精编【ppt 课件】第6章假设检验
合集下载
《假设检验》PPT课件
2008-2009
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计
推
断
客观
统
统
分
现象
计
计
析
数量
调
整
表现
查
理
描 述
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计
推
断
客观
统
统
分
现象
计
计
析
数量
调
整
表现
查
理
描 述
第六章假设检验基础PPT课件
❖假设检验的原理: 假设检验的基本思想是反证法和小
概率的思想
❖反证法思想:首先提出假设(由于未经检验是否成立,
所以称为无效假设),用适当的统计方法确定假设
成立的可能性大小,如果可能性小,则认为假设不
成立,拒绝它;如果可能性大,还不能认为它不成立
❖小概率思想:是指小概率事件在一次随机试验中认为
基本上不会发生
一、一组样本资料的t 检验(one sample/group t-test)
现有取自正态总体N(μ,σ2)的、容量为n 的一份 完全随机样本。 目的:推断该样本所代表的未知总体均数µ与已知总体 均数µ0是否相等已知总体均数µ0是指标准值,理论值 或经大量观察所得的稳定值。
n136135
3. 确定P值
指从H0规定的总体中随机抽得等于及 大于(或等于及小于)现有样本获得
的检验统计量值的概率。
4. P值的意义:如果总体状况和H0一致,统计量获 得现有数值以及更不利于H0的数值的可能性(概率) 有多大。
5.
t0 .2 (3 5 ) 50 .68 t 2 t0 .2 (3 5 ) 5得 P 0 .25
H0一般设为某两个或多个总体参数 相等,即认为他们之间的差别是由 于抽样误差引起的。H1的假设和H0 的假设相互对立,即认为他们之间 存在着本质的差异。H1的内容反映 出检验的单双侧。
单双侧的确定: 一是根据专业知识,已知东北某县囱
门月龄闭合值不会低于一般值; 二是研究者只关心东北某县值是否高
于一般人群值,应当用单侧检验。 一般认为双侧检验较为稳妥,故较为
目的要求选用不同的检验方法。
4、确定P值: P值是指由H0所规定的总体中做随机抽
样,获得等于及大于(或等于及小于)现 有统计量的概率。当求得检验统计量的值 后,一般可通过特制的统计用表直接查出P 值。
卫生统计学课件_第六章_假设检验
16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。
第6章假设检验
H0: 1000
H1: 1000
27
All rights reserved
南审数统学院
双侧检验和单侧检验(续)
研究的问题
假设
双侧检验 H0 H1 = ≠ 左侧检验 < 右侧检验 >
28
All rights reserved
建立的原假设与备择假设应为 H0: 10 H1: 10
23
All rights reserved
南审数统学院
双侧检验和单侧检验(续)
单侧检验
备择假设具有特定的方向性,并含有符号“>”或 “<”的假设检验,称为单侧检验或单尾检验(onetailed test) 备择假设的方向为“<”,称为左侧检验 备择假设的方向为“>”,称为右侧检验
14
All rights reserved
假设的陈述(续)
南审数统学院
零假设的提出
所假设的总体参数值为研究者认为不对的总 体参数值 实质:科学研究中的保守主义 比如:新的工艺或技术没有造成任何改变, 新药没有任何疗效,变量间没有联系
15
All rights reserved
假设的陈述(续)
24
All rights reserved
南审数统学院
双侧检验和单侧检验(续)
例析:
一项研究表明,采用新技术生产后,将会使产品的 使用寿命明显延长到1500小时以上。检验这一结论 是否成立 研究者总是想证明自己的研究结论(寿命延长) 是正确的 备择假设的方向为“>”(寿命延长) 建立的原假设与备择假设应为 H0: 1500 H1: 1500
第六章假设检验
当我们把真实的原假设当成假的加以拒绝, 称为第一类错误,也称弃真错误、α错误,犯 第一类错误的概率就是显著性水平α;当我们 把不真实的原假设当作真的加以接受,称为第 二类错误,也称取伪错误、β错误,犯第二类 错误的概率是不确定的。
α也称为生产者风险:在生产者将产品售给消费者时,通常 要进行产品的质量检验,原假设总是产品是合格的,但是检验 时生产者总是担心把合格品检验为不合格品,也就是第一类错 误α,所以α也称为生产者风险。 β也称为消费者风险:在消费者一方总恐怕把不合格品检验 不出来而当作合格品接受,因而β也称为消费者风险。
(二)未知总体分布及总体方差,大样本 1.检验总体均值的统计量
(三)总体为正态分布、方差未知、小样本 1. 检验统计量
2. 拒绝域的临界值 可以根据双侧检验还是单侧检验来确定拒绝域的 临界值。当为双侧检验,显著性水平a时,临界值 为 ;当为右侧检验时,显著性水平a,监界值 为 ;当为左侧检验时,显著性水平为a,临界值 为- 。
备择假设,常用H1表示。即原假设被否定之 后而采取的逻辑对立假设。
(二)检验统计量
有了两个假设,就要根据数据来对他们进行判 断。数据的代表是作为其函数的统计量,对样 本数据进行加工并用来判断是否接受原假设的统计 量称作检验统计量 统计量最常用的是Z统计量、t统计量。
统计量的选择要根据研究的参数及其估计量 的分布、抽样的方式、总体方差是否已知等多种 因素来确定
第四步:确定决策规则。拒绝或没有拒绝原假设的决 策是建立在由样本数据来进行统计检验并将其与假设 的抽样分布比较。抽样分布被分成两个部分,拒绝域 和非拒绝域。如果原假设是真实的,那么统计检验不 可能落入拒绝域。因此,如果统计检验落入了拒绝域, 我们拒绝原假设;否则,我们不能拒绝它。
α也称为生产者风险:在生产者将产品售给消费者时,通常 要进行产品的质量检验,原假设总是产品是合格的,但是检验 时生产者总是担心把合格品检验为不合格品,也就是第一类错 误α,所以α也称为生产者风险。 β也称为消费者风险:在消费者一方总恐怕把不合格品检验 不出来而当作合格品接受,因而β也称为消费者风险。
(二)未知总体分布及总体方差,大样本 1.检验总体均值的统计量
(三)总体为正态分布、方差未知、小样本 1. 检验统计量
2. 拒绝域的临界值 可以根据双侧检验还是单侧检验来确定拒绝域的 临界值。当为双侧检验,显著性水平a时,临界值 为 ;当为右侧检验时,显著性水平a,监界值 为 ;当为左侧检验时,显著性水平为a,临界值 为- 。
备择假设,常用H1表示。即原假设被否定之 后而采取的逻辑对立假设。
(二)检验统计量
有了两个假设,就要根据数据来对他们进行判 断。数据的代表是作为其函数的统计量,对样 本数据进行加工并用来判断是否接受原假设的统计 量称作检验统计量 统计量最常用的是Z统计量、t统计量。
统计量的选择要根据研究的参数及其估计量 的分布、抽样的方式、总体方差是否已知等多种 因素来确定
第四步:确定决策规则。拒绝或没有拒绝原假设的决 策是建立在由样本数据来进行统计检验并将其与假设 的抽样分布比较。抽样分布被分成两个部分,拒绝域 和非拒绝域。如果原假设是真实的,那么统计检验不 可能落入拒绝域。因此,如果统计检验落入了拒绝域, 我们拒绝原假设;否则,我们不能拒绝它。
第六章假设检验-PPT课件
货物进行检测一下,看看这部货物次品率是否超过1%, 由于你抽取的货物是随机的,因此所抽查货物的次品率也 是随机的。为此,我们假定前面的假设是正确的,在这基 础上计算题目中的事件A:“随机抽取产品中次品率不超 过1%”发生的概率。
6 0.01 p0.01 200 P(A ) P {z } p(1 p) 0.01(10.01 ) n 200 P {z 2.619 }0.0044
例2 某地区小麦的一般生产水平是亩产250公斤,其标准 差是6公斤。现在经过品种改良试验,从25个小区抽样, 结果为小麦平均亩产比原来提高20公斤。对检验假设 H 5 0 , H 5 0 的问题,求 270 0 : 2 1 : 2 时,不犯第二类错误的概率。假设小麦亩产服从正态分布 ( 0.05 )。
在(1)式中,z 正好是统计量,并且其分布是标准正态
(1)
分布,计算结果及示意图是
y
0.0044
2.61
x
从(1)的计算结果可以看出,在超市提出的假设成立的 情况下,随机抽取的200件产品中,有6件是次品的概率 为0.0044,显然这是一个小概率事件,认为在一次抽查中 不应该发生,现在它发生了,我们怀疑超市提出的假设不 应该成立。也就是拒绝这批产品进入超市。 在这个例子中,超市提出了假设,通过抽样获得样本数
次试验中不发生原理,照样乘车、乘飞机等。 2、假设检验问题的提出 在用统计学研究自然科学和社会科学问题时,有时提出一 个假设,这个假设称为原假设,然后依据小概率事件在一 次试验中不发生原理,检验这个假设正确与否。 例1 某超市从厂家进货,双方达成协议,如果次品率超 过1% ,则超市拒收货物,今有一批货物,随机抽取200 0.05 下, 件检查,发现有次品3件,在显著性水平 试问超市是否要接受这批货物? 作为超市来说,可以提出一个假设:次品率小于或等于 1%,再抽取样本,检验这个假设对不对, 若假设成立,就 允许这批货物进入超市,相反,若假设不成立,就拒绝这 批货物进入超市。现在问题的关键在于如何判断这批货物 的次品率是否超过1%,有些同学可能会说可以抽一部分
假设检验完整版PPT课件
H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0
1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0
1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
第六章-假设检验(Hypothesis-test)
Back
二、接受域和拒绝域
假设设定之后,我们需要一个判别标准,判断拒绝或 接受H0。利用“小概率原理”,指发生概率很小的随机 事件,在一次试验中几乎是不可能发生的。如果发生 了,就可以拒绝提出的原假设。
例如:有一个厂商声称其产品的合格品率很高,可以达到 99%,则从一批产品(100件)中随机抽取1件,该件是次品 的概率就非常小,只有1%。
➢ 根据α值和抽样分布,确定临界值。 ➢ 将检验统计量的数值与临界值相比较,做出
是否拒绝H0的判断。 ➢ 或以检验统计量计算p值,确定是否拒绝H0 。
Back
五、p值(p-value)
p值:H0为真时,由样本数据给出的犯第Ⅰ类错误 的概率的精确数值(观察到的显著性水平)。
统计软件给出检验统计量的数值时,一般都给出该
Back
四、假设检验的步骤
Step1:提出原假设 H0 和备择假设 H1
例如:H0:μ=μ0;H1:μ≠μ0
Step2:确定显著性水平α
➢ 是决策中的风险。主观确定。 ➢ α一般取0.05或0.01。
四、假设检验的步骤
Step3:选择检验统计量(Test Statistic)
➢ 假设检验也是从抽样分布出发,借由样本数据 计算检验统计量的数值进行推断。
检验统计量数值的p值。
以Zobs表示Z统计量的观测值: 双侧检验時p值=P(|Z|≥ Zobs)
右侧检验时p值=P(Z≥ Zobs)
p值/2
p值/2
以p值进行假设检验:
α/2
1 -α
α/2
p值>α,接受H0
-1.96
1.96(临界值)
计算的检验统计量数值
p值<α ,拒绝H0
Back
二、接受域和拒绝域
假设设定之后,我们需要一个判别标准,判断拒绝或 接受H0。利用“小概率原理”,指发生概率很小的随机 事件,在一次试验中几乎是不可能发生的。如果发生 了,就可以拒绝提出的原假设。
例如:有一个厂商声称其产品的合格品率很高,可以达到 99%,则从一批产品(100件)中随机抽取1件,该件是次品 的概率就非常小,只有1%。
➢ 根据α值和抽样分布,确定临界值。 ➢ 将检验统计量的数值与临界值相比较,做出
是否拒绝H0的判断。 ➢ 或以检验统计量计算p值,确定是否拒绝H0 。
Back
五、p值(p-value)
p值:H0为真时,由样本数据给出的犯第Ⅰ类错误 的概率的精确数值(观察到的显著性水平)。
统计软件给出检验统计量的数值时,一般都给出该
Back
四、假设检验的步骤
Step1:提出原假设 H0 和备择假设 H1
例如:H0:μ=μ0;H1:μ≠μ0
Step2:确定显著性水平α
➢ 是决策中的风险。主观确定。 ➢ α一般取0.05或0.01。
四、假设检验的步骤
Step3:选择检验统计量(Test Statistic)
➢ 假设检验也是从抽样分布出发,借由样本数据 计算检验统计量的数值进行推断。
检验统计量数值的p值。
以Zobs表示Z统计量的观测值: 双侧检验時p值=P(|Z|≥ Zobs)
右侧检验时p值=P(Z≥ Zobs)
p值/2
p值/2
以p值进行假设检验:
α/2
1 -α
α/2
p值>α,接受H0
-1.96
1.96(临界值)
计算的检验统计量数值
p值<α ,拒绝H0
Back
第六章 假设检验
2 2 , 1 2 已知,或大样本情况 6.3.1 2 2 两个总体均服从正态分布、两个总体的方差 1 , 2 已知;或两 个总体分布及方差未知,但大样本情况下,样本均值之差 X 1 X 2 的抽样分布服从或近似服从正态分布,即可采用检验 统计量:
第六章 假设检验 6.2 总体均值的假设检验
【例6-7】某厂采用自动包装机分装产品,假定每包产 品的重量服从正态分布,每包标准重量为1000克。某 日随机抽查9包,测得样本平均重量为986克,样本标 准差为24克。试问在0.05的显著性水平上,能否认为 这天自动包装机工作正常?
第六章 假设检验 6.2 总体均值的假设检验
6.1
第六章 假设检验 假设检验的原理
6.1.2
假设检验的步骤
(三)选取显著性水平,确定原假设的拒绝域和接受域 显著性水平表示原假设为真时拒绝原假设 H 0 的最大概率, 即拒绝原假设所冒的风险,用 表示。 通常取 0.05 或 0.01
6.1
第六章 假设检验 假设检验的原理
第六章 假设检验 6.2 总体均值的假设检验
6.2.3 2未知时小样本情况下总体均值的假设检验
设总体服从正态分布 X ~ N (, 2 ) ,在小样本抽样情况下,利用 t检验法对总体均值的检验,其检验统计量及分布为:
t X ~ t (n 1) s/ n
第六章 假设检验 6.2 总体均值的假设检验
6.1
第六章 假设检验 假设检验的原理
6.1.4
假设检验中的P值
H1 : 0
(2)左侧检验:H 0 : 0
P值= P(Z zc 0 )
H 0 : 0
(3)右侧检验:
H1 : 0
第六章 假设检验 6.2 总体均值的假设检验
【例6-7】某厂采用自动包装机分装产品,假定每包产 品的重量服从正态分布,每包标准重量为1000克。某 日随机抽查9包,测得样本平均重量为986克,样本标 准差为24克。试问在0.05的显著性水平上,能否认为 这天自动包装机工作正常?
第六章 假设检验 6.2 总体均值的假设检验
6.1
第六章 假设检验 假设检验的原理
6.1.2
假设检验的步骤
(三)选取显著性水平,确定原假设的拒绝域和接受域 显著性水平表示原假设为真时拒绝原假设 H 0 的最大概率, 即拒绝原假设所冒的风险,用 表示。 通常取 0.05 或 0.01
6.1
第六章 假设检验 假设检验的原理
第六章 假设检验 6.2 总体均值的假设检验
6.2.3 2未知时小样本情况下总体均值的假设检验
设总体服从正态分布 X ~ N (, 2 ) ,在小样本抽样情况下,利用 t检验法对总体均值的检验,其检验统计量及分布为:
t X ~ t (n 1) s/ n
第六章 假设检验 6.2 总体均值的假设检验
6.1
第六章 假设检验 假设检验的原理
6.1.4
假设检验中的P值
H1 : 0
(2)左侧检验:H 0 : 0
P值= P(Z zc 0 )
H 0 : 0
(3)右侧检验:
H1 : 0
第六章 假设检验
第一步:建立假设 第一步:
H0 : µ = 8000; H1 : µ > 8000
原假设的选取原则: 原假设的选取原则:没有充分理由 不能轻易否定的命题。 不能轻易否定的命题。
对立假设的选取原则:没有把握不 对立假设的选取原则: 能轻易肯定的命题。 能轻易肯定的命题。
第二步:寻找检验统计量 第二步:
2
第三步:给定显著性水平和临界值 第三步:
• 在原假设 H0 为真时,X 应该接近8000。 为真时, 如果 X 远离8000 ,就有理由怀疑原 假设为真。 假设为真。 • 例中,8300与8000之间算近还是算远? 例中, 之间算近还是算远? • 需要定一个界限,记此界限为c。 需要定一个界限,记此界限为c
假设检验是要根据样本的观测值对原假作 出判断,接受原假设或者拒绝。 出判断,接受原假设或者拒绝。 由于样本的随机性,客观情况未知, 由于样本的随机性,客观情况未知,有可 能犯错误。 能犯错误。 例:产品验收,有时面对的整批产品是合 产品验收, 格的,有时面对的整批产品是不合格的。 格的,有时面对的整批产品是不合格的。 拒收了合格率高的产品或者接受了合格率 低的产品都是犯了错误。 低的产品都是犯了错误。
例:餐厅的营业额问题: 餐厅的营业额问题:
H0 : µ = 8000; H1 : µ பைடு நூலகம் 8000
N(µ0 ,σ )
2 0
N(µ,σ )
2
在原假设成立的条件下,新菜单挂出后, 在原假设成立的条件下,新菜单挂出后, 每天营业额仍然服从正态分布
N(8000,640 )
如今获得了一个容量为9的样本, 如今获得了一个容量为9的样本,此时样 服从: 本均值 X 服从: 1 2 N(8000, ×640 ) 9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 假设检验
STAT
第一节 假设检验的一般问题 第二节 一个总体参数的假设检验 第三节 两个总体参数的假设检验
6-1
学习目标
STAT
1. 假设检验的基本思想和原理 2. 假设检验的步骤 3. 一个总体参数的检验 4. 两个总体参数的检验 5. P值的计算与应用
6-2
假设检验在统计方法中的地位
H0 : 10cm H1 : 10cm
6-14
提出假设
(例题分析)
STAT • 【例】某厂家声称,所生产的某品牌灯管寿命不低于
4000小时,经销商在对该灯管经销前,有关研究人员 想通过抽检其中的一批灯管来验证该生产厂家的声称 是否属实。试建立用于检验的原假设和备择假设。
解:研究者想搜集证据予以证明的 假设应该是“灯管寿命低于4000小 时”。于是原假设和备择假设应设 定为
... 因此我们拒绝
假设 = 150g
... 如果这是总 体的假设均值
145g = 150g H0
样本均值
6-9
假设检验的过程
总体
提出假设
我认为灌装土豆片 的净含量是150g
抽取随机样本
x均= 值145g
STAT
作出决策 拒绝假设 别无选择!
6-10
STAT
STAT
• 【例】一种电子元件的生产标准是直径为10cm,为对生 产过程进行控制,质量检测人员定期对一台加工设备检 查,确定这台设备生产的电子元件是否符合标准要求。 如果元件的平均直径大于或小于10cm,则表明生产过程 不正常,必须进行调整。试建立用来检验生产过程是否 正常的原假设和备择假设
解:研究者想收集证据予以证明的假设应 该是“生产过程不正常”。建立的原假设 和备择假设为
(alternative hypothesis)
STAT
1. 研究者想收集证据予以支持的假设 2. 也称“研究假设” 3. 总是有符号 , 或 4. 表示为 H1
– H1 : <某一数值,或 某一数值 – 例如, H1 : < 10cm,或 10cm
6-13
提出假设
(例题分析)
6-20
STAT
两类错误与显著性水平
6-21
假设检验中的两类错误
• 1. 第Ⅰ类错误(弃真错误)
– 原假设为真时拒绝原假设
– 第Ⅰ类错误的概率记为
• 被称为显著性水平
• 2. 第Ⅱ类错误(取伪错误)
– 原假设为假时未拒绝原假 设
– 第Ⅱ类错误的概率记为
(Beta)
STAT
6-22
假设检验中的两类错误
原理
6-7
假设检验中的小概率原理
STAT
• 什么小概率? • 1. 在一次试验中,一个几乎不可能发生
的事件发生的概率 • 2. 在一次试验中小概率事件一旦发生,
我们就有理由拒绝原假设 • 3. 小概率由研究者事先确定
6-8
假设检验的基本思想
(运用小概率事件原理的反证法)
STAT
抽样分布
这个值不像我们应该 得到的样本均值 ...
H0 : 10% H1 : 10%
*如果由你来验证该研究所的观点,该
如何写备择假设?
6-16
提出假设
(结论与建议)
STAT
1. 原假设和备择假设是一个完备事件组,而且 相互对立
– 在一项假设检验中,原假设和备择假设必有一 个成立,而且只有一个成立
2. 先确定备择假设,再确定原假设 3. 等号“=”总是放在原假设上
STAT• 统计方法来自描述统计推断统计
参数估计
假设检验
参数检验
非参数检6验-3
第一节 假设检验的基本问题
STAT
一、假设的陈述 二、两类错误与显著性水平 三、统计量与拒绝域 四、利用P值进行决策
6-4
STAT
假设的陈述
6-5
什么是假设?
(hypothesis)
STAT
• 对总体参数的具体 数值所作的陈述
原假设与备择假设
6-11
原假设
(null hypothesis)
STAT
1. 研究者想收集证据予以反对的假设 2. 又称“0假设” 3. 总是有符号 , 或 4. 表示为 H0
– H0 : = 某一数值
– 指定为符号 =, 或
– 例如, H0 : 10cm
6-12
备择假设
4. 因研究目的不同,对同一问题可能提出不同 的假设(也可能得出不同的结论)
6-17
STAT
双侧检验与单侧检验
6-18
双侧检验与单侧检验
STAT
1. 备择假设没有特定的方向性,并含有符号“” 的假设检验,称为双侧检验或双尾检验(twotailed test)
2. 备择假设具有特定的方向性,并含有符号“>” 或“<”的假设检验,称为单侧检验或单尾检验 (one-tailed test)
我认为这种新药的疗效 比原有的药物更有效!
– 总体参数包括总体均值、 比率、方差等
– 分析之前必须陈述
6-6
什么是假设检验?
(hypothesis test)
STAT
1. 先对总体的参数(或分布形式)提出某种假 设,然后利用样本信息判断假设是否成 立的过程
2. 有参数检验和非参数检验 3. 逻辑上运用反证法,统计上依据小概率
– 备择假设的方向为“<”,称为左侧检验 – 备择假设的方向为“>”,称为右侧检验
6-19
双侧检验与单侧检验
(假设的形式)
STAT
假设
单侧检验 双侧检验
左侧检验 右侧检验
原假设 H0 : = 0 H0 : 0 H0 : 0
备择假设 H1 : ≠0 H1 : < 0 H1 : > 0
(决策结果) STAT
H0: 无罪 假设检验就好像一场审判过程
统计检验过程
陪审团审判
裁决
实际情况
无罪
有罪
无罪
正确
错误
有罪
错误
正确
H0 检验
决策
实际情况 H0为真 H0为假
未拒绝H0
正确决策
(1 – )
第Ⅱ类错
误( )
拒绝H0
第Ⅰ类错 正确决策
H0 : 4000 H1 : < 4000 6-15
提出假设
(例题分析)
STAT • 【例】一家研究机构估计,某县60岁以下人群中初中及
其以下文化程度的人口所占比重超过10%。为验证这一 估计是否正确,该研究机构随机抽取了一个样本进行检 验。试建立用于检验的原假设与备择假设。
解:研究者想搜集证据予以支持的假 设是“该县60岁以下人群中初中及其 以下文化程度的人口所占比重超过 10%”。于是原假设和备择假设应设 定为:
STAT
第一节 假设检验的一般问题 第二节 一个总体参数的假设检验 第三节 两个总体参数的假设检验
6-1
学习目标
STAT
1. 假设检验的基本思想和原理 2. 假设检验的步骤 3. 一个总体参数的检验 4. 两个总体参数的检验 5. P值的计算与应用
6-2
假设检验在统计方法中的地位
H0 : 10cm H1 : 10cm
6-14
提出假设
(例题分析)
STAT • 【例】某厂家声称,所生产的某品牌灯管寿命不低于
4000小时,经销商在对该灯管经销前,有关研究人员 想通过抽检其中的一批灯管来验证该生产厂家的声称 是否属实。试建立用于检验的原假设和备择假设。
解:研究者想搜集证据予以证明的 假设应该是“灯管寿命低于4000小 时”。于是原假设和备择假设应设 定为
... 因此我们拒绝
假设 = 150g
... 如果这是总 体的假设均值
145g = 150g H0
样本均值
6-9
假设检验的过程
总体
提出假设
我认为灌装土豆片 的净含量是150g
抽取随机样本
x均= 值145g
STAT
作出决策 拒绝假设 别无选择!
6-10
STAT
STAT
• 【例】一种电子元件的生产标准是直径为10cm,为对生 产过程进行控制,质量检测人员定期对一台加工设备检 查,确定这台设备生产的电子元件是否符合标准要求。 如果元件的平均直径大于或小于10cm,则表明生产过程 不正常,必须进行调整。试建立用来检验生产过程是否 正常的原假设和备择假设
解:研究者想收集证据予以证明的假设应 该是“生产过程不正常”。建立的原假设 和备择假设为
(alternative hypothesis)
STAT
1. 研究者想收集证据予以支持的假设 2. 也称“研究假设” 3. 总是有符号 , 或 4. 表示为 H1
– H1 : <某一数值,或 某一数值 – 例如, H1 : < 10cm,或 10cm
6-13
提出假设
(例题分析)
6-20
STAT
两类错误与显著性水平
6-21
假设检验中的两类错误
• 1. 第Ⅰ类错误(弃真错误)
– 原假设为真时拒绝原假设
– 第Ⅰ类错误的概率记为
• 被称为显著性水平
• 2. 第Ⅱ类错误(取伪错误)
– 原假设为假时未拒绝原假 设
– 第Ⅱ类错误的概率记为
(Beta)
STAT
6-22
假设检验中的两类错误
原理
6-7
假设检验中的小概率原理
STAT
• 什么小概率? • 1. 在一次试验中,一个几乎不可能发生
的事件发生的概率 • 2. 在一次试验中小概率事件一旦发生,
我们就有理由拒绝原假设 • 3. 小概率由研究者事先确定
6-8
假设检验的基本思想
(运用小概率事件原理的反证法)
STAT
抽样分布
这个值不像我们应该 得到的样本均值 ...
H0 : 10% H1 : 10%
*如果由你来验证该研究所的观点,该
如何写备择假设?
6-16
提出假设
(结论与建议)
STAT
1. 原假设和备择假设是一个完备事件组,而且 相互对立
– 在一项假设检验中,原假设和备择假设必有一 个成立,而且只有一个成立
2. 先确定备择假设,再确定原假设 3. 等号“=”总是放在原假设上
STAT• 统计方法来自描述统计推断统计
参数估计
假设检验
参数检验
非参数检6验-3
第一节 假设检验的基本问题
STAT
一、假设的陈述 二、两类错误与显著性水平 三、统计量与拒绝域 四、利用P值进行决策
6-4
STAT
假设的陈述
6-5
什么是假设?
(hypothesis)
STAT
• 对总体参数的具体 数值所作的陈述
原假设与备择假设
6-11
原假设
(null hypothesis)
STAT
1. 研究者想收集证据予以反对的假设 2. 又称“0假设” 3. 总是有符号 , 或 4. 表示为 H0
– H0 : = 某一数值
– 指定为符号 =, 或
– 例如, H0 : 10cm
6-12
备择假设
4. 因研究目的不同,对同一问题可能提出不同 的假设(也可能得出不同的结论)
6-17
STAT
双侧检验与单侧检验
6-18
双侧检验与单侧检验
STAT
1. 备择假设没有特定的方向性,并含有符号“” 的假设检验,称为双侧检验或双尾检验(twotailed test)
2. 备择假设具有特定的方向性,并含有符号“>” 或“<”的假设检验,称为单侧检验或单尾检验 (one-tailed test)
我认为这种新药的疗效 比原有的药物更有效!
– 总体参数包括总体均值、 比率、方差等
– 分析之前必须陈述
6-6
什么是假设检验?
(hypothesis test)
STAT
1. 先对总体的参数(或分布形式)提出某种假 设,然后利用样本信息判断假设是否成 立的过程
2. 有参数检验和非参数检验 3. 逻辑上运用反证法,统计上依据小概率
– 备择假设的方向为“<”,称为左侧检验 – 备择假设的方向为“>”,称为右侧检验
6-19
双侧检验与单侧检验
(假设的形式)
STAT
假设
单侧检验 双侧检验
左侧检验 右侧检验
原假设 H0 : = 0 H0 : 0 H0 : 0
备择假设 H1 : ≠0 H1 : < 0 H1 : > 0
(决策结果) STAT
H0: 无罪 假设检验就好像一场审判过程
统计检验过程
陪审团审判
裁决
实际情况
无罪
有罪
无罪
正确
错误
有罪
错误
正确
H0 检验
决策
实际情况 H0为真 H0为假
未拒绝H0
正确决策
(1 – )
第Ⅱ类错
误( )
拒绝H0
第Ⅰ类错 正确决策
H0 : 4000 H1 : < 4000 6-15
提出假设
(例题分析)
STAT • 【例】一家研究机构估计,某县60岁以下人群中初中及
其以下文化程度的人口所占比重超过10%。为验证这一 估计是否正确,该研究机构随机抽取了一个样本进行检 验。试建立用于检验的原假设与备择假设。
解:研究者想搜集证据予以支持的假 设是“该县60岁以下人群中初中及其 以下文化程度的人口所占比重超过 10%”。于是原假设和备择假设应设 定为: