无线传感器网络原理及应用 第4章
无线传感器网络的原理与应用
无线传感器网络的原理与应用无线传感器网络(Wireless Sensor Network,WSN)是由大量的节点组成的,这些节点能够在没有预先布置的情况下自组织连接并进行数据交换。
WSN广泛应用于环境监测、智能交通、农业、医疗等领域。
本文将详细介绍WSN的原理和应用,并列出相应步骤。
一、无线传感器网络的原理1.1 传感器节点:传感器节点是WSN的核心组成部分,每个节点都配备有传感器和通信设备,能够感知并采集环境中的信息。
1.2 通信方式:传感器节点之间通过无线通信方式进行数据传输,可以是无线电、红外线、蓝牙等。
1.3 自组织连接:传感器节点可以自动组成网络,建立连接并进行协调。
1.4 节能机制:由于传感器节点通常使用电池供电,为了延长其寿命,需要采取一系列节能措施。
二、无线传感器网络的应用2.1 环境监测:WSN可以用于监测大气污染物、水质、噪音等,将监测结果传送给监测中心进行分析和处理。
2.2 智能交通:将传感器节点安装在道路、交通信号灯等位置,实时监测交通情况,从而提供实时交通状况和拥堵预警等信息。
2.3 农业:WSN可以监测土壤湿度、温度、光照强度等农田信息,帮助农民进行精细化管理,提高农作物产量和质量。
2.4 医疗:传感器节点可以被植入患者体内,监测体温、心率、血压等生理参数,实时传输给医生进行远程监护。
三、无线传感器网络的应用步骤3.1 感知环境:根据应用需求,选择适当的传感器节点,布置在需要监测的区域内,感知环境中的信息。
3.2 数据传输:传感器节点将采集到的数据通过无线通信传输给数据中心或者其他节点进行处理。
3.3 数据处理:数据中心对传感器节点传输过来的数据进行处理,提取有用信息,并进行分析和应用。
3.4 决策和控制:根据数据分析的结果,采取相应的决策和控制措施,如减少污染物排放、调整交通信号灯等。
3.5 远程监控:通过互联网等手段,可以远程监控传感器节点的工作状态、数据采集情况等。
第4章无线传感器网络技术-习题解答
第4章 无线传感器网络技术-习题解答4-1传感器节点在实现各种网络协议和应用系统时,存在哪些现实约束?答:传感器节点在实现各种网络协议和应用系统时,存在以下一些现实约束。
1.电源能量有限传感器节点体积微小,通常携带能量十分有限的电池。
由于传感器节点个数多、成本要求低廉、分布区域广,而且部署区域环境复杂,有些区域甚至人员不能到达,所以传感器节点通过更换电池的方式来补充能源是不现实的。
如何高效使用能量来最大化网络生命周期是传感器网络面临的首要挑战。
如何让网络通信更有效率,减少不必要的转发和接收,不需要通信时尽快进入睡眠状态,是传感器网络协议设计需要重点考虑的问题。
2.通信能力有限无线通信的能量消耗与通信距离的关系为:其中,参数n 满足关系2<n <4。
n 的取值与很多因素有关,例如传感器节点部署贴近地面时,障碍物多干扰大,n 的取值就大;天线质量对信号发射质量的影响也很大。
考虑诸多因素,通常取n 为3,即通信能耗与距离的三次方成正比。
随着通信距离的增加,能耗将急剧增加。
因此,在满足通信连通度的前提下应尽量减少单跳通信距离。
由于节点能量的变化,受高山、建筑物、障碍物等地势地貌以及风雨雷电等自然环境的影响,无线通信性能可能经常变化,频繁出现通信中断。
在这样的通信环境和节点有限通信能力的情况下,如何设计网络通信机制以满足传感器网络的通信需求是传感器网络面临的挑战之一。
3.计算和存储能力有限传感器节点是一种微型嵌入式设备,要求它价格低功耗小,这些限制必然导致其携带的处理器能力比较弱,存储器容量比较小。
为了完成各种任务,传感器节点需要完成监测数据的采集和转换、数据的管理和处理、应答汇聚节点的任务请求和节点控制等多种工作。
如何利用有限的计算和存储资源完成诸多协同任务成为传感器网络设计的挑战。
4-2举例说明无线传感器网络的应用领域。
答:传感器网络的应用前景非常广阔,能够广泛应用于军事、环境监测和预报、健康护理、智能家居、建筑物状态监控、复杂机械监控、城市交通、空间探索、大型车间和仓库管n E kd理,以及机场、大型工业园区的安全监测等领域。
第四章 传感器网络的支撑技术
邻居节点收到分组后,将自己的级别设置为分组中的级别加1,然后 广播新的级别发现分组
节点收到第i级节点的广播分组后,记录发送这个广播分组的节点ID ,设置自己的级别为(i+1),广播级别为(i+1)的分组,这个过程 持续到网络内每个节点都被赋予一个级别
层次结构建立以后,根节点通过广播时间同步分组启动同步阶段
第1级节点收到分组后,各自分别等待一段随机时间,再通过与根节 点交换消息同步到根节点
第2级节点侦听到第1级节点的交换消息后,等待一段随机时间,再与 它记录的上一级别的节点交换消息进行同步,网络中的节点依次与上 一级节点同步,最终都同步到根节点
... ...
时钟模型
硬件时钟模型 软件时钟模型
硬件时钟模型
硬件时钟由电池+硬件电路来实现 硬件时钟是独立运行的,通常比较精确 不适应环境变化剧烈的场合
温度漂移
软件时钟模型
它是由PC硬件产生的周期性的定时器中断来工作的
如果系统运行了太多的进程,它就需要较长的时间来执 行定时器中断程序,并且软件时钟就会漏掉一些中断。
节点一旦建立自己的级别,就忽略任何其他级别发现分组,防止网络 产生洪泛拥塞
TPSN协议过程
第二阶段 同步阶段(Synchronization Phase)
目的:实现所有树节点的时间同步,第1级节点同步到根节点,第i级 的节点同步到第(i-1)级的一个节点,最终所有节点同步到根节点 ,实现整个网络的时间同步
FTSP (Flooding Time Synchronization Protocol)
GCS (Global Clock Synchronization)
无线传感器网络原理及应用
无线传感器网络原理及应用
无线传感器网络(Wireless Sensor Networks,简称WSN)是由大量分布在空间中的无线传感器节点组成的一种自组织、自适应的网络系统。
每个节点都具备感知环境、处理数据和通信的能力。
无线传感器网络凭借其低成本、低功耗、灵活部署等优势,被广泛应用于各个领域。
无线传感器网络的工作原理如下:首先,各个节点通过无线通信互相连接,形成一个多层次的网络结构。
每个节点负责采集周围环境的信息,如温度、湿度、压力等,借助内置的处理器对数据进行处理和分析。
然后,节点将处理后的数据通过无线传输协议发送给周围的节点,通过多跳路由的方式最终传输到目标节点中。
目标节点接收到数据后,可以进行进一步的处理或者发送给其他外部系统进行分析和应用。
无线传感器网络有着广泛的应用。
在环境监测方面,可以用于气象预报、水质检测、大气污染监测等。
在农业领域,可以用于土壤监测、作物生长状况监测、灌溉控制等。
在智能交通领域,可以用于交通流量监测、智能交通信号控制等。
此外,无线传感器网络还应用于工业自动化、健康监测、安全监控等多个领域,为各个行业提供了大量的实时数据,帮助我们更好地了解和管理环境。
总之,无线传感器网络通过节点互相通信、数据采集和处理,构建了一个分布式的网络系统,具备广泛的应用前景。
通过无线传感器网络,我们可以实时获取环境信息,提高生产效率,
改善资源利用效率,为各个行业的发展和可持续发展贡献一份力量。
无线传感器网络技术与应用
无线传感器网络技术与应用无线传感器网络(Wireless Sensor Network,简称WSN)是一种由成百上千个分布在广阔空间中的传感器节点构成的网络系统。
每个传感器节点都能够感知环境中的物理信息,并将其通过网络传输到中心节点进行处理和分析。
随着物联网的快速发展,无线传感器网络技术也得到了广泛应用。
本文将探讨无线传感器网络技术的原理、应用领域以及未来发展趋势。
一、无线传感器网络技术的原理无线传感器网络由若干个传感器节点、中心节点和通信网络组成。
每个传感器节点包含感知单元、处理单元、存储单元和通信单元等关键组成部分。
感知单元负责采集环境信息,处理单元对采集到的数据进行处理和分析,存储单元用于存储数据,通信单元负责与其他节点进行通信。
传感器节点通过无线通信技术将感知到的数据传输到中心节点。
无线传感器网络采用自组织、分散式的工作方式,节点之间通过多跳通信建立起网络连接,中心节点负责整合和管理传感器节点上传的数据。
二、无线传感器网络的应用领域无线传感器网络技术在众多领域中都有广泛的应用。
以下介绍几个典型的应用领域:1. 环境监测无线传感器网络可以实时监测环境中的温度、湿度、空气质量等参数。
在环境保护和生态研究中,可以通过部署大量的传感器节点来监测自然环境的变化,并为科研人员提供准确的数据支持。
2. 智能交通无线传感器网络可以应用于智能交通系统中,实时收集道路交通信息,如车流量、车速等,并通过智能算法做出交通调度和路况预测,提高交通效率和安全性。
3. 农业领域无线传感器网络可以帮助农业生产实现智能化管理。
通过监测土壤湿度、光照强度等关键参数,可以精确地调整灌溉和施肥措施,提高农作物产量和质量。
4. 工业自动化无线传感器网络在工业自动化中起到关键作用。
通过在工厂内部部署大量传感器节点,可以实时监测设备运行状态、温度、压力等参数,及时预警并防止潜在故障,提高生产效率和安全性。
五、无线传感器网络技术的未来发展趋势无线传感器网络技术在未来将继续迎来新的发展机遇和挑战。
无线传感器网络技术与应用
无线传感器网络技术与应用无线传感器网络(Wireless Sensor Network, WSN)是一种由大量分布式、自组织的无线传感器节点组成的网络。
每个节点都装备有感知、处理和通信能力,能够收集和传输环境中的各种信息。
WSN技术的快速发展和广泛应用,在许多领域都发挥了重要的作用。
本文将介绍无线传感器网络技术的基本原理和应用领域。
一、无线传感器网络技术原理1. 节点通信原理无线传感器网络中的节点之间通过无线通信进行数据传输。
节点之间可以通过直接通信方式(如单跳通信)或间接通信方式(如多跳通信)进行信息交换。
无线传感器节点通常采用射频通信技术实现数据的传输和接收。
2. 能耗管理原理由于节点工作时通常使用电池供电,能耗管理对于无线传感器网络的稳定运行至关重要。
节点通过优化自身的通信协议、传输功率、工作周期等方式来降低能耗,延长节点的寿命。
3. 网络拓扑结构网络拓扑结构是指各个节点之间的连接关系。
常见的网络拓扑结构有星型、网状、环型等形式。
不同的拓扑结构适用于不同的应用场景,可以根据具体需求选择合适的拓扑结构。
二、无线传感器网络应用领域1. 环境监测无线传感器网络可以用于环境监测,如大气环境监测、水质监测、土壤湿度监测等。
通过部署大量的传感器节点,可以实时监测环境参数的变化,并及时采取相应的措施进行调整。
2. 物联网无线传感器网络是物联网的重要组成部分。
物联网通过将各种智能设备连接起来,实现设备之间的信息交互和智能控制。
无线传感器网络可以用于物联网中的感知环节,收集各种环境数据并传输到云平台,为后续的数据分析和决策提供支持。
3. 工业自动化在工业领域,无线传感器网络可以用于实时监测和控制。
通过部署传感器节点,可以对生产线上的各种参数进行实时监测,提高自动化程度和生产效率。
同时,无线传感器网络还可以用于设备状态监控,及时发现故障并进行维修。
4. 农业智能化无线传感器网络在农业领域中也有广泛应用。
通过在农田中部署传感器节点,可以实时监测土壤湿度、温度等参数,为农民提供精确的灌溉和施肥方案。
无线传感器网络的工作原理与应用
无线传感器网络的工作原理与应用无线传感器网络(Wireless Sensor Network,简称WSN)是指由大量分布在被监测区域内的微型传感器节点组成的一种网络。
这些传感器节点能够自组织地进行通信和数据传输,完成对环境的感知和信息采集。
然后再将采集到的数据通过通信网络传送至数据处理中心进行分析和应用。
无线传感器网络可以广泛应用于环境监测、智能交通、农业、医疗等领域。
一、无线传感器网络的工作原理1. 传感器节点:每个传感器节点由传感器、处理器、无线通信模块和能量供应组成。
2. 网络组织:传感器节点根据一定的规则自组织成无线传感器网络,通过无线通信模块进行数据传输。
3. 数据传输:传感器节点通过多跳方式将数据传输至汇聚节点,然后通过传输链路将数据发送至数据处理中心。
4. 数据处理:数据处理中心对接收到的数据进行分析、存储和应用。
二、无线传感器网络的应用1. 环境监测:通过分布在被监测区域内的传感器节点,监测环境中的温度、湿度、光照等参数,实现对环境的实时监测和预警。
2. 智能交通:利用传感器节点监测路况、交通信号等信息,实现交通的智能调度和管理,提升交通效率和安全性。
3. 农业应用:使用传感器节点实时监测土壤温度、湿度,气象参数等信息,辅助农民进行科学农业生产管理。
4. 医疗领域:通过植入或佩戴传感器节点,对患者的生理参数等进行监测,实现对患者的远程监护和健康管理。
三、无线传感器网络的应用步骤1. 网络规划:根据应用需求和环境特点,确定传感器节点的布局和数量。
2. 传感器节点的部署:按照规划,将传感器节点部署在被监测区域内,保证节点之间的覆盖且能够互相通信。
3. 数据采集和处理:传感器节点负责采集环境信息,并通过无线通信模块将数据传输至汇聚节点。
4. 数据传输和存储:汇聚节点将接收到的数据通过传输链路传送至数据处理中心,并进行存储和备份。
5. 数据分析和应用:数据处理中心对接收到的数据进行分析,并做出相应的决策或提供相关的服务。
无线传感器网络技术原理及应用ppt课件第4章
11
在无线传感器网络中,传感器节点没有必要将数据以端到 端的形式传送给中心节点处理节点,只要有效数据最终汇 集到汇聚节点就达到了目的。因此,为了减少流量和能耗, 传输过程中的转发节点经常将不同的入口报文融合成数目 更少的出口报文转发给下一跳,这就是数据融合的基本含 义。
流量分布。传感器网络是一个数据采集网络,绝大部 分流量由各个传感器节点流向汇聚节点,因此流量分布极 不均匀,以汇聚节点为目的的数据远远超过以它为源的控 制流。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
19
ቤተ መጻሕፍቲ ባይዱ
4. 可靠的路由协议 无线传感器网络的某些应用对通信的服务质量有较高 要求,如可靠性和实时性等。而在无线传感器网络中,链 路的稳定性难以保证,通信信道质量比较低,拓扑变化比 较频繁,要实现服务质量保证,需要设计相应可靠的路由 协议。
数据融合技术。在传感器网络运行过程中,从传感器 节点探测到的数据往往在逐次转发过程中不断被加工处理, 以达到降低网络开销、节省能量等目的。也就是说,数据 在传输过程中已经被修改,并不是原封不动地从源端传送 到目的端,这与传统网络以实现端到端无失真的信息传输 的目标是不同的。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
学习导航
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
无线传感器网络技术的原理与应用资料
无线传感器网络技术的原理与应用资料无线传感器网络(Wireless Sensor Network, WSN)是一种由大量分散的、具有自主感知、通信和计算能力的传感器节点组成的网络。
这些传感器节点通常通过无线通信方式相互连接,协同工作来获取、处理和传输感知信息。
WSN 自问世以来,得到了广泛的应用和研究。
本文将介绍无线传感器网络技术的原理和应用,并提供相关资料。
一、无线传感器网络技术的原理无线传感器网络技术的原理主要包括传感器节点的工作原理、通信协议和网络拓扑结构。
1. 传感器节点的工作原理传感器节点是无线传感器网络的基本组成单元,它通常由感知模块、处理模块、通信模块和能量模块组成。
感知模块用于感知环境中的物理量或事件,如温度、湿度、光照等;处理模块负责对感知数据进行处理和分析;通信模块用于传输感知数据和接收网络中其他节点的数据;能量模块提供供电功能,常见的供电方式包括电池、太阳能等。
传感器节点通过感知和处理模块的协同工作,将感知数据进行采集和分析,并通过通信模块将数据传输给其他节点或基站。
2. 通信协议无线传感器网络的通信协议是保证节点之间进行有效通信的基础。
常见的通信协议包括路由协议、传输协议和网络协议等。
路由协议用于确定数据在网络中的传输路径,常见的路由协议有LEACH、AODV等;传输协议负责传输数据包,常见的传输协议有TCP、UDP等;网络协议定义了节点之间通信的规则和标准,常见的网络协议有IPv6、6LoWPAN等。
这些协议的设计旨在提高网络的可靠性、稳定性和能耗效率。
3. 网络拓扑结构无线传感器网络的网络拓扑结构决定了节点之间通信的方式和效率。
常见的网络拓扑结构包括星型、树形、网状等。
星型拓扑结构中,所有的传感器节点都直接连接到一个中心节点,中心节点负责接收和处理来自其他节点的数据;树形拓扑结构中,节点之间形成父子关系,数据从根节点通过树状结构向下传输;网状拓扑结构中,节点之间可以直接相互通信,数据传输路径更加灵活。
无线传感器网络
4.3无线传感器网络4.3.1无线传感器网络简介及意义4.3.1.1无线传感器网络简介1.名称:无线传感器网络,英文全称是Wireless Sensor Networks, 日常使用多缩写为WSN,是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。
2.WSN中传感器的通信方式是通过无线通信。
3.功能:是一种新型的信息获取系统。
4.组成和构成:是由部署在监测区域内大量的微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统。
无线传感器网络是一种低功耗、自组织网络,一般由一个或多个基站(Sink节点)和大量部署于监测区域、配有各类传感器的无线网络节点构成。
每个节点成本低,功耗小,具有一定计算处理能力、通信能力。
虽然单个节点采集数据并不精确,也不可靠,但是大量节点相互协作形成高度统一的网络结构,提高了数据采集的准确度和运行的可靠性。
5.应用环境和方向:可部署于在敌占区、灾害区、核反应堆等人力不可达的特殊区域进行数据采集、传输等,具有其他网络无法比拟的特性,可广泛用于国防、环境监测、智能家居等领域。
6.目的:是协作监测、感知和采集网络覆盖区域内各种感知对象的信息,并对这些信息进行处理,最终发送给观察者。
4.3.1.2 无线传感器网络的意义1.无线传感器网络引起了全世界的关注,被认为是继互联网之后的第二大网络。
2.无线传感器网络被称为21世纪最具影响的技术之一;是改变世界的十大新兴技术之首;是全球未来的四大高新技术产业之一。
3.在无线传感器网络研究及其应用方面,我国与发达国家几乎同步启动,它已经成为我国信息领域,位居世界前列的少数项目之一。
4.3.2无线传感器网络的发展1.传感器网络和无线传感器网络的发展历程:传感器网络的发展历程分为以下三个阶段:传感器→无线传感器→无线传感器网络。
第一阶段:最早可以追溯至越战时期使用的传统的传感器系统。
当年美越双方在密林覆盖的“胡志明小道”进行了一场血腥较量,“胡志明小道”是胡志明部队向南方游击队输送物资的秘密通道,美军对其进行了狂轰滥炸,但效果不大。
无线传感器网络的基本原理与应用
无线传感器网络的基本原理与应用无线传感器网络(Wireless Sensor Network,WSN)是一种由大量分布式无线传感器节点组成的网络系统,用于采集、处理和传输环境中的物理或化学信息。
它具有自组织、自适应和自修复等特点,被广泛应用于环境监测、智能交通、农业、医疗等领域。
一、无线传感器网络的基本原理无线传感器网络的基本原理是通过无线传感器节点实现信息的采集、处理和传输。
每个传感器节点由传感器、处理器、通信模块和能量供应组成。
传感器负责采集环境中的信息,如温度、湿度、光照等;处理器对采集到的信息进行处理和分析;通信模块实现节点之间的通信;能量供应保证节点的正常运行。
无线传感器网络中的节点通常采用分布式部署方式,节点之间通过无线通信进行数据传输。
节点可以自主选择合适的传输路径,并通过多跳传输实现数据的传输。
由于传感器节点数量众多,节点之间的通信距离有限,因此需要利用多跳传输来实现全局通信。
二、无线传感器网络的应用1. 环境监测无线传感器网络在环境监测领域具有广泛应用。
通过在大面积范围内部署传感器节点,可以实时监测环境中的温度、湿度、空气质量等参数。
这些数据可以帮助环境保护部门进行环境评估和污染控制,提高环境监测的效率和准确性。
2. 智能交通无线传感器网络在智能交通系统中起到重要作用。
通过在道路上部署传感器节点,可以实时监测交通流量、车辆速度等信息,并将这些信息传输到交通管理中心。
交通管理中心可以根据这些数据进行交通信号控制和路况预测,提高交通系统的效率和安全性。
3. 农业无线传感器网络在农业领域的应用越来越广泛。
通过在农田中部署传感器节点,可以实时监测土壤湿度、温度等参数,帮助农民合理管理灌溉和施肥。
此外,还可以监测农作物的生长情况,提供农民决策支持,提高农业生产的效益和可持续性。
4. 医疗无线传感器网络在医疗领域的应用也非常广泛。
通过在医院或患者身上部署传感器节点,可以实时监测患者的生命体征,如心率、血压等。
无线传感器网络技术的原理与应用场景
无线传感器网络技术的原理与应用场景无线传感器网络(Wireless Sensor Network,WSN)是一种由大量分布式、自组织的无线传感器节点组成的网络系统,具备自主收集、处理和传输环境信息的能力。
它被广泛应用于环境监测、智能农业、智能交通、医疗健康等领域。
本文将围绕无线传感器网络技术的原理和应用场景展开阐述。
一、无线传感器网络的原理1. 无线传感器节点无线传感器节点是无线传感器网络的基本组成单元。
每个节点都包含传感器、处理器、无线通信模块和能源单元。
传感器负责感知环境信息,处理器负责对采集的数据进行处理和分析,无线通信模块负责与其他节点进行数据交换,而能源单元则提供节点运行所需的电力。
2. 自组织和自适应无线传感器网络具备自组织和自适应的特性。
节点之间可以根据网络拓扑结构和数据流量的变化进行自组织调整,形成一个适应性强、高度自适应的网络系统。
自组织和自适应的特性使得无线传感器网络具备较强的灵活性和可靠性,能够在环境变化和节点故障的情况下保持高效运行。
3. 数据收集和传输无线传感器网络通过节点之间的无线通信实现数据的收集和传输。
节点采集到的环境数据经过处理和压缩后,通过多跳传输的方式传送到目标节点。
数据传输过程中需要考虑能耗、信号传输距离和网络拓扑等因素,以保证数据的可靠性和能效性。
4. 路由协议在无线传感器网络中,节点之间的通信需要依靠路由协议进行数据包的转发和传输。
常见的路由协议有多跳路由协议、单跳路由协议和洪泛路由协议等。
不同的路由协议适用于不同的网络场景和应用需求,能够实现高效的数据传输和路由选择。
二、无线传感器网络的应用场景1. 环境监测无线传感器网络广泛应用于环境监测领域。
通过在大面积区域部署传感器节点,实时监测大气、土壤、水域等环境要素的数据,包括温度、湿度、光照强度等,从而提供环境质量评估和预警,为环境保护和资源管理提供科学依据。
2. 智能农业无线传感器网络技术在农业领域的应用也非常广泛。
无线传感器网络原理及应用第4章 定位技术
第4章 定位技术
4.2.2 基于TDOA的定位 TDOA测距技术被广泛应用在WSN定位方案中。一般是
在节点上安装超声波收发器和RF收发器。测距时,在发射 端两种收发器同时发射信号,利用声波与电磁波在空气中传 播速度的巨大差异,在接收端通过记录两种不同信号到达时 间的差异,基于已知信号传播速度,则可以直接把时间转化 为距离。该技术的测距精度较RSSI高,可达到厘米级,但 受限于超声波传播距离有限和非视距(NLOS)问题对超声波 信号的传播影响。
第4章 定位技术
来确定自身位置。在如图4-1所示的传感网络中,M代表信 标节点,S代表未知节点。S节点通过与邻近M节点或已经得 到位置信息的S节点之间的通信,根据一定的定位算法计算 出自身的位置。
第4章 定位技术
图4-1 传感器网络中信标节点和未知节点
第4章 定位技术
2.节点位置计算的常见方法 传感器节点定位过程中,未知节点在获得对于邻近信标 节点的距离,或者获得邻近的信标节点与未知节点之间的相 对角度后,通常使用下列方法计算自己的位置。
第4章 定位技术
图4-2 三边测量定位法
第4章 定位技术
21
3
(x x1)2 (y y1)2 (x x2)2 (y y2)2 (x x3)2 (y y3)2
(4-1)
由公式(4-1)即可解出节点D的坐标(x,y):
x y 2 2 ( (x x 1 2 x x 3 3 ) )2 2 ( (y y 1 2 y y 3 3 ) ) 1 x x 1 2 2 2 x x 3 3 2 2 y y 1 2 2 2 y y 3 3 2 3 3 2 3 2 1 2 2 2
第4章 定位技术
基于距离的定位算法通过获取电波信号的参数,如接收 信号强度(RSSI)、信号传输时间(TOA)、信号到达时间差 (TDOA)、信号到达角度(AOA)等,再通过合适的定位算法 来计算节点或目标的位置。 4.2.1 基于TOA的定位
无线传感器网络的原理及其应用
无线传感器网络的原理及其应用随着信息化技术的不断发展,无线传感器网络(Wireless Sensor Network, WSN)逐渐成为人们关注的热点技术,其在农业、环境监测等领域的应用越来越广泛。
本文将从基本原理、节点构成、网络通信、能量管理以及应用场景等方面,对无线传感器网络的原理及其应用进行探讨。
一、基本原理无线传感器网络是由多个传感器节点组成的自组织分布式网络,其目的是通过对物理世界的感知和数据处理,实现对环境的监测、控制和管理。
传感器节点是指具有传感、处理、存储、通信和能量供应等功能的微型计算机系统,它通过无线信道与周围环境交互。
基本的无线传感器网络结构图如下:由图可知,传感器节点由传感器、处理器、存储器、收发器、电源和封装等部分组成,具有自组织、自适应、自愈等特性,形成一个无中心化的虚拟网络。
整个网络由多个节点分布组成,节点之间通过无线电波进行通信,实现数据传输。
二、节点构成一个完整的传感器节点一般包括以下几个部分:1. 传感器:负责采集环境数据,如温度、湿度、气压、光强度、声音等信号,并将信号转换成数字信号。
2. 处理器:负责对采集的数据进行处理,如压缩、加密、解密、计算等操作。
3. 存储器:负责储存传感器采集到的数据和相关程序。
4. 收发器:负责与其他节点进行通信,实现数据的传输和接收。
5. 电源:负责为节点提供能量,常见的有锂电池、太阳能电池等。
6. 封装:将以上部分进行整合,形成一个具备完整功能的传感器节点。
三、网络通信无线传感器节点的通信方式一般采用无线电波,通信距离一般在几十米到几百米之间。
通信协议采用以下几种:1. IEEE802.15.4:该协议定义了低速率无线个人局域网络(Low-Rate Wireless Personal Area Networks,简称LR-WPANs)。
2. ZigBee:是一个基于IEEE 802.15.4标准的低功耗、低速率、近距离无线个人网络(Wireless Personal Area Network,简称WPAN)。
无线传感器网络的工作原理
无线传感器网络的工作原理无线传感器网络(Wireless Sensor Network, WSN)是一种由许多分布在一定区域内的无线传感器节点组成的网络。
这些传感器节点可以通过无线通信相互连接,并集体协同工作来实现各种任务,如环境监测、数据采集、事件检测等。
本文将介绍无线传感器网络的工作原理及其应用。
一、无线传感器网络的组成与通信方式无线传感器网络由大量的无线传感器节点组成,每个节点都拥有计算、通信、传感和能源供应等功能模块。
这些传感器节点分布在被监测的区域内,通过无线通信互相交换数据。
节点之间使用无线电波进行通信,具体的通信方式可以是单跳式通信、多跳式通信或基站式通信。
二、无线传感器网络的工作原理1. 节点工作模式传感器节点在工作中常常采用低功耗的睡眠-唤醒工作模式。
节点在大部分时间处于睡眠状态,以降低能耗。
当节点周围环境发生变化或接收到其他节点的唤醒信号时,节点会被激活并开始执行相应的任务。
2. 数据采集与传输传感器节点通过感知和采集周围环境的信息,将采集到的数据进行处理并通过通信模块传输到其他节点或基站。
节点之间可以利用多跳式通信,将数据通过中间节点进行转发,以实现远距离通信。
3. 路由选择在无线传感器网络中,路由选择是一个重要的问题。
节点需要根据网络拓扑结构和传输距离等因素选择合适的路由路径进行数据传输。
常用的路由协议有LEACH(Low Energy Adaptive Clustering Hierarchy)、PEGASIS(Power-efficient Gathering in Sensor Information Systems)等。
4. 节能调度节点的能耗是无线传感器网络中需要解决的一个主要问题。
为了延长网络的生命周期,需要对节点的能耗进行有效的调度和管理,如通过合理的休眠和唤醒策略、数据压缩和聚合等方法减少节点的能量消耗。
三、无线传感器网络的应用无线传感器网络在各个领域都有广泛的应用,如环境监测、农业、交通、医疗等。
无线传感器网络技术原理及应用
无线传感器网络技术原理及应用
无线传感器网络技术原理及应用
一、无线传感器网络(WSN)技术原理
1. 无线传感器网络定义:无线传感器网络是一系列称为节点(node)的可编程的小型设备,它们可以相互通信来收集、处理、存储和分析任务相关的数据。
这些节点彼此之间以无线的方式连接,通常情况下不需要任何的基础设施支持,无线传感器网络可以实现在任何时间任何地点的应用。
2. 传感器节点组成部件:传感器节点是基于特定地理位置上的一种带有传感器、处理器、存储和无线通信接口的设备。
它们一般由下述组成部件组成:传感器用来捕捉外界环境的信息,处理器用来处理它获取的信息,存储器用来存储接收到的数据,通信口用来与其他节点以及后端的服务器之间进行无线通信。
3. 无线传感器网络通信技术:主要包括实时中继、多跳通信、轮询和类蜂窝网络等。
二、无线传感器网络(WSN)应用
1. 无线传感器网络技术可支持环境监测:可以收集环境中的各种数据,帮助识别出环境中的各种现象,并有效预测出环境中的潜在问题。
这
些应用包括了空气污染、水质检测、有害物检测、地形分析以及农业
监测等。
2. 无线传感器网络技术可支持资源监测:可以用来监测和分析各种客
观资源信息,以此保证客观数据准确、及时和有效地传输到相关系统,进而有效应对各种突发环境。
这些应用包括了农业和森林火灾检测、
路面状况管理、运输路线管理和震动监测等。
3. 无线传感器网络技术可支持社会安防:可以支持城市安全、防犯、
防火、防洪等任务,实现智能监控和地理围栏报警,及时发现犯罪活动、自然灾害等,从而确保城市安全。
无线传感器网络的原理与应用
无线传感器网络的原理与应用无线传感器网络(Wireless Sensor Network,WSN)是由大量分布式传感器节点组成的网络系统。
每个传感器节点都可以进行感知、处理和通信,并且能够自组织成网络。
无线传感器网络可以用于各种应用领域,如环境监测、智能交通、军事侦察等。
本文将介绍无线传感器网络的原理和应用。
无线传感器网络由若干个传感器节点组成,每个节点都具备感知、处理和通信的能力。
节点之间通过无线传输技术进行通信,并且通过自组织的方式构建网络结构。
节点可以将感知到的数据发送给周围的节点,最终传输到网络的中心节点或远程服务器进行处理和分析。
1.传感器节点:每个传感器节点都包含传感器、处理器、无线模块和电源。
传感器用于感知环境信息,处理器用于处理数据,无线模块用于通信,电源用于供电。
2. 网络通信:传感器节点之间通过无线通信方式进行信息交换,可以使用WiFi、蓝牙、ZigBee等无线通信技术。
3.网络拓扑:无线传感器网络可以形成多种网络拓扑结构,如星形、树形、网状等。
不同的拓扑结构适用于不同的应用场景。
4.数据处理:传感器节点可以对收集到的数据进行本地处理和分析,也可以将数据发送到网络中心节点或远程服务器进行更复杂的处理和分析。
1.环境监测:无线传感器网络可以用于环境监测,如温度、湿度、气体浓度等。
通过大量的传感器节点分布在不同的地点,可以实时监测环境变化并及时采取相应的措施。
2.智能交通:无线传感器网络可以用于智能交通系统,实时监测交通流量、车速等信息,优化交通路线,减少交通拥堵和事故发生。
3.农业监测:无线传感器网络可以用于农业监测,如土壤湿度、光照强度、气候条件等。
通过监测农田条件,可以进行精细化管理,提高农作物产量和质量。
4.物流管理:无线传感器网络可以用于物流管理,实时监测货物的位置、温度、湿度等信息,确保货物的安全和质量。
5.智能家居:无线传感器网络可以用于智能家居系统,实现对家庭设备和环境的智能化控制和管理。
无线传感器网络原理及方法第四章
因此,由于传感器网络的特点,在能量、价格和体积等方面的约束,使
得NTP、GPS等现有时间同步机制并不适用于通常的传感器网络,需要专门的 时间同步协议才能正常运行和实用化。
4.1.2
TPSN时间同步协议
传感器网络TPSN时间同步协议类似于传统网络的NTP协议,目的是提 供传感器网络全网范围内节点间的时间同步。 TPSN协议采用层次型网络结构。
件尺寸和功耗指标不适用于大规模的传感器网络,在某些应用
领域可以发挥作用。
2、多边定位
多边定位法基于距离测量(如RSSI、ToA/TDoA)的结果。确定二维 坐标至少具有三个节点至锚点的距离值;确定三维坐标,则需四个此 类测距值。
2 ( x1 x ) 2 ( y1 y ) 2 d1 ( x x ) 2 ( y y ) 2 d 2 n n n
4、定位系统的设计要点
在设计定位系统的时候,要根据预定的性能指标,在众多 方案之中选择能够满足要求的最优算法,采取最适宜的技术手 段来完成定位系统的实现。通常设计一个定位系统需要考虑两 个主要因素,即定位机制的物理特性和定位算法。
4.2.2 基于测距的定位技术
基于测距的定位技术是通过测量节点之间的距离,根据几何 关系计算出网络节点的位臵。解析几何里有多种方法可以确定一
1、TPSN协议的操作过程
TPSN协议包括两个阶段: 第一个阶段生成层次结构,每个节点赋予一个级别,根节点赋予最高级 别第0级,第i级的节点至少能够与一个第(i-1)级的节点通信; 第二个阶段实现所有树节点的时间同步,第1级节点同步到根节点,第i 级的节点同步到第(i-1)级的一个节点,最终所有节点都同步到根节点, 实现整个网络的时间同步。
虚拟现实仿真系统中需要实时定位物体的位臵和方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4-2 三边测量定位法
1 2
3
(x x1 )2 ( y y1 )2 (x x2 )2 (y y2 )2 (x x3 )2 ( y y3 )2
(4-1)
由公式(4-1)即可解出节点D的坐标(x,y):
x y
2( x1 2( x2
x3 ) x3 )
2( y1 2( y2
y3
)
1
y3 )
x12 x22
x32 x32
y12 y22
22
2) 三角测量法(triangulation)
三角测量法的原理如图4-3所示,已知A、B、C三个节
点的坐标分别为(x1,y1)、(x2,y2)、(x3,y3),节点D到A、B、 C的角度分别为∠ADB、∠ADC、∠BDC、假设节点D的坐
来确定自身位置。在如图4-1所示的传感网络中,M代表信 标节点,S代表未知节点。S节点通过与邻近M节点或已经得 到位置信息的S节点之间的通信,根据一定的定位算法计算 出自身的位置。
图4-1 传感器网络中信标节点和未知节点
2.节点位置计算的常见方法 传感器节点定位过程中,未知节点在获得对于邻近信标 节点的距离,或者获得邻近的信标节点与未知节点之间的相 对角度后,通常使用下列方法计算自己的位置。
由公式(4-2)能够确定圆心O1的坐标和半径r1。同理对A、 B、∠ADB和B、C、∠BDC,也能够确定相应的圆心O2(xO2, yO2)、O3(xO3,yO3),半径r2、r3。最后利用三边测量法,由 O1、O2、O3确定D节点的坐标(x,y)。
3) 极大似然估计法(maximum likelihood estimation) 如图4-4所示,已知获得信标节点1、2、3…n的坐标分 别为(x1,y1)、(x2,y2)、(x3,y3)…(xn,yn),它们到待定位节 点D的距离分别为ρ1,ρ2,ρ3…ρn,假设D的坐标为(x,y), 则存在公式:
2( y2 yn )
b
x12
xn2
y12
y
2 n
ρn2
ρ12
x22
xn2
y22
y
2 n
ρn2
ρ22
2( yn1 yn )
xn21
xn2
yn21
y
2 n
ρn2
ρn21
X
x
y
使用标准的最小均方差估计方法可以得到节点D的坐标为
X ( AT A)1 ATb
4.1.2 定位算法分类 在传感器网络中,根据定位过程中是否测量实际节点间
基于距离的定位算法通过获取电波信号的参数,如接收 信号强度(RSSI)、信号传输时间(TOA)、信号到达时间差 (TDOA)、信号到达角度(AOA)等,再通过合适的定位算法 来计算节点或目标的位置。 4.2.1 基于TOA的定位
在TOA方法中,主要利用信号传输所消耗的时间预测 节点和参考点之间的距离。系统通常使用慢速信号(如超声 波)测量信号到达的时间,原理如图4-5所示。超声信号从发 送节点传递到接收节点,而后接收节点再发送另一个信号给 发送节点作为响应。通过双方的“握手”,发送节点即能从 节点的周期延迟中推断出距离为
标为(x,y)。对于节点A、C和∠ADC,确定圆心为O1(xO1, yO1)、半径为r1的圆,,则
( xO1 x1)2 ( yO1 y1)2 r1
( xO1 x2 )2 ( yO1 y2 )2 r1
( x1
x3 )2
( y1
y3 )2
2r12
2r12
cos
(4-2)
图4-3 三角测量法原理图
的距离,把定位算法分为基于距离的(range-based)定位算法 和与距离无关的(range-free)定位算法,前者需要测量相邻节 点间的绝对距离或方位,并利用节点间的实际距离来计算未 知节点的位置;后者无需测量节点间的绝对距离或方位,而 是利用节点间估计的距离计算节点位置。
4.2 基于距离的定位
(
x1
(
x1
x)2 x)2
( y1 ( y2
y)2 y)2
ρ12 ρ22
(xn x)2 ( yn y)2 ρn2
(4-3)
图4-4 极大似然估计法
公式(4-3)可表示为线性方程式AX = b,其中
2( x1 xn )
A
2( x2
xn )
2( xn1 xn )
2( y1 yn )
基于距离的定位机制(range-based)是通过测量相邻节点 间的实际距离或方位进行定位的。具体过程通常分为三个阶 段:第一个阶段是测距阶段,首先测量未知节点到邻居节点 的距离或角度,然后进一步计算到邻近信标节点的距离或方 位,在计算到邻近信标节点的距离时,可以计算未知节点到 信标节点的直线距离,也可以用二者之间的跳断距离作为直 线距离的近似;第二个阶段是定位阶段,计算出未知节点到 达三个或三个以上信标节点的距离或角度后,利用三边测量 法、三角测量法或极大似然估计法计算未知节点的坐标;第 三个阶段是修正阶段,对求得的节点的坐标进行求精,提高 定位精度,减少误差。
第4章 定位技术
4.1 定位技术简介 4.2 基于距离的定位 4.3 与距离无关的定位算法
4.1 定位技术简介
4.1.1 定位技术的概念、常见算法和分类 1. 无线传感器网络定位技术概念 在传感器网络节点定位技术中,根据节点是否已知自身
的位置,把传感器节点分为信标节点(beacon node)和未知节 点(unknown node)。信标节点在网络节点中所占的比例很小, 可以通过携带GPS定位设备等手段获得自身的精确位置。信 标节点是未知节点定位的参考点。除了信标节点以外,其他 传感器节点就是未知节点,它们通过信标节点的位置信息
1) 三边测量定位法(trilateration) 三边测量定位法是一种常见的目标定位方法,其理论依 据是在二维空间中,当一个节点获得三个或者三个以上参考 节点的距离时,就可以确定该节点的坐标。三边测量技术建 立在几何学的基础上,它用多个点与目标之间的距离来计算 目标的坐标位置。如图4-2所示,在二维空间中,最少需要 得到三个参考点的距离才能唯一地确定一点的坐标。假设目 标节点的坐标为(x,y),三个信标节点A、B、C的坐标分别 为(x1,y1)、(x2,y2)、(x3,y3),以及它们到未知目标节点的 距离分别为ρ1、ρ2、ρ3,则根据二维空间距离计算公式,可 以建立如下方程组: