两个或多个变量之间的关系强度和方向。
可以使用皮尔逊相关系数、斯皮尔曼相关系数等进行分析。
6.单样本t检验:单样本t检验用于比较样本的均值和理论上预期的均值是否有显著差异。
可以使用单样本t检验来评估样本均值与已知值之间的差异。
7.独立样本t检验:独立样本t检验用于比较两组独立样本均值是否有显著差异。
可以根据比较对象的特征选择相应的统计方法。
8.配对样本t检验:配对样本t检验用于比较两个相关样本的均值是否有显著差异。
可以根据样本之间的关系选择相应的统计方法。
9.卡方检验:卡方检验是一种非参数检验方法,用于检验两个或多个变量之间的关联性。
可以通过逐步构建模型来检验多个变量之间的关联性。
10.方差分析:方差分析用于比较多个样本均值是否存在差异。
可以通过比较组间方差和组内方差来评估样本均值是否有显著差异。
在进行统计分析之前,需要了解数据的类型和分析目标,选择合适的统计方法。
SPSS统计分析简明教程
SPSS统计分析简明教程SPSS(统计分析软件)是一种专业的统计分析工具,广泛应用于社会科学、市场调研、医学研究和商业分析等领域。
下面是一个简明教程,介绍SPSS的基本功能和常用统计分析方法。
一、数据导入与处理1. 数据导入:打开SPSS软件,选择“文件”-“打开”-“数据”,导入数据文件,可以是Excel表格、文本文件或其他格式的数据文件。
2.数据查看与修改:选择“数据查看器”可以查看导入的数据。
可以对数据进行修改、添加新变量或删除不需要的变量。
二、描述统计分析描述统计是指对数据集进行总体特征的概括和汇总。
常用的描述统计方法包括频数分析、描述性统计和交叉表分析。
以下是常用方法的简要介绍:1.频数分析:选择“分析”-“描述性统计”-“频数”,选择需要统计的变量,即可生成变量的频数、百分比、累计频数等统计结果。
2.描述性统计:选择“分析”-“描述性统计”-“描述性统计”,选择需要统计的变量,即可生成均值、标准差、最大最小值等统计结果。
3.交叉表分析:选择“分析”-“交叉表”-“交叉表”,选择需要交叉分析的变量,即可生成不同变量之间的交叉分析结果。
三、推论统计分析推论统计是指通过样本数据进行参数估计和假设检验,以推断总体的统计特征。
常用的推论统计方法包括t检验、方差分析、相关分析和回归分析等。
以下是常用方法的简要介绍:1.t检验:选择“分析”-“比较手段”-“独立样本t检验”或“相关样本t检验”,选择需要比较的变量和相关变量,即可进行t检验并生成结果。
2.方差分析:选择“分析”-“方差分析”-“单因素方差分析”或“多因素方差分析”,选择需要分析的变量和因素,即可进行方差分析并生成结果。
3.相关分析:选择“分析”-“相关”-“双变量”,选择需要进行相关分析的变量,即可生成变量之间的相关系数及相关显著性检验结果。
4.回归分析:选择“分析”-“回归”-“线性”,选择需要进行回归分析的自变量和因变量,即可生成回归方程、回归系数、显著性检验结果等。
数金实验报告 SPSS 基本统计分析
数学与金融学院实验报告
附录:实验报告填写说明
1、实验成绩:按五级制(优秀、良好、中等、及格、不及格)给等级。
2、实验项目:要求与实验教学大纲一致。
3、实验类型:验证性、综合性、设计性
4、实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。
5、实验环境:实验用的软、硬件环境。
6、实验内容与过程(实验中涉及的记录、数据、分析):根据实验内容写明具体实验方案的
具体实施步骤,包括实验过程中的记录、数据和相应的分析。
7、实验结论(结果):根据实验过程中得到的结果,做出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称性相比较而得到的。如果分布的偏度等于0 ,则其数据分布的对称性与
正态分布相同;如果偏度大于0,则其分布为正偏或右偏;如果偏度小于0,
则为负偏或左偏。
不同等级的变量描述性指标
集中趋势
Central tendency (一组数据向某一 中心靠拢的倾向)
离散趋势
Dispersion(一组数据远 离其‘中心值’的程度)
城镇和农村居民储户一次存(取)款金额的比较:
从均值以 及四分位 数差可以 看出城镇 储户存取 款金额的 离散度大 于农村储 户(尤其 在高金额 区),且 城镇储户 的存取款 金额高于 农村储户。
2.基本描述性统计分析
基本的描述性统计量大致有三类:一是刻画集中趋势的描述统计量; 二是刻画离散程度的描述统计量;三是刻画分布形态的描述统计量。 通过以上三类统计量能较为准确地把握数据的分布特点。
基本的描述统计分析过程: (1)程序:分析(analyze)-描述统计(descriptive statistics) -描述(descriptive) (2)选择要描述的一个或多个数值型变量 (3)点击‘选项’按钮,做二级对话框设置 (4)选中右下角‘标准化得分保存为变量’可将数据标准化后的取 值保存到数据文档中。
SPSS基本统计分析
单变量的频数分析 单变量的基本描述统计量的计算 多变量的交叉频数表的编制和分析 探索性分析 数据的多选项分析
1.频数分析
通过频数分析能够了解变量取值的状况,把握数据的分布特征,能反映 样本是否具有总体代表性,抽样是否存在系统偏差等。
频数分布分析过程 (1)程序:分析(analyze)-描述统计(descriptive)-频数 (frequency) (2)选择一个或多个频数分析变量放进‘变量’框中 (3)选中右下角‘显示频数表格’ (4)点击‘统计量’、‘图表’、‘格式’均值
中位数
对称分布
众数
中位数
均值
众数
左偏
右偏
不输出任何图形
输出条形图 输出饼图 直方图
输出正态分布曲线
直方图:是用矩形的面积来表示频数分布变化的图形。适用于连续性数据,即:定距数据 条形图、饼图:适用于离散型数据,即定序、定类和分组后的定距数据。其中,条形图(bar chart)
目标二:分析储户一次存(取)款金额的分布,并对城镇 储户和农村储户进行分析比较。
分析思路: 由于存(取)款金额属于定距型变量,直接采用频数分析不利于
对分布形态的把握。 运用数据预处理中的‘数据分组’功能 对数据分组后再编制频数分布表。如:将(取)款金额重新分成5 组:少于500元、500-2000、2000-3500、3500-5000、5000以上。
是用宽度相同的条形的高度或长短来表示频数分布变化的图形;饼图(pie chart)是用圆形或圆内 扇形的面积来表示频数分布变化的图形。
案例分析:居民储蓄调查数据
目标一:分析储户的户口和职业的基本情况; 目标二:分析储户一次存(取)款金额的分布,并对城
镇储户和农村储户进行分析比较。
目标一:被调查者的户口和职业情况的频数分布表和统计图
均值标准误差:是描述样本均值与总体均值之间差 异程度的统计量。
标准差:反映变量取值距离均值的平均离散程度。 其值越大,变量间的差异越大。
方差:是标准差的平方,反映变量取值离散程度。 其值越大,变量间的差异越大。
全距range:也称为极差,是数据最大值与最小值之 间的绝对差,也是反映变量取值的离散程度。
峰度(Kurtosis) : 是描述某变量所有取值的分布形态陡缓程度的统计量, 而峰度对陡缓程度的度量是与正态分布进行比较的结果。如果峰度等于0 , 其数据分布的陡缓程度与正态分布相同;峰度大于0,其数据分布比正态分布 更陡峭;峰度小于0,其数据分布比正态分布更平坦。
偏度(Skewness):是描述数据分布对称性的统计量,而且也是与正态分布的
对数据标准化 Zi xi,u 并作 为新变量保存在文件中。
案例分析:居民储蓄调查数据
目标一:计算存(取)款金额的基本描述统计量,并分 别对城镇储户和农村储户进行比较;
目标二:分析储户一次存(取)款金额的数量是否存在 不均衡现象。
目标一的分析结果:
城镇储户的平均存取款金额(2687.2)高于农村储户(1944.97);从标准差 及全距可看出,城镇储户存取款金额的离散程度低于农村储户。从峰度和偏度 看来,城镇和农村储户存取款金额的分布均呈现右偏和尖峰分布,只是农村储 户右偏斜程度及尖峰程度更大;总体而言,城镇储户和农村储户中的大部分人 一次存取款金额都低于平均水平,且农村储户表现得更为明显。
定类 定序
定距 定比
众数Mode 中位数Median
均值Mean
异众比率V 四分位差Quartiles
全距 Range 方差 Variance 标准差Std.deviant
均值:某变量所有取值的平均水平,其大小易受到 数据中极端值的影响。
众数Mode:是一组数据中出现次数最多的数据。
中位数Median:一组数据按升序排序后处于中间位 置的数据。
对比城镇储户和农村储户情况,可采用数据预处理中的‘数据拆 分’并计算样本存(取)款金额的四分位数、峰度、偏度等。
储户一次存(取)款金额的分布情况:
被调查者有近一半的储户一次存取款金额在500元以下,2000-3500元的最少。从 图形看来,储户的存(取)款金额呈明显的右偏分布,即一次存取款金额偏低的 占较大比例,也有少数金额偏高的储户。
源变量框
待分析变量
选择统计量 选择图表 选择输出格式
要求输出频数分析表格
• 制作频数分布表(频数、百分比):以表格形式呈现各 个数据的次数分布情况,包括频数、百分比,有效百分比、 累计百分比。
百分位 数选项
第25、50、 75个百分 位数点对 应的变量 值
离散 趋势 测量
把数值平均 分为n份,每 个等分位点 对应的变量 值 (2≤n≤100)
指定输出 多个百分 位数
集中趋势测量
对于分组数据,计算百分位数值 和中位数时,用各组的组中值代 表各组数据。
数据分布形态的偏 斜度和方向 数据分布形态的陡 缓程度
分位数是变量在不同分位点上的取值,从一个侧面清楚地刻画了变量的取值分布状态。分位 数差是一种描述数据离散程度的方式。分位数差越大,表示数据在相应分位段上的离散程度 越大。