飞机结构设计中的稳定性研究及分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞机结构设计中的稳定性研究及分析
本文针对飞机结构设计中稳定性的研究,将从飞机结构设计相关概述入手,对飞机结构设计中的稳定性进行深入分析,以此推动飞机设计行业的发展。
通过文章分析得知,飞机结构设计稳定性应从三个方面入手,希望本文的研究,能为飞机结构设计提供参考性意义。
标签:飞机结构;稳定性;机身结构
前言:作为飞机设计的重点内容,结构是否稳定对飞行安全具有重要影响,一旦结构的稳定性出现问题,不仅會增加飞机设计的风险,而且会影响飞行安全,进而威胁机组人员和乘客的生命安全。
目前,机身结构一般采用半硬壳形式,但此种结构仍然存在着一定的稳定性风险,需要对结构设计中的稳定性进行深入分析,方能完善飞机的稳定性能和安全性能。
1 飞机结构设计相关概述
何谓飞机结构设计,即对飞机承受荷载和传递荷载的系统进行设计,既是飞机的基础部分,也是飞机设计的重点内容,其不仅影响飞机设计的成本和安全,而且对飞机的多种功能也有一定程度的影响。
结构设计的内容较为复杂,主要对以下六个方面进行分析:一为飞机的安全系数;二为空气动力学的具体要求;三为结构的完整性;四为飞机的寿命周期费用;五为飞机的劳损性;六为飞机的稳定性。
在此六个方面中,一旦有一个方面未达到飞机结构设计的标准,便会干扰飞机的正常运行,进而使飞机的整体性能下降,飞行的安全性也无法得到有效保障。
另外,在飞机的基本结构中,机身壁板的稳定性、机身蒙皮的稳定性一旦无法保证,便会对飞机的性能造成严重影响,甚至会发生飞机解体的情况,从而引发安全事故。
2 飞机结构设计中的稳定性研究
2.1机身结构稳定性。
飞机结构设计的关键为机身结构的稳定性,对机身结构设计的稳定性进行分析,不仅能够明确保障飞机在多种荷载下的工作应力,具体了解飞机失稳的客观条件,而且能够对结构形式进行适当的选择。
机身结构稳定性研究主要分为两点,具体内容如下:(1)对记忆结构的断裂、疲劳、损伤容限进行研究,并依据实际情况进行适当地调整,这样做主要是为了加强机身的承载能力;(2)对机身结构的临界失稳应力进行研究,依据具体的材料参数,对结构的临界失稳应力进行塑性调整,继而根据调整后的材料参数,最终得出结构的承载能力和临界失稳应力,到此才算是完成了结构的调整工作,这样做一是为了提升结构材料的利用率,二是为了降低结构的自身重量,从而提高整体稳定性。
2.2机身壁板结构稳定性。
机身壁板结构的稳定性直接决定着机身结构的稳定性,间接决定着飞机结构的稳定性,因此,机身壁板结构的稳定性研究也尤为重要。
关于机身壁板结构稳定性研究的理论主要有两个,一为小挠度稳定性理论,二为大挠度稳定性理论,在对机身壁板稳定性进行研究的过程中,应以以上两种理论为基础,再结合飞机设计的实际情况,依据机身蒙皮、长桁之间的连接特点,将机身壁板分为四种:一种是整体壁板,一种是胶结壁板,一种为复合材料壁板,另一种为铆接壁板。
本文选用机身壁板结构中的铆接壁板对结构稳定性进行分析。
铆接壁板稳定性主要通过薄板弯曲微分方程进行计算,具体公式如下:
利用此方程式进行计算,能够得出平板屈曲临界荷载的具体表现力。
由于不同的壁板其非承载边界的支持状态是不同的,所以壁板的边界条件、弯曲形态均具有大小不同的明显差异,上述公式能够求出机身壁板的具体边界条件,而后在根据壁板和蒙皮的实际情况,计算出机身壁板的临界应力和蒙皮的临界应力,具体公式如下:
根据上述临界应力公式,再结合HJB830102进行壁板与蒙皮临界应力的塑性调整及修正,进而得出一个具体的数值[1]。
另外,在飞机壁板结构的设计中,不仅要对临界应力进行研究,而且还要对各种材料参数、具体失稳情况进行研究,并根据以往的飞机结构设计经验,确定壁板的尺寸大小。
对于铆接壁板而言,控制应力的关键为壁板总体的失稳临界应力,因此,控制好壁板的总体失稳情况,能够保证铆接壁板的稳定性,从而保证飞机整体结构的稳定。
2.3飞机下部框缘稳定性。
对飞机下部框缘进行改进和优化,能够提升飞机整体的稳定性,保障飞机结构的性能得到稳定发挥。
本文以某水上飞机船体结构为例,对飞机下部框缘稳定性进行分析。
对于水上飞机来说,水面着陆时,飞机的下部结构便会承受较大的水面压力,如若飞机下部结构的承载能力较弱,其所承受的着水荷载便会使飞机发生着水情况,进而影响飞机的着陆安全[2]。
船体结构的下部框缘大都选择7050-T7451材料的浮框形式,但该形式下的外框缘较容易发生稳定性变化的情况,从而影响飞机安全。
根据相应的稳定性变化形式,外框缘的稳定变化可看成平板局部屈曲,公式如下:
在利用此公式计算时,要将材料的具体参数代入到公式中,求出外框缘应当调整的高度与厚度,继而进行调整计算,得出具体的屈曲临界应力。
某水上飞机船体结构的框缘高度为6厘米,厚度为0.5厘米,对其进行调整后,高度变为4.6厘米,厚度变为3.6厘米,对调整前后的失稳应力进行比较;调整后,下框外缘的承载能力有所改善,下框外缘的失稳应力也有所提升将近50%;提高了材料的利用率便,降低飞机重量和研制成本,基本达到了提升飞机整体稳定性的目的。
结论:
为了确保飞机结构的稳定性,本文将飞机结构设计中的稳定性研究及分析作为主要研究内容,在阐述飞机结构设计的基础上,对机身结构稳定性、机身壁板结构稳定性、飞机下部框缘稳定性做出系统探究,研究结果表明,机身对飞机整体结构的稳定性具有重大影响。
在未来,还需进一步加强对飞机结构设计中的稳定性的研究及分析,进而确保飞机结构设计工作的顺利进行。
参考文献
[1] 郑建勇.探究力学在飞机结构设计中的应用与发展[J].内燃机与配件,2018(05):226-227.
[2] 张昌维.浅谈大飞机结构设计中的稳定性问题[J].黑龙江科技信息,2015(16):102.。