变量与函数正比例函数讲义

合集下载

正比例函数ppt课件

正比例函数ppt课件

当k>0时,图像位于第一象限和 第三象限;当k<0时,图像位于
第二象限和第四象限。
正比例函数的情势
正比例函数的一般情 势为y=kx,其中k是 比例常数。
当x=0时,y=0,这 是正比例函数图像上 的一个重要点。
当k>0时,y随x的增 大而增大;当k<0时 ,y随x的增大而减小 。
正比例函数的图像
05 练习与问题解答
CHAPTER
基础练习题
总结词:理解正比例函数 的定义和性质
ห้องสมุดไป่ตู้
什么是正比例函数?
正比例函数的图像是怎样 的?
详细描写
正比例函数的一般情势是 什么?
正比例函数有哪些性质?
进阶练习题
总结词:掌握正比例函数的解析式和图像变换
01
02
详细描写
如何确定正比例函数的解析式?
03
04
如何通过平移得到正比例函数的图像?
在经济中的应用
收入与工作量的关系
价格与需求量的关系
在一定范围内,工资与工作量成正比 ,即收入 = 基本工资 + 计时工资 × 工作量。
在供需平衡下,价格与需求量成正比 ,即需求量 = 价格 / 边际效用。
成本与产量的关系
在规模经济下,单位产品的成本与产 量成反比,即成本 = 固定成本 + 可 变成本 / 产量。
在日常生活中的应用
身高与体重的关系
一般来说,身高越高的人体重也越重,但这并不是严格的正比关 系。
光照强度与植物生长的关系
在适宜的光照条件下,植物的生长速度与光照强度成正比。
药物剂量与疗效的关系
在一定范围内,药物剂量越大,疗效越好,但这也不是绝对的,需 要斟酌到副作用和个体差异等因素。

正比例函数知识点总结

正比例函数知识点总结

正比例函数知识点总结正比例函数是数学中一种重要的函数形式,也是高中数学中常见的函数类型之一。

它是指两个变量之间的关系是成正比的,即当一个变量增大(或减小)时,另一个变量也相应地增大(或减小)。

下面将从定义、性质、图像、应用等方面对正比例函数进行总结。

一、定义正比例函数又称为一次函数,它的数学定义为:如果两个变量x和y之间的比值恒定,即y与x的比值为常数k,则称y是x的正比例函数,记作y=kx。

其中k为比例系数,表示y与x之间的关系。

正比例函数可以看作是一条直线,其斜率为k,过原点(0,0)。

二、性质1. 常数k为正比例函数的比例系数,它决定了函数图像的斜率。

当k>0时,函数图像向上倾斜;当k<0时,函数图像向下倾斜。

2. 正比例函数的定义域为全体实数,值域为全体实数。

因为无论x 取任何实数,对应的y都可以通过比例系数k计算得出。

3. 正比例函数的图像经过原点(0,0),这是因为当x=0时,根据函数定义,y=k*0=0。

4. 当x>0时,y也大于0;当x<0时,y也小于0。

这是因为正比例函数的比例系数k为正,所以x的增大必然导致y的增大,x的减小必然导致y的减小。

三、图像正比例函数的图像为一条直线,过原点(0,0),斜率为k。

当k>0时,图像向上倾斜;当k<0时,图像向下倾斜。

当k=0时,函数图像为一条水平直线,即y=0。

四、应用正比例函数在实际生活中有许多应用,例如:1. 速度与时间的关系:当物体的速度恒定时,速度与时间成正比。

速度为正比例函数,时间为自变量,速度为因变量。

2. 成本与产量的关系:在某些生产过程中,成本与产量呈正比例关系。

成本为正比例函数,产量为自变量,成本为因变量。

3. 周长与半径的关系:在一个圆形中,周长与半径成正比。

周长为正比例函数,半径为自变量,周长为因变量。

4. 温度与气压的关系:在恒定的体积下,温度与气压成正比。

温度为正比例函数,气压为自变量,温度为因变量。

沪教版八年级数学第一学期18.1:函数的概念、正比例函数

沪教版八年级数学第一学期18.1:函数的概念、正比例函数

第七讲 函数的概念、正比例函数函数的概念 一、知识点 1. 变量与常量在问题研究过程中,可以取不同数值的量叫做变量,保持数值不变的量叫做常量. 2. 函数的定义在某个变化过程中有两个变量x 和y ,如果在x 的允许取值范围内,变量y 随着x 的变化而变化,它们存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量。

3. 函数的定义域与函数值函数的自变量允许取值的范围叫做这个函数的定义域. 如果y 是x 的函数,那么对于x 在定义域内取定的一个值a ,变量y 的对应值叫做当x a =时的函数值.符号“()y f x =”表示y 是x 的函数,f 表示y 随x 变化而变化的规律. 二、例题讲解例1 物体所受的重力与它的质量之间有如下的关系:G mg =,其中,m 表示质量,G 表示重力,9.8g =牛/千克,物体所受的重力G 是不是它的质量m 的函数?解:物体所受的重力G 随它的质量m 的变化而变化,由G mg =可知,这两个变量之间存在确定的依赖关系,所以物体所受的重力G 是它的质量m 的函数.例2 汽车的速度为50千米/时,写出汽车匀速运动时行驶的路程y (千米)关于时间x (时)的函数解析式及定义域.分析: 本题依据公式“路程=时间X速度”列出数量关系,因为时间为非负数,所以定义域为0x ≥. 解:函数解析式为50y x =,定义域为0x ≥. 例3 求下列函数的定义域:(1)23y x =+; (2)11y x =-; (3)y = 解:(1)对于整式23x +,无论x 取什么实数,它都有意义,所以函数23y x =+的定义域是一切实数;(2)对于分式11x -,当1x =时,它没有意义.所以函数11y x =-的定义域是1x ≠;(3,当12x ≥-时,它有意义,所以函数y = 域是12x ≥-.说明:求函数的定义域应该根据解析式的特征进行思考. 例4 已知()f x =12f ⎛⎫- ⎪⎝⎭的值. 分析:函数与函数值是不同的概念.函数是指两个变量之间的某种关系,而函数值指的是当自变量取某一数值时,函数的一个对应值.求12f ⎛⎫- ⎪⎝⎭的值,就是当12x =-时,求21y x =-+的值,只需要把12x =-代入后计算即可. 解:131322.241212f ⎛⎫⨯- ⎪⎛⎫⎝⎭-==- ⎪⎝⎭⎛⎫-⨯-+ ⎪⎝⎭例5 等腰三角形的周长等于20cm ,请写出这个等腰三角形的底边长()x cm 和腰长()y cm 之间的解析式. 分析 根据周长的定义,得220x y +=,整理得20220,2xy x y -=-=, 即 1102y x =-+.函数解析式就是一个等式,求函数解析式时,有时可以利用一些现成的等式或公式,比如周长公式、面积公式等等.答案:1102y x =-+ 说明:1. 变量2x +是不是变量x 的函数?解: 对于代数式2x +,给定x 的一个值,可以求出这个代数式的一个值.所以2x +与x 有着确定的依赖关系,可以把变量2x +看做y .由函数的概念:在某个变化过程中有两个变量x 和y ,如果在x 的允许取值范围内,变量y 随着x 的变化而变化,它们之间存在确定的依赖关系,那么变量y 叫做变量x 的2. 对于“”中的“f ”怎样理解?答:记号“()f x ”表示“y 是x 的函数”,这个记号比较抽象,“f ”并不是表示一个变量,()f x 也不是表示“f ”与“x ”的积,而是指明在变化过程中的自变量为x ,用f 表示变量y 随着x 的变化而变化的规律;在同时研究几个函数时,应选用不同字母表示不同函数变量间相互依赖的变化规律,如()()g x h x 、等,以免引起混乱.三、 巩固练习1. 说出下列变化过程中,哪些量是常量,哪些量是变量,变量之间是函数关系吗? (1)正方形的周长C 与它的边长a ;(2)银行一年定期存款的本金x 元与利息y 元; (3)等腰三角形顶角的度数x 与底角的度数y ; (4)长方形的宽一定时,其长与面积; (5)等腰三角形的底边长与面积;(6)关系式y x=中的y 与x .答案:(1)变量是周长C 与边长a ,是函数关系;(2)变量是本金x 元与利息y 元,是函数关系; (3)变量是顶角的度数x 与底角的度数y ,是函数关系;(4)变量是长方形的宽与面积,是函数关系; (5)变量是等腰三角形的底边长与面积,不是函数关系;(6)变量是y 与x ,不是函数关系. 2. 写出下列个函数的定义域;(1)2y x =-; (2)y =答案: 一切实数 答案:1x ≥- (3)234y x x =+-; (4)11y x =-;答案:一切实数 答案:1x ≠(5)1y x x =+; (6)y =答案:0x ≠ 答案:0x ≥≠且x 23. 在ABC 中,它的底边长是a ,底边上的高是h ,则三角形面积12S ah=,当a 为定长时,在此式子中( A ).A. S 、h 是变量,a 是常量B. ,,S h a 是变量,12是常量 C. ,a h 是变量,1,2S 是常量 D. S 是变量,1,,2a h是常量4. 下列函数中,自变量的取值范围是113x <<的是( D ).A.y =B.y =C.y = D.y = 5. 如果()f x =()3f =___6. 已知()234x f x x +=+,则()0f =___34____,f=____814_____. 7. 若12y x y -=+,则y 用x 的代数式表示为y =___211x x+-___.8. 设某种电报收费标准是每个字0.1元,写出电报费y (元)与字数x (个)之间的函数关系式,并求自变量x 的取值范围.答案:()0.10y x x x =≥且是整数 提高题1. 若函数2221x x y x --=-,则与函数值0y =对应的x 的值是( D ). A. 1x =-或2x =B. 1x =或2x =-C. 1x =-且2x =D. 2x = 2. 把一块边长为20厘米的正方形铁皮,四角各截去边长为x 厘米的小正方形后折成一个无盖盒子,则盒子的容积V (立方厘米)关于自变量x (厘米)的函数解析式为__()2202V x x =-__,定义域为_010x <<_. 3. 洗衣机在洗衣的过程中经历了进水、清洗、排水等过程.下图能反映洗衣机工作时的水量y (升)与时间x (分)之间关系的图像大致是( C )A.正比例函数 一、知识点1. 正比例函数的概念如果两个变量的每一组对应值的比值是一个非零常数,那么称两个变量成正比例.用数学符号语言记为yk x =或()0y kx k =≠.解析式形如()0y kx k =≠的函数叫做正比例函数,其中,常数k 叫做比例系数,正比例函数y kx =的定义域是一切实数.2. 正比例函数的图像和基本性质 XXX二、例题 例1 若函数()31m y m x -=-是正比例函数,则m =_________,函数的图像经过_________象限.分析 由正比例函数的解析式可知,31m -=,所以4m =.把4m =代入函数解析式,得3y x =,再由正比例函数的性质,得到它的图像经过第一、三象限. 解:4m =,图像经过第一、三象限. 例2 若y 与21x +成正比例,且函数图像经过点()3,1A -,求y 与x 的函数解析式. 分析 由y 与21x +成正比例,可以设()()210y k x k =+≠.再把点A 的坐标()3,1-代入函数解析式,即可求出k 的值,这种求函数解析式的方法叫做待定系数法.解:y 与21x +成正比例,∴ 设()()210y k x k =+≠.把点A()3,1-代入,得15k =-,()1215y x ∴=-+例3 已知点()11,x y 和()22,x y 在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少? 分析 由条件当12x x >时,12y y <,联系正比例函数的图像和性质,可知函数值y 随着x 的值增大而减小,即比例系数小于零.解 :由题意,函数值y 的值随着x 的值增大而减小,0,2k k ∴<<例4 直角三角形的一条直角边是6,写出它的面积y 关于另一条直角边x 的函数关系式并画出这个函数的图像.解:由直角三角形的面积公式,得162x y ⨯=.()30y x x ∴=>说明:由于直角三角形的边长为正数,在画函数图像时要特别注意自变量x 的取值范围,因为定义域为X0x >,此时函数图像为一条射线,并且要除去端点.1. 如何理解正比例函数的性质:当0k >时,y 随着x 的值增大而逐渐增大,当0k <时,y 随着x 的值增大而逐渐减小?答:从解析式来看,当0k >时,若12x x <,由不等式的性质有12kx kx <,即12y y <;当0k <时,若12x x <由不等式的性质有12kx kx >,即12y y >;也可以结合正比例函数的图像去理解:当0k >时,从左往右看,直线上的点的横坐标从小到大逐渐变化,点的位置随着从低到高逐渐变化,说明此时函数值y 相应地从小到大逐渐变化.当0k <时类似.2. 学习函数的性质要掌握的一个重要数学思想是“数形结合”,学会利用函数的图像直观的研究函数的性质.三、 巩固练习 1. 填空:(1)如果正比例函数的图像过点(1,-2),那么它的解析式是_2y x =-__;函数的图像经过第__二、四__象限.(2)正比例函数2y x =-的图像上一点横坐标为2,纵坐标是__-4___, 函数值随x 的值增大而__减小___. (3)由图写直线PO 的解析式:___34y x =___. (4)某函数具有下列两条性质:① 它的图像是经过 原点(0,0)的一条直线;② y 的值随x 的值增大而增大.请你举出一个满足上述条件的函数:____2y x =_(答案不唯一)___. 2. 选择:(1)下列函数中,正比例函数的是( B )A.3y x =B. 32y x =- C.213x y += D. 2y x = (2)下列各点中,在直线2y x =上的点有( A ).A.21⎫-⎪⎪⎝⎭ B. (2,2 C. 5,10D. ()2,1-(3)函数y kx =的图像经过点(1,4),那么()2y k x=-的图像经过第( B )象限.P-3/2-20yXA. 一、三B. 二、四C. 一、二D. 三、四 3. 已知y 是x 的正比例函数,当2x =时,12y =(1)求y 与x 的函数解析式; (2)求当x =y 的值; (3)在直角坐标系内画出该函数的图像. 答案:(1)14y x =;(2)4y =;(3)略 4. 正比例函数2112y k x k ⎛⎫=++- ⎪⎝⎭的图像经过第二、四象限,求函数的解析式.答案:12y x =-5. 已知3y -与x 成正比例函数,且它的图像经过点(2,7) (1)求y 与x 的函数解析式; (2)求当4x =时,y 的值; (3)求当3y =-时,x 的值.答案:(1)23y x =+; (2)11; (3)-3 6. 如果28my mx -=是正比例函数,而且对于它的每一组非零的对应值(),x y ,有0xy <.求m 的值.答案:-37. 小明早上骑自行车离开家去学校,下图反映了小明离开家的距离y (米)与时间x (分)之间的关系.根据图像回答:(1) 小明家与学校的距离是___3000__米;(2) 小明骑自行车的平均速度是___200___米/分; (3) 写出小明汽车途中,离开家的距离y (米)与时间x (分)的函数关系式及定义域:___()200015y x x =≤≤提高题1. 正比例函数y kx =的图像上有一点A ,过点A 向x 轴作垂线,垂足为点B ,点B 的坐标为(2,0).若三角形OAB 的面积为6,试求k 的值. 答案:3或-32. 已知正比例函数的自变量x 减小2时,对应的函数值增加4.求该正比例函数的解析式. 答案:2y x =-3. 已知点()()122,,1,A y B y -是正比例函数y kx =的图像上的两个点.若12y y >,试判断k 的取值范围. 答案:0k <家庭作业一、 填空题: 1. 若()21m y m x=+是正比例函数,则m =___1___.2. 已知函数()g x =,则()2g =___3___. 3. 在直角坐标系中,若点(),4M x -和点()3,N y 关于x 轴对称,则x y +=_7__.4. 如果正比例函数3xy =的图像过点()6,k ,那么k =___2___. 5. 已知矩形的周长为12,若矩形一边长为x ,面积为y ,则y 与x 的函数关系式及定义域是__()2606y x x x =-+<<___.6. 若等腰三角形顶角的度数为y ,底角的度数为x ,则y 与x 的函数关系式及定义域是__()1802090y x x =-<<___.7. 若等腰三角形的周长是20cm ,腰长与底边长分别是ycm 和xcm ,那么y 与x 的函数关系式为__102xy =-__,定义域为__010x <<__. 8. 若()25y a x b =+-+是正比例函数,且其图像恰为第二、四象限的角平分线,则a b +=__2__. 9. 若等腰梯形的周长为20cm ,上底长ycm ,底角为30,腰长xcm ,则y 与x 的函数关系式为__2102y x +=-__.10. 若y 成正比例,且当4x =时,3y =-则当32x =时,y =__-___. 二、选择题11. 若()2,P x y 是1P 关于y 轴的对称点,而点1P 在第三象限内,则( A )A. 0,0x y >>B. 0,0x y ><C. 0,0x y <<D. 0,0x y <> 12. 若点()111,P x y 与()222,P x y 在同一个正比例函数的图像上,则( D )A. 1212x x y y +=+;B. 1212x x y y -=-;C.1212y y x x =; D. 1221x y x y =. 13. 平面直角坐标系中有点()4,3A -,那么点A 到x 轴的距离是( A )A. 3 ;B. -3 ;C. 4 ;D. -4. 14. 点()11,A x y 与()11,B y y 之间的距离是( A )A. 11x y -;11y - ;C.D. 15. 下列问题中,两个变量成正比例的是( D ) A. 三角形的面积一定,它的底边与底边上的高; B. 等边三角形的面积与它的高;C. 长方形的一边长确定,它的周长与另一边长;D. 商品的价格确定时,销售额与销售量;E. 点到横坐标的距离确定时,它的纵坐标与横坐标;F. 商品的价格确定时,利润与成本. 三、 简答题16. 求下列函数的定义域:(1)322612y x x x =--+; (2)y =;答案:一切实数 答案:72x ≥(3)6y x =-; (3)y =答案:126x x ≥-≠且 答案:143x <17. 已知()225f x x =-+,求()()5+13f f a f a ⎛⎫- ⎪⎝⎭、、.答案:5539f ⎛⎫-=-⎪⎝⎭;()225f a a =-+;2243a a --+ 18. 已知正比例函数23y x =-. (1) 当x 取何值时,3y >-; (2) 当x 取何值时,3y =-; (3) 当x 取何值时,3y <-;(4) 画出图像,并结合图像说明理由. 答案:(1)()()999;2;3(4)222x x x <=>略 四、综合题已知函数()0y kx k =≠的图像与函数34y x =的图像关于y 轴对称,依照要求画图,并完成以下各 (1) 在函数34y x =的图像上取一点A (横坐标为4),点A 的坐标是__()4,3__;设点A 关于y 轴对称的点为A ’,那么A ’的坐标是__()4,3-__;(2) 过原点和点A ’画直线OA ’,它与直线34y x =关于y 轴对称吗?___对称____; (3) 如果在函数34y x =的图像上选取另一点B ,点B 关于y 轴对称的点B ’在直线OA ’上吗? ________在_______;(4) 已知函数()0y kx k =≠的图像与函数34y x =的图像关于y 轴对称,那么k 的值是多少? _____34y x =-____.x(分)。

精品 八年级数学下册 函数与变量 正比例函数讲义+同步练习

精品 八年级数学下册 函数与变量 正比例函数讲义+同步练习

一次函数第14讲 变量与函数一、变量与函数1.回答(1)----(4)题(1)理解匀速运动中的行程S 与行驶时间t 的关系:S=________. (2)如何探索弹簧的变化规律,l=______________. (3)圆的面积r=_____________________.(4)长方形的面积S=_______________________.2.在一个变化过程中,我们称数值发生变化的量为_________,而始终不变的量称为____________。

3.具体指出(1)--(4)中,那些是变量,哪些是常量? (1)变量是______________,常量是_________________; (2)变量是______________,常量是_________________; (3)变量是______________,常量是_________________; (4)变量是______________,常量是_________________。

巩固训练1.关于r l π2=,下列说法正确的是( )A.2为常量,π,l,r 为变量B.2π为常量,l ,r 为变量C.2,l 为常量,π,r 为变量D.2,r 为常量,π,l 为变量2.摄氏温度C 与华氏温度F 之间的对应关系为5(F-32)9C =℃,则其中的变量是 ,常量是 。

3.在△ABC 中,它的底边是a ,底边上的高是h ,则三角形的面积 ah S 21=,当底边a 的长一定时,在关系式中的常量是 ,变量是 。

4.齿轮每分钟120转,如果n 表示转数,t 表示转动时间,那么用n 表示t 的关系是: ,其中 为变量, 为常量. 能力提升1.写出下列各问题中的关系式,并指出其中的常量与变量。

(1)甲乙两地相距1000千米,一人骑自行车以15千米/小时的速度从甲地前往乙地,用行驶时间t (小时)表示自行车离乙地的距离S (千米).(2)直角三角形中一个锐角α与另一个锐角β之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t (小时)表示水箱中的剩水量y (吨).(4)小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系二、函数【概念】一般地,在一个变化过程中,如果有两个变量x 与y,并且对于x 的每一个确定的值,y 都有 确定的值与其对应,那么我们就说x 是 ,y 是x 的 .如果当x=a 时y=b ,那么b 叫做当自变量的值为a 时的 . 例题讲解【例1】一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y (单位:L )随行驶里程x (单位:km)的增加而减少,平均耗油量为0.1L/km . (1)写出表示y 与x 的函数关系的式子; (2)指出自变量x 的取值范围;(3)汽车行驶200km 时,油箱中还有多少汽油?例2:自变量取值范围: 1.函数5x 1y -=中,自变量x 的取值范围是_________. 2.函数x 2y -=中自变量x 的取值范围是_________. 3.在函数4x 32y -=中,自变量x 的取值范围是_________.4.函数1x xy -=的自变量x 的取值范围是_________. 易错题:下列各式中,y 是x 的函数的有: ①4x-3y=2,②y=∣x ∣,③y=5x,④y 2=2x ,⑤x=∣y ∣ 巩固训练1.全年级每个同学需要一本代数教科书,书的单价为6元,则总金额y (元)与学生数n (个)的关系是 .其中 是 的函数, 是自变量.2.学校计划购买50元的乒乓球,则所购买的乒乓球总数y (个)与单价x (元)的函数关系式是 ;其中 是 的函数, 是自变量.3.已知三角形底边长为4,高为x,三角形的面积为y,则y 与x 的函数关系式为_______________; 其中 是 的函数, 是自变量.4.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是( ) A.沙漠 B.体温 C.时间 D.骆驼5.长方形的周长为24cm,其中一边为x (其中x>0),面积为y cm 2,则这样的长方形中y 与x 的关系可以写为( )A.y=x 2B.y=(12-x )2C.y=(12-x )xD.y=2(12-x ) 6.已知函数y=x 2-x-2当x=2时,函数值为 。

第02讲 正比例函数(知识解读+题型精讲+随堂检测)(原卷版)

第02讲 正比例函数(知识解读+题型精讲+随堂检测)(原卷版)

第02讲正比例函数1. 理解正比例函数的定义2. 学会观察正比例函数图像并分析,判断函数值随自变量的变化而变化3. 掌握正比例函数性质知识点1:正比例函数的定义一般地,形如y=kx(k≠0)函数,叫做正比例函数,其中k叫做比例系数.知识点2:正比例函数图像和性质正比例函数图象与性质用表格概括下:知识点三3:待定系数法求正比例函数解析式1.正比例函数的表达式为y=kx(k≠0),只有一个待定系数k,所以只要知道除(0,0)外的自变量与函数的一对对应值或图象上一个点的坐标(原点除外)即可求出k的值,从而确定表达式.2.确定正比例函数表达式的一般步骤:(1)设——设出函数表达式,如y=kx(k≠0);(2)代——把已知条件代入y=kx中;(3)求——解方程求未知数k;(4)写——写出正比例函数的表达式【题型1:正比例函数的定义】【典例1】(2023春•永定区期末)下列函数中,是正比例函数的是()A.B.C.y=x2D.y=2x﹣1【变式1-1】(2023春•赣州期末)下列式子中,表示y是x的正比例函数的是()A.y=3x2B.C.D.y2=3x【变式1-2】(2023春•洪江市期末)下列函数中,是正比例函数的是()A.y=2x﹣1B.C.D.y=2x2+1【变式1-3】(2023春•朝阳区校级期中)下列变量之间的关系,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随边长x的变化而变化B.面积为20的三角形的一边上的高h随着这边长a的变化而变化C.正方形的周长C随着边长x的变化而变化D.水箱以0.5L/min的流量往外放水,水箱中的剩水量V(单位:L)随着放水时间t(单位:min)的变化而变化【典例2】(2023春•兴隆县期末)已知y=(m+1)x|m|,若y是x的正比例函数,则m的值为()A.1B.﹣1C.1或﹣1D.0【变式2-1】(2023春•南皮县月考)若函数y=(k+1)x+b﹣2是正比例函数,则()A.k≠﹣1,b=﹣2B.k≠1,b=﹣2C.k=1,b=﹣2D.k≠﹣1,b=2【变式2-2】(2023春•永春县期末)若y=x+b是正比例函数,则b的值是()A.0B.﹣1C.1D.任意实数【变式2-3】(2023春•孝感期末)若函数y=﹣2x m﹣2+n+1是正比例函数,则m+n()A.3B.2C.1D.﹣1【题型2:判断正比例函数图像所在象限】【典例3】(2023春•朔州期末)正比例函数的图象经过()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【变式3-1】(2023春•凤庆县期末)正比例函数y=﹣3x的图象经过()象限.A.第一、三象限B.第二、四象限C.第一、四象限D.第二、三象限【变式3-2】(2023春•南岗区期末)在平面直角坐标系中,正比例函数y=﹣4x 的图象经过()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【题型3:正比例函数的性质】【典例4】(2023春•乐陵市期末)关于函数y=2x,下列说法错误的是()A.它是正比例函数B.图象经过(1,2)C.图象经过一、三象限D.当x>0,y<0【变式4-1】(2022秋•东胜区期末)关于函数y=﹣3x,下列说法正确的是()A.该函数的图象经过点(﹣3,1)B.是一次函数,但不是正比例函数C.该函数的图象经过第一、三象限D.随着x的增大,y反而减小【变式4-2】(2023•金山区二模)已知函数y=kx(k≠0,k为常数)的函数值y 随x值的增大而减小,那么这个函数图象可能经过的点是()A.(0.5,1)B.(2,1)C.(﹣2,4)D.(﹣2,﹣2)【变式4-3】(2022•临渭区二模)已知正比例函数y=kx(k≠0),当自变量的值减小1时,函数y的值增大3,则k的值为()A.B.C.3D.﹣3【题型4:判断正比例函数的比例系数大小】【典例5】(2022春•南城县校级月考)如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx.将a,b,c按从小到大排列并用“<”连接,正确的是()A.a<b<c B.c<b<a C.b<c<a D.a<c<b【变式5-1】(2022秋•渠县校级期中)三个正比例函数的表达式分别为①y=ax;②y=bx;③y=cx,其在平面直角坐标系中的图象如图所示,则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【变式5-2】(2023秋•太仓市期末)如图,三个正比例函数的图象分别对应函数关系式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为()A.a<b<c B.c<a<b C.c<b<a D.a<c<b【题型5:待定系数法求正比例函数解析式】【典例6】(2023春•鼓楼区校级期末)已知y与x成正比例,且当x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.【变式6-1】(2023春•荆门期末)已知y与x成正比例,且x=﹣2时y=4,(1)求y与x之间的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a.【变式6-2】(2022秋•城关区期末)已知点(,1)在函数y=(3m﹣1)x的图象上,(1)求m的值,(2)求这个函数的解析式.【变式6-3】(2022秋•江宁区校级月考)已知y=y2﹣y1,其中y1与x成正比例,y2与x+2成正比例,当x=﹣1时,y=2,当x=2时,y=10.(1)求y与x的函数表达式;(2)当x取何值时,y的值为30?【题型6:正比例函数的图像性质综合】【典例7】(2022春•老城区校级期中)已知正比例函数y=kx的图象经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为H,点A的横坐标为5,且△AOH的面积为10.(1)求正比例函数的解析式.(2)在坐标轴上能否找到一点P,使△AOP的面积为8?若存在,求点P的坐标;若不存在,请说明理由.【变式7】(2022春•德城区校级期中)如图,已知正比例函数y=kx的图象经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为H,点A的横坐标为4,且△AOH的面积为8.(1)求正比例函数的解析式.(2)在x轴上能否找到一点P,使△AOP的面积为10?若存在,求点P的坐标;若不存在,请说明理由.1.(2019•梧州)下列函数中,正比例函数是()A.y=﹣8x B.y=C.y=8x2D.y=8x﹣4 2.(2023•陕西)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是()A.B.C.D.3.(2020•上海)已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而.(填“增大”或“减小”)4.(2019•本溪)函数y=5x的图象经过的象限是.1.(2023秋•于洪区期中)以下y关于x的函数中,是正比例函数的为()A.y=x2B.C.D.2.(2022秋•烟台期末)若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是()A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0 3.(2023春•兴隆县期中)已知点P(m,0)在x轴负半轴上,则函数y=mx 的图象经过()A.二、四象限B.一、三象限C.一、二象限D.三、四象限4.(2023•玉环市校级开学)若函数y=kx的图象上有两点A(x1,y1)、B(x2,y2),当x1>x2时,y1<y2,则k的值可以是()A.﹣2B.0C.1D.2 5.(2022春•利川市期末)已知正比例函数y=﹣3x,则下列说法正确的是()A.函数值y随x的增大而增大B.函数值y随x的增大而减小C.函数图象经过一,三,四象限D.函数图象经过二,三,四象限6.(2023•金山区二模)已知函数y=kx(k≠0,k为常数)的函数值y随x值的增大而减小,那么这个函数图象可能经过的点是()A.(0.5,1)B.(2,1)C.(﹣2,4)D.(﹣2,﹣2)7.(2023秋•黄浦区期中)下列各图象中,表示函数y=x的大致图象是()A.B.C.D.8.(2023春•青龙县期末)函数y=kx(k≠0)的图象经过点(﹣2,1),则这个函数的解析式是()A.y=2x B.y=﹣2x C.y=x D.y=﹣x 9.(2023秋•法库县期中)一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),则a=.10.(2023秋•金山区期中)已知正比例函数y=(m﹣1)x,且y随着x的增大而减小.(1)求m的取值范围;(2)已知点P(m,6)在该函数图象上,求出这个正比例函数解析式.11.(2023春•青云谱区校级期末)已知y关于x的函数y=(2m+6)x+m﹣3,且该函数是正比例函数.(1)求m的值;(2)若点(a,y1),(a+1,y2)在该函数的图象上,请直接写出y1,y2的大小关系.12.(上城区一模)定义运算“※”为:a※b=(1)计算:3※4;(2)画出函数y=2※x的图象.。

正比例函数讲义含答案

正比例函数讲义含答案

正比例函数一、教学目标1.理解函数的定义以及函数的定义域、值域. 2.掌握正比例函数的概念、图像和性质.二、重点难点重点:正比例函数的概念、图像和性质的应用.难点:利用正比例函数的相关知识解决实际问题,学会数形结合.三、考点分析:这部分的知识应用性较强,一般以填空、判断、选择、读图题、解答题的形式考查四、提分技巧1、学会读图,加强数形结合思想2、考虑问题要全面,还要善于从问题情境中抽象出数学知识(一)函数的意义【例1】1、如果函数:()x x x f 22-=,试求:(1)()1-a f ; (2)()12+a f 【解析】(1)()1-a f ()1212---=a a(2)()12+a f ()122122+-+=a a2、如果函数:()112-=-x x f ,试求:(1)()2f ; (2)()x f【解析】(1)()2f ()813132=-=-=f(2)()1-x f ()()()()[]()()121211112-+-=+--=+-=x x x x x x()x x x f 22+=∴【拓展1】如果函数:()x x f x f =⎪⎭⎫⎝⎛+12,,试求)(x f 的解析式 【解析】()x x f x f =⎪⎭⎫⎝⎛+12x x f x f 11121=⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛⇒()xx f x f 112=⎪⎭⎫ ⎝⎛+② 联立①②,解得()332x x x f -=【拓展2】如果,()b ax x f +=,其中a 和b 是两个常数。

(1)()()34-=x x f f ,试求()x f 的表达式; (2)()()()78+=x x f f f ,求()x f 的表达式。

【解析】(1)()b ax x f +=∴()()()()342-=++=++=+=x b ab x a b b ax a b x af x f f⎩⎨⎧=-=⎩⎨⎧-==∴3212b a b a 或 ()()3212+-=-=∴x x f x x f 或(2) ()()()()()782322+=+++=+++=++=x b ab b a x a b b ab x a a b ab x a f x f f f⎪⎩⎪⎨⎧=++=∴7823b ab b a a ⎩⎨⎧==⇒12b a ()12+=∴x x f(二)正比例函数解析式【例2】已知y 与x -1成正比例,且当x =3时,y =4,求:(1)函数解析式;(2)x =1-时,y 的值【解析】设()1-=x k y ,代入x =3,y =4,解得2=k (1)所以函数解析式为22-=x y (2)当x =1-时,y =-4【拓展1】y 与3x 成正比例,当x =8时,y =-12,则y 与x 的函数解析式为___________. 【解析】设kx y 3=,代入x =8,y =-12,解得21-=k 所以函数解析式为x y 23-=【拓展2】已知2y -3与3x +1成正比例,且x=2时,y=5,求:(1)求y 与x 之间的函数关系式(2)若点(a ,2)在这个函数的图象上,求a . 【解析】设()133-2+=x k y ,代入x=2时,y=5,解得1=k(1)所以函数解析式为223+=x y (2)当2=y 时,0=a三)正比例函数的图像及性质【例3】已知直线y =kx 过点(-2,1),A 是直线y =kx 图象上的点,若过A 向x 轴作垂线, 垂足为B ,且ABO S ∆=9,求点A 的坐标。

正比例函数变量之间的关系

正比例函数变量之间的关系

正比例函数变量之间的关系我们来了解一下正比例函数的定义。

正比例函数可以写成y=kx的形式,其中k是常数,称为比例系数。

这个函数表示y随着x的增加或减少而成比例地增加或减少。

当x增加1个单位时,y也增加k个单位。

如果k为正数,则y随着x的增加而增加;如果k为负数,则y随着x的增加而减少。

正比例函数的特点是直线图像经过原点,并且斜率为常数k。

当k 大于0时,直线向右上方倾斜;当k小于0时,直线向右下方倾斜。

斜率的绝对值越大,直线的倾斜程度越大,代表了变量之间的增长速度。

正比例函数在现实生活中有着广泛的应用。

举个例子,我们来看看购买水果的情况。

假设每个苹果的价格是1元,那么购买n个苹果的总价格y就是y=n*1。

这个函数描述了购买苹果数量和总价格之间的关系,可以看出随着购买数量的增加,总价格也相应增加。

类似地,正比例函数也可以用来描述其他商品的价格和数量之间的关系。

比如购买书籍、电子设备等,当我们购买的数量增加时,总价格也会相应增加。

这种关系在商业中很常见,可以帮助商家和消费者更好地理解市场需求和价格变化。

除了商业领域,正比例函数在科学研究中也有着重要的应用。

例如在物理学中,正比例函数可以描述力和位移之间的关系。

根据胡克定律,弹簧的伸长量与施加的力成正比。

这个关系可以用正比例函数表示为y=kx,其中y是伸长量,x是施加的力,k是弹簧的弹性系数。

通过实验测量伸长量和施加的力,我们可以确定弹簧的弹性系数,进而研究弹簧的性质和应用。

除了物理学,正比例函数还在经济学、生物学、工程学等领域中广泛应用。

在经济学中,正比例函数可以描述供求关系、价格和产量之间的关系等。

在生物学中,正比例函数可以描述生物体的生长和发育过程。

在工程学中,正比例函数可以描述电阻和电流之间的关系,帮助工程师设计电路和设备。

总结一下,正比例函数是一种常见的数学函数形式,用来描述两个变量之间的关系。

它的特点是直线图像经过原点,并且斜率为常数。

正比例函数在商业、科学和生活中都有广泛的应用,帮助我们理解和解释现象,做出决策和预测。

正比例函数知识讲解

正比例函数知识讲解

正比例函数知识讲解
正比例函数的特点是,自变量x和因变量y成正比关系,当x的值增加时,y的值也随之增加。

斜率k表示了y每增加一个单位,x增加的单位数。

如果k是正数,则y随着x的增加而增加,如果k是负数,则y随着x的增加而减少。

1.定义:
2.斜率和截距:
在正比例函数 y = kx 中,斜率 k 表示了直线的倾斜程度。

斜率大于 0 时,曲线向上倾斜;斜率小于 0 时,曲线向下倾斜。

截距 b 表示函数图像与 y 轴的交点位置。

3.表示形式:
4.性质:
- 常数比例:对于一个给定的正比例函数 y = kx,k 是一个恒定的比例常数,即函数图像上任意两个点的斜率都相同。

-零值:正比例函数不包括(0,0)这个点,因为零值不属于定义域。

-相关变量:正比例函数中的两个变量是相关的,即当x值发生变化时,y值也会发生相应变化。

-数量比较:可以通过比较不同x值时y的大小来比较两个相关量的大小关系。

5.应用举例:
-资金计算:金融领域中的利息计算和复利计算都可以通过正比例函数进行建模。

-物理学:速度和时间、距离和时间之间的关系可以通过正比例函数进行描述。

-经济学:供求关系中的供应量和价格之间的关系可以用正比例函数表示。

-比例问题:在解决比例问题时,常常需要使用正比例函数来建立比例关系。

总结:
正比例函数是一种重要的数学函数,它的性质和应用非常广泛。

正比例函数能够帮助我们建立和描述各种实际生活中的关系,并进行数量上的比较和计算。

对于理解和应用正比例函数,我们需要掌握其基本定义、性质和应用场景,以及如何确定斜率和截距。

正比例函数(第一课时)课件

正比例函数(第一课时)课件
鼓励学生提出意见和建议:鼓励学生提出对教学的意见和建议,以便更好地改进教学方法和提 高教学质量。
根据学生的反馈,及时调整教学方法和手段,提高教学 效果
及时了解学生的学习情况
根据学生的反馈,调整教学内 容和进度
运用多种评价方式,全面评估 学生的学习效果
不断反思和改进教学方法和手 段,提高教学效果
汇报人:PPT
对学生的表现进行评价,了解学生的学习情况
对学生的表现进行评价:观察学生的课堂参与度、回答问题的准确性和思维活跃度等方面进行 评价。
了解学生的学习情况:通过课堂练习、小组讨论和个别提问等方式,了解学生对正比例函数的 理解和掌握情况。
及时调整教学策略:根据学生的表现和反馈,及时调整教学策略和方法,确保教学效果。
难点:正比例函数的图像与性质的理解
难点内容:正比例函数的图像与性质的理解 解决方法:通过实例演示、学生动手操作等方式,帮助学生理解正比例函数的图像与性质 注意事项:注意图像的绘制方法和性质的表达方式,确保学生能够正确理解和掌握 拓展内容:可以进一步介绍正比例函数在实际生活中的应用,加深学生的理解
添加标题
添加标题
添加标题
添加标题
理解图像上点的坐标与函数表达式 的关系
掌握如何绘制正比例函数的图像
掌握正比例函数的性质
理解正比例函数的概念和定义 掌握正比例函数的图像和性质 了解正比例函数在实际问题中的应用 掌握正比例函数的解析式和图像表示方法
正比例函数的概念
定义:形如y=kx(k为常数,k≠0)的函数称为正比例函数。 形式:y=kx 图像:经过原点的直线 性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
讲解新课:讲解正比例函数的概念、图像和性质

变量与函数,正比例函数讲义

变量与函数,正比例函数讲义

私塾国际学府学科教师辅导教案组长审核:学员编号:HD00 年级:八年级课时数:3课时学员姓名: 辅导科目:数学学科教师:授课主题变量与函数、正比例函数教学目的1、了解常量与变量的含义,能够分清实例中的常量与变量;2、掌握函数的概念,了解函数的表达形式,能够判断两个变量间就是否就是函数关系;3、掌握求函数自变量取值范围的方法;4、了解函数的表达形式;5、了解正比例函数的定义与表达式;教学重点1、常量与变量的含义2、函数的概念与表达形式3、正比例函数表达式授课日期及时段2017年3月31日 19:00-21:00 星期五第1次课知识点一:变量与函数1、常量与变量概念:在某一变化过程中,有些量的数值就是变化的,我们称数值发生变化的量叫变量;有些数值就是始终不变的,我们称数值始终不变的量为常量。

2、函数概念:一般地,在一个变化中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x就是自变量,y就是x的函数。

如果当x=a时y=b,那么b就叫做当自变量为a时的函数值。

注意:与x的每一个确定值对应的y值都就是唯一的例题解析例1 圆周长公式C=2πR中,下列说法正确的就是()π、R就是常量,2为变量 B、C、R为变量,2、π为常量C、R为变量,2、π、C为常量D、C为变量,2、π、R为常量例2 一辆汽车以40km/小时的速度行驶,行驶路程s(km)与行驶时间t(小时)的关系式s=40t,其中______就是变量,_______就是常量。

例3 下表就是小华做观察水的沸腾实验时所记录的数据:(1)时间就是8分钟时,水的温度为;(2)此表反映了变量_____与___之间的关系,其中____就是自变量,_____ 就是因变量;(3)在_____时间内,温度随时间增加而增加;_____时间内,水的温度不再变化.巩固练习变式1某种弹簧原长20厘米,每挂重物1千克,伸长0、2厘米,挂上重物后的长度y(厘米)与所挂重物x(千克)之间的关系式y=20+0、2x其中_____就是常量,_______就是变量。

正比例函数课件

正比例函数课件
正比例函数的图像是一条经过原点的直线,而一次函数的图像是直线,但不一定经x^2 + bx + c,当b和c均为0时,函数为正比例函数,即正比例函数是特殊的二次函数。
正比例函数的图像是一条经过原点的直线,而二次函数的图像是抛物线,其形状由a的值决定。
正比例函数在现实生活中有着广泛的应用,如购物时支付金额与商品数量之间的关系,行程中时间与速度之间的关系等。
01
正比例函数图像在x轴上方的部分为正值,在x轴下方的部分为负值。
增减性
正比例函数图像的斜率等于函数表达式中自变量系数的绝对值。
斜率
当自变量x的绝对值增大时,函数值y也以相同的绝对值增大或减小。
变化趋势
正比例函数图像的斜率等于函数表达式中自变量系数的绝对值。
斜率定义
正比例函数图像的斜率与直线倾斜角α的关系为tan(α) = |k|,其中k为自变量系数。
当k<0时,函数图像过第二、四象限,y随x的增大而减小。
01
02
任何正比例函数都可以转化为y=kx的形式,其中x是自变量,y是因变量。
正比例函数的基本形式是y=kx(k为常数,k≠0)。
当k>0时,直线通过第一、三象限,且与x轴正方向夹角为锐角;
当k<0时,直线通过第二、四象限,且与x轴正方向夹角为钝角。
正比例函数课件
目录
正比例函数概述正比例函数的图像性质正比例函数的实际应用正比例函数的扩展知识正比例函数与反比例函数的关系正比例函数与一次函数、二次函数的关系
01
CHAPTER
正比例函数概述
正比例函数是指形如y=kx(k为常数,k≠0)的函数。
当k>0时,函数图像过第一、三象限,y随x的增大而增大;

初中数学:正比例函数和反比例函数知识点

初中数学:正比例函数和反比例函数知识点

初中数学:正比例函数和反比例函数知识点【考点剖析】一.函数定义:在某个变化过程中有两个变量x和y,在变量x的允许取值范围内,变量y随x的变化而变化,他们之间存在确定的依赖关系,那么变量y叫x的函数.函数记号:()y f x =,()f a 表示x=a时的函数值.设()f x 为整式,则函数()y f x =的定义域:一切实数;函数1()y f x =的定义域:满足()0f x ≠的实数;函数y =的定义域:满足()0f x ≥的实数.二.正比例函数的概念(1)如果两个变量的每一组对应值的比值是一个常数(这个常数不等于零),那么就说这两个变量成正比例,用数学式子表示两个变量x 、y 成正比例,就是yk x =,或表示为y kx =(x 不等于0),k 是不等于零的常数.(2)解析式形如y kx =(k 是不等于零的常数)的函数叫做正比例函数,其中常数k 叫做比例系数.正比例函数y kx =的定义域是一切实数.确定了比例系数,就可以确定一个正比例函数的解析式三.正比例函数的图象(1)一般地,正比例函数y kx =(k 是常数,0k ≠)的图象是经过(00),,(1)k ,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =;(2)图像画法:列表、描点、连线.四.正比例函数的性质(1)当0k>时,正比例函数的图像经过第一、三象限;自变量x的值逐渐增大时,y的值也随着逐渐增大.(2)当0k<时,正比例函数的图像经过第二、四象限;自变量x的值逐渐增大时,y的值则随着逐渐减小.五、反比例函数的概念1、如果两个变量的每一组对应值的乘积是一个不等于零的常数,我们就说这两个变量成反比例.用数学式子表示两个变量x、y成反比例,就是xy k=,或表示为kyx=,其中k是不等于0的常数.2、解析式形如kyx=(k是常数,0k≠)的函数叫做反比例函数,其中k叫做比例系数.3、反比例函数kyx=的定义域是不等于零的一切实数.六、反比例函数的图像1、反比例函数kyx=(k是常数,0k≠)的图像叫做双曲线,它有两支.七、反比例函数的性质1、当0k>时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐减小.2、当0k<时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x的值逐渐增大时,y的值随着逐渐增大.3、图像的两支都无限接近于x轴和y轴,但不会与x轴和y轴相交.八.正比例函数与反比例函数正比例函数反比例函数定义形如(0)y kx k=≠的常数的函数,其中k是比例系数形如(0)ky kx=≠的常数的函数,其中k是比例系数定义域一切实数不等于零的一切实数图像经过原点(0,0)和点(1,k)的一条直线;双曲线,它有两支性质当0k>时,正比例函数的图像经过第一、三象限;y的值随x的值增大而增大;当0k>时,反比例函数的图像经过第一、三象限;在每一个象限内,y的值随x的值增当0k<时,正比例函数的图像经过第二、四象限;y的值随x的值增大而减小。

正比例函数及性质

正比例函数及性质
的基本思想和方法。
解决实际问题
正比例函数在解决实际问题中也 有广泛应用,例如速度、加速度 等物理量可以用正比例函数表示。
THANKS FOR WATCHING
感谢您的观看
与反比例函数的区别
反比例函数的一般形式为 $y = frac{k}{x}$,其中 $k$ 是常数且 $k neq 0$。正比例函数和反比例函数在 图像上都是直线,但它们的斜率不同。正比例函数的斜率为 $k$,而反比例函数的斜率为 $-k$。此外, 正比例函数的图像过原点,而反比例函数的图像不过原点。
一次函数的一般形式为 $y = ax + b$,其中 $a$ 和 $b$ 是常数,$a neq 0$。正比例函数是特殊的一次函数,其形式为 $y = kx$,其中 $k$ 是常数且 $k neq 0$。正比例函数和一次函数在图像上都是直线,但正比例函数的图像过原点,而一次函数的图 像不过原点。
正比例函数和一次函数的斜率不同。正比例函数的斜率为 $k$,而一次函数的斜率为 $a$。斜率决定了函数的增减性,因此正比 例函数和一次函数的增减性也可能不同。
截距
截距定义
正比例函数的图像是一条通过原点的直线,因此没有固定 的截距。但当我们在坐标轴上标出与直线交点的数值时, 这个数值即为该正比例函数的截距。
截距的计算
对于正比例函数$y=kx$,当$x=0$时,$y=0$,因此其 截距为0。
截距的影响
正比例函数的截距不影响函数的增减性,但会影响函数与 坐标轴的交点位置。
正比例函数和二次函数的开口方向也不同。正比例函数的图 像总是向上或向下开口,而二次函数的开口方向取决于 $a$ 的值。当 $a > 0$ 时,抛物线向上开口;当 $a < 0$ 时,抛 物线向下开口。

正比例函数+变量与函数+变量与函数+旋转习题解析与辅导讲义.doc

正比例函数+变量与函数+变量与函数+旋转习题解析与辅导讲义.doc

正比例函数问题2:这五个.函数解析式用一个一般形式如何表达呢?归纳:一般地,形如______________ 的函数叫做疋匕匕例甬数,其中k叫做_______ .问题3:下列函数:①y二-无②〉,=兰③y = 8x④y = 3兀+2 ⑤y = Z (§) y = x1 2 3 4中,属“ 3 x于正比例函数的是_____________________ .问题4、根据自己的理解举出几个正比例函数形式的解析式三、展示提升~~赏识自信1.正比例函数的一般形式是什么?比例系数斤必须满足什么条件?自变量的指数是几?2.若尸5八山是正比例函数,则〃尸_;若尸伽_4)x是关于;v的正比例函数,则加—•2c \ ffi— 8(m - 3 ) x当沪_______ 时,y是*的正比例函数.四、拓展延伸完善自信.应用新知,解决问题1、例题已知y与x成正比例,且庐2时,尸-6.(1)求出y与”之间的函数解析式;(2)若点(a-2)在这个函数的图象上,求自的值.2.已知y与/成正比例,且尸3时,尸-6.(1)写出y与x之间的函数解析式;(2)当尸-2时,求x的值;(3)若点户(-6,护4)在该函数图象上,求刃的值.5.已知广2与卅1成正比例,当x=8时,y=6,写出y与/之间的函数关系式,并分别求出x=4 和^=-3时y的值.巩固练习、考点早实践2 一列火车以120km/h的速度匀速前进,那么它行驶的路程s (km)随行驶时间t (h)变化的函数解析式为_______________ ;此函数是__________ 函数.3 下列函数关系屮,属于正比例函数关系的是( )(A)圆的面积s与它的半径厂;(B)面积一•定时,长方形的长y与宽兀(C)路程是常数s时,行驶的速度『与时间t.(D)三角形的底边是常数日时,它的面积s与这条边上的髙力4 若函数y = 1)屮是正比例函数,则常数日的值为( )(A) 0 (B) ±1(C) 1 (D) -1列式表示下列问题中的y与/的函数关系,并指出哪些是正比例函数.(1)正方形的边长为x cm,周长为y cm;知识技能日标1.掌握根据函数关系式直观得到自变量収值范围,以及实际背景对自变量収值的限制;2.掌握根据函数自变量的值求对应的函数值.过程性目标1.使学生在探索、归纳求函数自变量取值范围的过程屮,增强数学建模意识;2.联系求代数式的值的知识,探索求函数值的方法.教学过程一、创设情境问题1填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂解如图能发现涂黑的格子成一条直线. 函数关系式:y=10-^.问题2试写出等腰三角形中顶角的度数y与底角的度数/之间的两数关系式. 解y与/的函数关系式:y=180—2乩问题3如图,等腰直角的直角边长与正方形加%的边长均为10 cm,力与炒在同一直线上, 开始时点与财点重合,让向右运动,最后〃点与艸点重合.试写出重叠部分面积yci『与场长度cniZ间的函数关系式.1解y与/的函数关系式:y = — x~.2二、探究归纳思考(1)在上面问题中所出现的各个函数中,自变量的収值有限制吗?如果有,写出它的取值范围.(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?分析问题1,观察加法表中涂黑的格子的横向的加数的数值范围.问题2,因为三角形内角和是180。

初中数学知识归纳正比例函数

初中数学知识归纳正比例函数

初中数学知识归纳正比例函数正比例函数作为初中数学中的重要知识点之一,是指两个变量之间存在着一种特定关系:当其中一个变量的值发生变化时,另一个变量的值也相应地发生变化,并且二者之间的比值始终保持不变。

在本文中,将对初中数学中关于正比例函数的相关知识进行归纳总结。

一、正比例函数的定义正比例函数是指当两个变量 x 和 y 之间的比值始终保持不变时,它们之间的关系可以用一个乘法关系来表示,即 y = kx,其中 k 是常数,称为比例系数。

当 x 的值增加或减少时,y 的值也相应地按照比例系数的倍数增加或减少。

例如,如果一个物体的长度和宽度成正比,那么当长度变为原来的2倍时,宽度也会变为原来的2倍;当长度变为原来的一半时,宽度也会变为原来的一半。

二、常见的正比例函数的图象特点1. 直线经过原点:正比例函数的图象始终经过坐标原点,即当 x = 0 时,对应的 y 值也为 0。

因为我们可以将 y = kx 改写为 y = kx + 0,所以当 x = 0 时,y 也等于 0。

2. 斜率相等:正比例函数的图象是一条直线,直线的斜率等于比例系数 k。

斜率可以表示函数的变化速率,即 y 值的增量与 x 值的增量的比值。

在正比例函数中,斜率恒定不变,意味着 y 值和 x 值的比值始终保持不变。

3. 全为正值:由于正比例函数的斜率为正数,所以函数曲线在第一象限和第三象限上。

4. 区间延伸性:正比例函数的图象可以在坐标平面上无限延伸,因为比例系数 k 是一个常数,可以适用于任意的 x 值。

三、正比例函数的性质和应用1. 终点截距:正比例函数的图象在 y 轴上有一个特殊的点,称为终点截距。

在 y = kx 中,当 x = 0 时,y = 0,所以终点截距为坐标原点 (0, 0)。

2. 等比例点:正比例函数的图象上任意两个不同的点,它们对应的x 和 y 值的比值是相等的。

3. 比例系数与变量之间的关系:在 y = kx 中,当 x = 1 时,y 的值就等于 k。

正比例函数概念

正比例函数概念
正比例函数的概念
一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数。正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数)
定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则b²+4k·m≥(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
[编辑本段]反比例函数的应用举例
【例1】反比例函数的图象上有一点P(m, n)其坐标是关于t的一元二次方程t2-3t+k=0的两根,且P到原点的距离为根号13,求该反比例函数的解析式.
分析:
要求反比例函数解析式,就是要求出k,为此我们就需要列出一个关于k的方程.
解:∵m, n是关于t的方程t2-3t+k=0的两根
∴m+n=3,mn=k,
又PO=根号13,

正比例函数的图像与性质讲义全

正比例函数的图像与性质讲义全

龙文教育个性化辅导教案讲义任教科目:数学授课题目:正比例函数的图像及性质年级:八年级任课教师:任老师授课对象:武汉龙文个性化教育校区教研组组长签字:教学主任签名:日期:武汉龙文教育学科辅导讲义知识点1.形如___________(k是常数,k≠0)的函数是正比例函数,其中k叫,正比例函数都是常数与自变量的乘积的形式2.正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx.当k>0时,图像位于第象限,从左向右,y随x的增大而,也可以说成函数值随自变量的增大而_________;当k<0时,图像位于第 象限,从左向右 ,y 随x 的增大而 ,也可以说成函数值随自变量的增大而_________.3.正比例函数的图像是经过坐标 点和定点__ __两点的一条 。

根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象. 例1:已知y=(k+1)x+k-1是正比例函数,求k 的值.例2:根据下列条件求函数的解析式 ①y 与x 2成正比例,且x=-2时y=12.②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小.选择题1、如图函数y =-x (x <0)的图象是()2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C .y=-5xD .y=x3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 4.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-35.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能两条直线的位置关系与系数K 之间的关系6.若正比例函数x k y 1 和x k y 2 的图像是两条平行直线,那么( )(A )21k k (B )21k k (C )21k k (D )K1和K2不确定7.若正比例函数x k y 1 和x k y 2 的图像是两条平行直线,那么(K1与K2有什么数量关系 ) 8.若正比例函数x k y 1 和x k y 2 的图像关于坐标轴对称,那么( ) (A )21k k (B )21k k (C )21k k (D )K1和K2不确定平移规律8、.若正比例函数Y=2X 向上平移2个单位,那么平移后的解析式( ) 9、若正比例函数Y=2X 向下平移2个单位,那么平移后的解析式( ) 10、若正比例函数Y=2X 向左平移2个单位,那么平移后的解析式( ) 11、若正比例函数Y=2X 向右平移2个单位,那么平移后的解析式( )一 根据正比例函数解析式的特点求值1、若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则的值为?2、果y=x-2a+1是正比例函数,则a 的值为?3、若y =(n-2)x ︳n ︳-1 ,是正比例函数,则n 的值为?4、已知y=(k+1)x+k-5是正比例函数求k 的值.5、若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )6、已知函数y=(2m+1)x+m -3 若函数图象经过原点,求m 的值?二 求正比例函数的解析式1、正比例函数图象过(-2,3),则这个正比例函数的解析式?2、已知y与x成正比例,且x=2时y=-6,则y=9时x的值是多少?.3.一个函数的图像是经过原点的直线,并且这条直线过第四象限及点(2,-3a)与点(a,-6),求这个函数的解析式.4.已知y与x-1成正比例,x=8时,y=6,写出y与x之间函数关系式,并分别求出x=4和x=-3时y的值.三正比例函数图象的性质1、正比例函数y=(m-1)x的图象经过一、三象限,则m的取值范围是2、若正比例函数图像又y=(3k-6)x的图像经过点A(x1,x2)和B(y1,y2),当x1<x2时,y1>y2,则k的取值范围是3、点A(-5,y1)和点B(-6,y2)都在直线y= -9x的图像上则y1与y2的大小关系是?4、已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()5、正比例函数y=(3m-1)x的图像经过点A(x1,x2)和B(y1,y2),且该图像经过第二、四象限.(1)求m的取值范围(2)当x1>x2时,比较y1与y2的大小,并说明理由.4已知y-4与x成正比例,且当x = 6时,y =-4.(1)求y与x的函数关系式;(2)画出(1)中函数的图象;(3)设点P在y轴上,(1)中函数的图象与x轴、y轴分别交于A、B两点,△ABP的面积等于9,求点P的坐标探究题 1、在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).2、如图,三个正比例函数的图像分别对应的解析式是 ①y=ax ② y=bx ③ y=cx,则a 、b 、c 的大小关系是( )A.a>b>cB.c>b>aC.b>a>cD.b>c>a1.2.已知y = y 1+ y 2,y 1与x 2成正比例,y 2与x -2成正比例,当x =1时,y =0,当x =-3时,y =4,求x =3时,y 的值.3.有一长方形AOBC 纸片放在如图3-3所示的坐标系中,且长方形的两边的比为OA :AC =2:1.(1)求直线OC 的解析式;(2)求出x =-5时,函数y 的值; (3)求出y =-5时,自变量x 的值; (4)画这个函数的图象;(5)根据图象回答,当x 从2减小到-3时,y 的值是如何变化的?①②③武汉龙文教育学科辅导教案附:跟踪回访表家长(学生)反馈意见:学生阶段性情况分析:自我总结及调整措施:主任签字:龙文教育教务处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

私塾国际学府学科教师辅导教案组长审核:
(1)y=3x (2)y=4x+2(3)y=
3
1
x (4)y=-4x
当堂检测
1.小明去文具商店买日记本,已知每本日记本定价为2元.
(1)小明所花的钱y(元)与所买日记本的本数x(本)之间的关系式为________. (2)在这个问题中,变量是________,常量是________.
2.函数2
3
-=x y 的自变量x 的取值范围是() A .2>x B .2≠x C .2≥x D .2≠x 且0≠x
3.函数1
3
x y x -=
-的自变量x 的取值范围是() A .x >1
B .x >1且x ≠3
C .x ≥1
D .x ≥1且x ≠3
4.《齐鲁晚报》每份0.8元,购买《齐鲁晚报》所需钱数y (元)与所买份数x 之间的关系是_________,其中_______是常量,_________是变量。

5.下列四个图象中,不表示某一函数图象的是()
A .
B .
C .
D .
6.与函数y=x 是同一函数的是()
A 、y=|x|
B 、x
x y 2
=C 、33x y =D 、2x y =
7.设点A (a ,b )是正比例函数3
2
y x =-
图象上的任意一点,则下列等式一定成立的是() A .2a+3b=0B .2a ﹣3b=0C .3a ﹣2b=0D .3a+2b=0
8.设圆的面积为S ,半径为R,那么下列说法正确的是() A 、S 是R 的一次函数B 、S 是R 的正比例函数 C 、S 是R2的正比例函数D 、以上说法都不正确
9.一等腰三角形的周长是20cm ,将底边长y (cm )表示成腰长x (cm )的函数. 10.(1)写出函数解析式;(2)求出腰长x 的取值范围.
本知识点小结
10.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h 与注水时间(min)t 的函数图象大致为()
家庭作业
1、要画一个面积为20平方厘米的长方形,其长为x 厘米,宽为y 厘米,在这一变化过程中,常量与变量分别为()
A.常量为20,变量x 、y ;
B.常量为20、y ,变量为x ;
C.常量为20、x ,变量为y ;
D.常量为x 、y ,变量为20; 2、(3分)函数1
22
y x x =
+--的自变量x 的取值范围是() A .2x ≥B .2x >C .2x ≠D .2x ≤ 3.函数1
x y x =
-的自变量x 的取值范围在数轴上表示为() 4.下列函数中y 是x 的正比例函数的是()
A.y=-x 91;
B.y=4x 21
;C.10=-y x 5;D.5
1
xy=-2 5.函数y=(a+1)1
-a x 是正比例函数,则a 的值是 ( )
A.2
B.-1
C.2或-1
D.-2
6.函数y=
x
x 1
12+-中,自变量x 的取值范围是_________ 7.7.已知一个正比例函数的图像经过点(-1,3),则这个正比例函数表达式_______。

8.如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第N 层与白色
正六边形个数n 的函数关系式___________,常量_______,变量______。

9.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是(?????????)
??A.????B.???C.???
课堂总结
?D.
10.小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:
(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?
(2)小敏几点几分返回到家?。

相关文档
最新文档