五年级上册数学竞赛试题-奥数经典例题一(含解析)
五年级数学奥数竞赛试卷及答案一(1)
五年级数学奥数竞赛试卷及答案一(1)一、拓展提优试题1.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块2.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.3.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.4.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.5.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.6.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.7.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.8.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.11.观察下表中的数的规律,可知第8行中,从左向右第5个数是.12.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?13.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是 .14.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了 千克面粉.15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.【参考答案】一、拓展提优试题1.64[解答]设长方体的长、宽、高分别为,,l m n (不妨设l m n ≥≥),容易知道只有一面染色的小正方体只有每个面上可能有一些。
五年级上册数学竞赛试题-奥数经典例题
五年级上册数学竞赛试题-奥数经典例题例1:甲、乙二人进行短跑训练,如果甲让乙先跑40米,则甲需要跑20秒追上乙;如果甲让乙先跑6秒,则甲仅用9秒就能追上乙。
求:甲、乙二人的速度各是多少?解答:甲、乙两人的速度差:40÷20=2(米/秒)(乙速:2×9÷6=3(米/秒)甲速:3+2=5(米/秒)。
答:甲、乙二人的速度分别为5米/秒和3米/秒。
解析:如果甲让乙先跑40米,然后甲出发追乙,这40米就是二人间的路程差,甲用20秒追上乙是追及时间,根据速度差=路程差÷追及时间,可求甲、乙二人的速度差,即40÷20=2(米/秒)。
如果甲让乙先跑6秒,则甲需要9秒追上乙,这一过程中追及时间是9秒,由上一过程的结论可求路程差: 2X9=18(米),这18米就是乙先跑6秒所跑过的路程,所以可求出乙的速度是18÷6=3(米/秒),那么甲速可求。
例2:把一块棱长12分米的正方体钢坯,熔铸成截面是9平方分米的长方体钢材,铸成的钢材长度是多少?解答:12×12×12÷9=1728÷9=192(分米)答;铸成的钢材长度是192分米。
解析:钢材从正方体变成长方体,体积保持不变。
正方体的体积是1728立方分米,那么长方体的体积也是1728立方分米。
又知道长方体的截面积,则可求出长度。
例3:3头牛和4只羊一天共吃草77千克,6头牛和5只羊一天共吃草130千克。
每头牛、每只羊每天各吃草多少千克?解答:(77×2-130)÷(4×2-5)=24÷3=8(千克)(77-8×4)÷3=45÷3=15(千克)答:每头牛每天吃草15千克,每只羊每天吃草8千克解析:本题中,牛的头数和羊的只数都不相同,这样比较时不能直接消去一个量。
我们观察比较发现,后面条件中的6头牛是前面条件中3头牛的两倍。
五年级上册数学竞赛奥数题
五年级上册数学竞赛奥数题1. 问题描述在一批玩具糖果中,有红色、黄色、绿色三种颜色的圆球,其中红色球的数量是黄色球的3倍,而绿色球的数量是红色球数量的一半。
如果总共有72个球,那么红色球的数量是多少个?解析:设红色球的数量为x个,则黄色球的数量为3x个,绿色球的数量为x/2个。
根据题意可知,红、黄、绿三种颜色的球数量之和为72,即:x + 3x + x/2 = 72将分数转为整数:2x + 6x + x = 1449x = 144x = 16答案:红色球的数量为16个。
2. 问题描述甲乙两个人玩奥数游戏,甲每次都能正确回答1道题目并得到5分,乙每次都能正确回答2道题目并得到8分。
他们各自作答20道题目,共得到了118分。
请问甲和乙各自回答正确的题目数量各是多少道?解析:设甲回答正确的题目数量为x,乙回答正确的题目数量为y。
根据题意可知,甲每次回答1道题目得5分,乙每次回答2道题目得8分,他们各自作答20道题目共得到了118分,即:5x + 8y = 118又因为甲和乙各自作答20道题目,即:x + y = 20解方程组:5x + 8y = 118 --(1)x + y = 20 --(2)由(2)式得到 x = 20 - y,代入(1)式中:5(20 - y) + 8y = 118100 - 5y + 8y = 1183y = 18y = 6将y的值代入(2)式中,可得:x + 6 = 20x = 14答案:甲回答正确的题目数量为14道,乙回答正确的题目数量为6道。
3. 问题描述小明和小红合作参加了一次数学竞赛,他们需要在100秒内计算出尽可能多的数字。
小明每秒能计算3个数字,小红每秒能计算2个数字。
他们一起计算了100秒后,小明和小红计算的数字总数之和是多少?解析:小明每秒计算3个数字,小红每秒计算2个数字,他们一起计算了100秒后,设小明计算了x个数字,小红计算了y个数字。
根据题意可知:3x + 2y = 总数字个数又因为他们一起计算了100秒,即:x + y = 100解方程组:3x + 2y = 总数字个数 --(1)x + y = 100 --(2)由(2)式得到 x = 100 - y,代入(1)式中:3(100 - y) + 2y = 总数字个数300 - 3y + 2y = 总数字个数300 - y = 总数字个数答案:小明和小红计算的数字总数之和为300。
5年级奥数题及答案
5年级奥数题及答案题目一:数字逻辑题一个数字由5个不同的数字组成,其中每个数字都不相同,且这个数字可以被3或9整除。
这个数字是什么?解答:首先,我们知道一个数字如果能被3整除,那么这个数字的各位数字之和必须能被3整除。
其次,一个数字如果能被9整除,那么这个数字本身必须能被9整除。
考虑到这个数字由5个不同的数字组成,我们可以从1到9中选择5个不同的数字。
由于数字由5位组成,我们可以通过排除法来找到符合条件的数字。
我们可以从最小的5位数开始尝试,即10234,但这个数字不能被9整除。
继续尝试,直到我们找到符合条件的数字。
经过尝试,我们发现数字12346可以被3整除(1+2+3+4+6=16,16可以被3整除),同时也能被9整除(因为12346本身可以被9整除)。
所以这个数字是12346。
题目二:几何题一个长方形的长是宽的两倍,如果将这个长方形的长和宽都增加5厘米,那么新的长方形的面积比原来的长方形面积大85平方厘米。
求原来的长方形的长和宽。
解答:设原来的长方形的宽为x厘米,那么长就是2x厘米。
原来的面积是x * 2x = 2x^2平方厘米。
增加5厘米后,新的长为2x + 5厘米,新的宽为x + 5厘米,新的面积是(2x + 5) * (x + 5)平方厘米。
根据题意,新的面积比原来的面积大85平方厘米,所以我们有方程:(2x + 5) * (x + 5) - 2x^2 = 85展开并简化方程:2x^2 + 10x + 25 + 5x + 25 - 2x^2 = 8515x + 50 = 8515x = 35x = 35 / 15x = 7 / 3由于长和宽必须是整数,我们可以得出x = 3厘米(因为7 / 3不是整数,我们取最接近的整数3)。
那么原来的长方形的长是2 * 3 = 6厘米。
题目三:组合问题有5个不同的小球,分别标记为A、B、C、D和E。
现在要将这5个小球放入3个不同的盒子中,每个盒子至少有一个小球。
小学五年级数学奥林匹克竞赛题(含答案)
小学五年级数学奥林匹克竞赛题(含答案)一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。
答案:221.766。
解析:原式=(2-0.004)+(20-0.03)+(200-0.2)=222-(0.004+0.03+0.2)=221.766。
2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。
答案:103.25。
解析:原式=1.1⨯(1+3+...+9)+1.01⨯(11+13+ (19)=1.1⨯25+1.01⨯75=103.25。
3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。
答案:46.8。
解析:4.68×(2.89+6.11+1)=46.84. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。
答案:1748。
解析: 原式=17.48×37-17.48×19+17.48×82=17.48×(37-19+82)=17.48×100=1748。
5. 计算 1.25⨯0.32⨯2.5=_____。
答案:1。
解析:原式=(1.25⨯0.8)⨯(0.4⨯2.5)=1⨯1=1。
6. 计算 75⨯4.7+15.9⨯25=_____。
答案:750。
原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。
7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。
答案:2867。
原式=28.67⨯67+32⨯28.67+28.67⨯(20⨯0.05)=28.67⨯(67+32+1)=28.67⨯100=2867。
(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。
答案:原式=172.4⨯6.2+(1724+1000)⨯0.38=172.4⨯6.2+1724⨯0.38+1000⨯0.38=172.4⨯6.2+172.4⨯3.8+380=172.4⨯(6.2+3.8)+380=172.4⨯10+380=1724+380=2104。
五年级上册奥数含真题(含答案)
五年级上册奥数含真题(含答案)五年级上册奥数含真题(含答案)第一题在一个小镇里,有一家卖糖果的甜品店。
店老板有4个特别的盒子装糖果。
第1个盒子装了2个水果糖,4个摇扣糖和3个口香糖。
第2个盒子装了6个口香糖,8个巧克力糖和3个水果糖。
第3个盒子装了4个摇扣糖和8个巧克力糖。
第4个盒子装了3个口香糖,5个摇扣糖和2个水果糖。
如果一个袋子里必须有一个以上的糖果,那么能够从这4个盒子里一共取出多少种不同的袋子?(A) 96(B) 104(C) 112(D) 120答案:C第二题你需要从10个整数中选出五个,使得这5个数的平均数是13。
那么这个10个整数的平均数是多少?(A) 12(B) 13(C) 14(D) 15答案:C第三题下面的对话中,每个字母代表一个单词。
如果在对话中大约有三分之一的字母被改变,则这段对话一般情况下是什么?- 何:Hey Joe, what's up?- 乔:Not much. I have a test tomorrow.- 何:In what?- 乔:Biology. What are you up to?- 何:Just hanging out.- 乔:All right. I better get back to my studying.(A) 两个人正在聊天。
(B) 两个人正在争吵。
(C) 两个人正在讨论问题。
(D) 无法得知。
答案:D第四题下面的对话中,棕色的线代表Bob说的话,蓝色的线代表Sue 说的话,箭头表示连续引用。
Bob说了什么?Bob:Actually, I can’t this weekend. I have a big test on Monday, so I need to study all weekend.Sue:Oh, that’s too bad. Can we study together then?Bob:Sure, that would be great.(A) 我不能看电影。
小学五年级奥数计算题竞赛试题(含答案与解析)
小学五年级奥数计算题竞赛试题(含解析)(时间:30分钟满分:100分)姓名得分一、口算训练(60题,每题0.5分,共计30分)3.6×102= 25×45×0= 9.5-7.3= 1000-23.48= 3.5×12= 0.9×9=117÷1.3= 22.8+75.7= 167.5-83.6= 0.56×28= 25×44=1-0.72=1÷0.01= 3.6÷0.06= 5.68+0.42= 25×2.2=179-147.3=674÷4=3.2×0.4=66.4+878.5=0.79×199=63÷100=100-35.23=0.47+0.13=3.9+17.34=82-7.2=0.34×50=4.4-(4.4-9.3)=17.2×5=4.8÷0.16=7.5+787.78=14÷3.5=21.66+0.44=0.62-0.34=2010÷15=480÷0.4=1÷2.5=7.2×7=225+62.6=912-44.7=12.5×8=1.2+0.08=3.6÷2.4=136.8-23.8=32×15=8.4÷7=0.35×0.2=9.6+4.8-3.6=5.68+0.42=17.2+34.8=7.8+0.22=47.8-7.45=1.32×6=13×0.7=7.8÷(0.78×5)=8.8÷0.11=430-283=0.3×3.6=23×100.1=222.2+173.9=二、计算题(12题,每题5分,共计60分)要求:能用简便算法的就用简便算法,递等式呈现过程。
最新小学五年级数学奥数竞赛试卷及答案
最新小学五年级数学奥数竞赛试卷及答案一、拓展提优试题1.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.3.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.4.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.5.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.6.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.7.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.8.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.9.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.10.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.11.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.12.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.13.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.14.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.15.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.16.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC17.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.18.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.19.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.20.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.21.鸡与兔共100只,鸡的脚比兔的脚多26只.那么,鸡有只.22.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.23.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A ,B ,C 满足:①A +B +C =79②A ×A =B ×C 那么,这个自然数是 .24.已知13411a b -=,那么()20132065b a --=______。
五年级数学上册典型奥数题及答案解析
五年级数学上册典型奥数题及答案解析1、有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍,大、中、小筐共有苹果多少千克。
解:设小筐装苹果X千克。
4X=2X+162X=16X=88×2=16(千克)8×4=32(千克)答:小筐装苹果8千克,中筐装苹果16千克,大筐装苹果32千克。
2、参加校学生运动会团体操表演的运动员排成一个正方形队列,如果要使这个正方形队列减少一行和一列,则要减少33人,参加团体操表演的运动员有多少人?解:设团体操原来每行X人。
2X-1=332X=34X=1717×17=289(人)答:参加团体操表演的运动员有289人。
3、有两根绳子,长的比短的长1倍,现在把每根绳子都剪掉6分米,那么长的一根就比短的一根长两倍。
问:这两根绳子原来的长各是多少?1+1=21+2=3解:设原来短绳长X分米,长绳长2X分米。
(X-6)×3=2X-63X-18=2X-6X=122X=2×12=24答:原来短绳长12分米,长绳长24分米。
4、甲乙两数的和是32,甲数的3倍与乙数的5倍的和是122,求甲、乙二数各是多少?解:设甲数为X,乙数为(32-X)。
3X+(32-X)×5=1223X+160-5X=1222X=38X=1932-X=32-19=13答:甲数是19,乙数是13。
5、30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚?9角9分=99分解:设2分硬币有X枚,5分硬币有(30-X)枚。
2X+5×(30-X)=992X+150-5X=993X=51X=1730-X=30-17=136、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费2.60元,搬运中打碎了几只?2.60元=260分解:设搬运中打碎了X只。
3×(100-X)-5X=260300-3X-5X=2608X=40X=5答:搬运中打碎了5只。
五年级上册数学竞赛奥数题
题目1:某校图书馆中有5本数学书、7本语文书和3本英语书,现要从中挑选一本书,问挑选中出是英语书的概率是多少?解析:总共有5+7+3=15本书,其中有3本是英语书,所以挑选中出是英语书的概率是3/15=1/5。
题目2:甲能拨动一个半小时筷子100根,乙能拨动一个小时筷子多少根?解析:甲拨动一个半小时筷子100根,即1.5小时是100根,那么1小时是100根/1.5小时=66.67根。
所以乙能拨动一个小时筷子66.67根(取整数为67根)。
题目3:李华买了一些苹果,第一天吃掉剩下的苹果的三分之一,第二天又吃掉剩下的苹果的三分之一,如此下去第n天吃掉剩下的苹果的三分之一。
问第10天李华剩下多少苹果?解析:设第一天有x个苹果,第二天剩下的苹果为x(1-1/3)=2/3x,第三天剩下的苹果为(2/3x)(1-1/3)=(2/3)^2x,如此类推,第n天剩下的苹果为(2/3)^(n-1)x。
带入n=10,剩下的苹果为(2/3)^9x。
题目4:一辆汽车从A地出发,以100km/h的速度行驶到B地,然后以80km/h的速度返回到A 地。
整个过程共用时10小时。
求AB两地的距离。
解析:设AB两地的距离为x km,那么从A到B的时间为x/100小时,从B返回到A的时间为x/80小时。
根据题意,总时间为10小时,所以x/100+x/80=10。
解方程得到x=400。
题目5:某种蔬菜每1公斤售价5元,买30公斤可以打9折,买50公斤可以打8.5折,那么买80公斤需要多少元?解析:买30公斤9折,买50公斤8.5折。
所以30*(5*0.9)+50*(5*0.85)=270+212.5=482.5元,买80公斤需要482.5元。
五年级奥数竞赛题及答案
五年级奥数竞赛题及答案【题目一】题目:小明有3个苹果,小红有5个苹果,他们决定将苹果平均分给5个小朋友。
问每个小朋友能得到多少个苹果?答案:首先计算小明和小红一共有多少个苹果,即 3 + 5 = 8个苹果。
然后将8个苹果平均分给5个小朋友,每个小朋友可以得到8 ÷ 5 = 1.6个苹果。
但是苹果不能分割,所以实际上每个小朋友可以得到1个苹果,剩余的3个苹果无法平均分配。
【题目二】题目:一个数字乘以3后再加上10,得到的结果是40。
求这个数字是多少?答案:设这个数字为x,根据题意,我们有方程 3x + 10 = 40。
解这个方程,首先将10移到等号右边,得到3x = 40 - 10,即3x = 30。
然后将两边同时除以3,得到x = 30 ÷ 3,即x = 10。
所以这个数字是10。
【题目三】题目:一个班级有48名学生,其中女生人数是男生人数的2倍。
问这个班级有多少名男生?答案:设男生人数为x,女生人数为2x。
根据题意,男生和女生的总人数是48,所以我们有方程 x + 2x = 48。
合并同类项,得到3x = 48。
然后将两边同时除以3,得到x = 48 ÷ 3,即x = 16。
所以这个班级有16名男生。
【题目四】题目:一个长方形的长是宽的3倍,如果长增加20厘米,宽增加5厘米,面积就增加了155平方厘米。
求原来的长方形的长和宽分别是多少?答案:设原来的长方形的宽为x厘米,那么长就是3x厘米。
根据题意,新的长方形的长为3x + 20厘米,宽为x + 5厘米。
新的面积减去原来的面积等于155平方厘米,即 (3x + 20) * (x + 5) - 3x * x = 155。
展开这个方程,我们得到 3x^2 + 15x + 20x + 100 - 3x^2 = 155。
简化后得到 35x + 100 = 155。
将100移到等号右边,得到35x = 155 - 100,即35x = 55。
五年级上学期30道奥数竞赛题(带答案)
五年级上学期30道奥数竞赛题(带答案)1.200.8×7.3-20.08×63 99999×77778+33333×66666=20.08×73-20.08×63 =99999×77778+33333×3×22222=20.08×(73-63)=99999×77778+99999×22222=20.08×10 =99999×(77778+22222)=200.8 =99999×100000=99999000002.一列火车从A站驶到B站的途中要经过5个站,则在这条线路上需要准备往返车票多少种?6+5+4+3+2+1=21(种)21×2=42(种)答:需要准备往返车票42种。
3.李伟骑车从家经购物中心到游乐场,全程需要3小时,若以同样的速度,他从家直接去游乐场,可以省多少时间?15+18=33(km)33÷3=11(km)22÷11=2(时)3-2=1(时)答:可以省1小时。
4.27人乘车去某地,可供租的车有两种:一种可乘八人,另一种可乘四人。
第一种车的租金是300元/天,第二种车的租金是240元/天。
怎样租车费用最少?27÷8=3(辆)……3(人)3×300=900(元)900+240=1140(元)答:租3辆大车和1辆小车划算。
5.10棵树栽成5行,要求每行4棵,怎么栽?请画图表示。
6.某商品的编号是一个三位数,现在有5个三位数874 765 123 364 925,其中每一个数与商品的编号恰好在同一位上有一个相同的数,那么这个商品的编号是多少?答:这个商品的编号是724。
7.有一块长方形地,面积是864平方米,长和宽的和是60米,长宽各是多少米?60×60-864×4=144(m2)144÷12=12(米)(60+12)÷2=36(m)(60-12)÷2=24(m)答:长是36米,宽是24米。
小学五年级上册奥数题(精选10篇)
小学五年级上册奥数题(精选10篇)1.小学五年级上册奥数题精选篇一1、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。
因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
2、甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24。
解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。
乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
3、一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。
坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11。
2.小学五年级上册奥数题精选篇二1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
五上册数学竞赛试题及答案
五上册数学竞赛试题及答案试题一:计算题题目:计算下列各题的结果。
1. 3.5 × 200 + 4.5 × 2002. (2.5 - 1.2) × 43. 7.8 + 2.3 - 5.1试题二:填空题题目:根据题目要求填入合适的数字或运算符。
1. 如果4 × □ = 32,那么□ 等于多少?2. 一个数的 3 倍是 45,这个数是□。
试题三:应用题题目:小华有一些邮票,他给小明 3 张邮票后,剩下的邮票是原来的一半。
小华原来有多少张邮票?试题四:图形题题目:一个正方形的边长是 6 厘米,求它的周长和面积。
试题五:逻辑推理题题目:有 5 个盒子,其中只有一个盒子里有金子。
每个盒子上都有一句话,但只有一句话是真的。
请根据以下线索找出哪个盒子里有金子。
1. 盒子 A 上写着:“金子不在盒子 B 里。
”2. 盒子 B 上写着:“金子不在盒子 C 里。
”3. 盒子 C 上写着:“金子在盒子 A 或 D 里。
”4. 盒子 D 上写着:“金子不在盒子 E 里。
”5. 盒子 E 上写着:“金子在盒子 A 或 B 里。
”答案:试题一:1. 3.5 × 200 + 4.5 × 200 = 14002. (2.5 - 1.2) × 4 = 4.83. 7.8 + 2.3 - 5.1 = 5试题二:1. 4 × □ = 32,那么□ = 82. 一个数的 3 倍是 45,这个数是 15试题三:小华原来有 6 张邮票。
试题四:周长= 4 × 6 = 24 厘米面积= 6 × 6 = 36 平方厘米试题五:根据逻辑推理,金子在盒子 D 里。
结束语:本次数学竞赛试题涵盖了计算、填空、应用、图形和逻辑推理等题型,旨在考查学生的综合数学能力。
希望同学们通过本次竞赛,能够发现自己的不足,加强学习,不断提高自己的数学素养。
小学五年级数学奥林匹克竞赛题(含答案)
小学五年级数学奥林匹克竞赛题(含答案)一、小数的巧算(一)填空题1.答案:2.答案:=1.1⨯25+1.01⨯75=103.25。
3.计算2.89⨯4.68+4.68⨯6.11+4.68=_____。
答案:46.8。
解析:4.68×(2.89+6.11+1)=46.84.计算17.48⨯37-17.48⨯19+17.48⨯82=_____。
答案:1748。
解析:5.答案:6.计算75⨯4.7+15.9⨯25=_____。
答案:750。
原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。
7.计算28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。
答案:原式8.=172.4⨯6.2+1724⨯0.38+1000⨯0.38=172.4⨯6.2+172.4⨯3.8+380=172.4⨯(6.2+3.8)+380=172.4⨯10+380=1724+380=2104。
9.。
答案:181是三位,11是两位,相乘后181⨯11=1991是四位,三位加两位是五位,因此1991前面还要添一个0,又963+1028=1991,所以0.1.蚁00...0181⨯0.00...011=0.00 (01991)963个01028个01992个0。
10.计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23。
答案:9个加数中,十位、个位、十分位、百分位的数都是1~9,所以,原式=11.11⨯(1+2+ (9)=11.11⨯45=499.95。
二、数的整除性(一)填空题1.四位数“3AA1”是9的倍数,那么A=_____。
答案:7。
解析:已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之。
设3+A。
2.答案:解析:11整除. 3.答案:, 4.能同时被2、5、7整除的最大五位数是_____。
小学五年级奥数竞赛数学竞赛试卷及答案图文百度文库
小学五年级奥数竞赛数学竞赛试卷及答案图文百度文库一、拓展提优试题1.如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD 比AD长2,那么三角形ABC的面积是.2.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米3.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.4.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.5.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.6.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.7.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.8.用0、1、2、3、4这五个数字可以组成个不同的三位数.9.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.10.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.11.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).12.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.13.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?14.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.15.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.【参考答案】一、拓展提优试题1.解:作CE ⊥AB 于E .∵CA =CB ,CE ⊥AB ,∴CE =AE =BE ,∵BD ﹣AD =2,∴BE +DE ﹣(AE ﹣DE )=2,∴DE =1,在Rt △CDE 中,CE 2=CD 2﹣DE 2=24,∴S △ABC =•AB •CE =CE 2=24,故答案为242.2800[解答] 设两地之间距离为S 。
五年级上册奥数含真题(含答案)
第一讲数的整除问题数的整除问题,内容丰富,思维技巧性强。
它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。
一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b (b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b|a.否则,称为a 不能被b整除,(或b不能整除a),记作b a。
如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。
例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。
2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
即:如果c|a,c|b,那么c|(a±b)。
例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
即:如果b|a,c|a,且(b,c)=1,那么bc|a。
例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。
性质4:如果c能整除b,b能整除a,那么c能整除a。
即:如果c|b,b|a,那么c|a。
例如:如果3|9,9|27,那么3|27。
3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数精典例题一
例1:
甲乙两车同时分别从两地相向而行。
甲车每小时行72千米,乙车每小时行64千米。
两车相遇时距全程的中点20千米。
两地之间相距多少千米?
解答:20×2÷(72-64)=40÷8=5(小时)……相遇时间
(72+64)×5=136×5=680(千米)
答:两地之间相距680千米。
解析:在相同的时间内,甲的速度快,行的路程多,比全程的一半多20千米,而乙则比全程的一半少20千米,所以甲应该比乙多行20×2=40(千米)。
而甲1小时比乙多行72-64=8(千米),多少小时甲比乙多行40千米呢?40÷8=5(小时),这就是他们行驶的时间,即相遇时间。
例2:
甲、乙、丙三人中,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A地,丙从B地同时相向出发,丙遇到乙后2分钟遇到甲,A、B两地相距多远?解答:(50+70)×2=240(米)
240÷(60一50)=24(分钟)
(60+70)×24=3120(米)
答:A、B两地相距3120米。
解析:丙与乙相遇时,甲与丙还相距一段路程,这段路程甲、丙还要行2分钟相遇,说明甲、丙还相距(50+70)X2=240(米)。
由于乙、丙相遇处在同一位置,所以240米也是甲、乙相距的路程,即甲、乙的路程差,根据路程差÷速度差=时间,列式240÷(60-50)=24(分),这也是乙、丙的相遇时间,就可求出全程。
例3:
3头牛和4只羊一天共吃草77千克,6头牛和5只羊一天共吃草130千克。
每头牛、每只羊每天各吃草多少千克?
解答:(77×2-130)÷(4×2-5)=24÷3=8(千克)
(77-8×4)÷3=45÷3=15(千克)
答:每头牛每天吃草15千克,每只羊每天吃草8千克
解析:本题中,牛的头数和羊的只数都不相同,这样比较时不能直接消去一个量。
我们观察比较发现,后面条件中的6头牛是前面条件中3头牛的两倍。
把前面的牛的头数和羊的只数各扩大2倍得6头牛和8只羊,吃的草也扩大2倍是154千克。
这样再与后面比较就可以消去牛吃的草。
例4:
五(2)班同学去公园划船。
如果租来的船每条船坐4人,则有7人不能上船;如果每条船坐5人,则多一条船。
五(2)班租了多少条船?共有学生多少人?
解答:设租了x条船。
4x+7=5(x-1)
4x+7=5x-5
X=12
4×12+7=55(人)
答:五(2)班租了12条船,共有学生55人。
解析:解答这道题目,可以用盈亏问题的思路来思考,如果用列方程来解答,同样很合适。
前后两种安排座位的方法总人数是不变的。
如果设租了X条船,那么总人数既可以表示为(4x+7)人,也可以表示为5(x-1)人,就可以列出方程。
例5:
在平行的轨道上两列火车齐头并进。
快车车长320米,每秒行25米,慢车车长280米,每秒行20米,问:以并头并进经过多少时间快车完全超过慢车?
解答:320÷(25—20)=320÷5=64(秒)
答:从齐头并进经过64秒快车完全超过慢车。
解析:齐头并进的快车从慢车旁通过,其实就是快车的车尾去追赶慢车车头的过程。
追及的路程是快车的车长即320米。
我们用追及路程÷速度差=追及时间的关系式,可以列出算式。
例6:
王春、陈刚、殷华当中有一个人做了好事,李老师在了解情况的时候,他们三个人分别说了下面几句话:
陈刚:“我没做这件事,殷华也没做这件事。
”
xx:我没做这件事,xx也没做这件事”
殷华:“我没做这件事,也不知道谁做了这件事。
”
当老师一再追问时,得知他们都讲了一句真话,那么做好事的人是谁?
解答:xx做了这件好事。
解析:如果王春做了这件好事,则陈刚的两句话都是真话,不合题意;如果殷华做了这件好事,则王春的两句话都是真话,不合题意;如果陈刚做了这件好事,符合题意。
例7:
求一个最小的自然数A,使A×13的积的末四位数字组成的四位数是1999.
解答:因为11999=10010+1989,且1989=13×153,1001=13×77,都是13的倍数。
故11999也能被13整除,且最小的。
所以A=11999÷13=923
解析:本题主要是应用能被7,13整除的数的特征,然后逐步推断,缩小范围,最终得到答案。
例8:
加工某种机器零件,要经过三道工序。
第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?
解答:[3,10,5]=5×3×2=30。
30÷3=10(人)
30÷10=3(人)
30÷5=6(人)。
答:第一道工序至少要分配10人,第二道工序至少要分配3人,第三道工序至少要分配6人。
解析:要使加工生产均衡,各道工序生产的零件总数应是3,10和5的公倍数。
要求三道工序“至少”要多少工人,要先求3,10和5的最小公倍数。
例9:
在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(右图),求这个立体图形的表面积。
解答:上下方向: 5×5×2=50(平方分米)
侧面: 5×5×4=100(平方分米)
4×4×4=64(平方分米)
这个立体图形的表面积为:
50+100+64=214(平方分米)。
答:这个立体图形的表面积为214平方分米。
解析:我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面。
这样这个立体图形的表面积就可以分成这样两部分:
上下方向:大正方体的两个底面;
侧面:小正方体的四个侧面,大正方体的四个侧面。
例10:
一只长15分米、宽12分米的长方体玻璃缸中,有10分米深的水,放入一块棱长为3分米的正方体铁块,铁块完全浸没在水中,并且未溢出,这时水面升高了多少厘米?解答:3×3×3=27(立方分米)
27÷180=0.15(分米)
0.15分米=1.5厘米
答:水面升高了1.5厘米。
解析:铁块完全浸没在水中,玻璃缸中的水高度上升,上升部分水的体积就是正方体铁块的体积。
所以先求出正方体铁块的体积,也就是上升部分水的体积,用正方体铁块的体积除以长方体容器的底面积,就是水上升的高度了。