一种增强型多目标烟花爆炸优化算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种增强型多目标烟花爆炸优化算法
谢承旺;许雷;汪慎文;肖驰;夏学文
【期刊名称】《电子学报》
【年(卷),期】2017(045)010
【摘要】现实中多目标优化问题的多样化和复杂化要求发展新的多目标优化算法.在混合多目标进化算法设计思想和新型进化模型的启发下,提出一种增强型多目标烟花爆炸算法eMOFEOA,该算法利用均匀化与随机化相结合的方法生成均匀分布的初始种群,为算法后续搜索提供较好的起始点;对烟花爆炸半径采用精细化控制策略,即不同世代的种群具有不同的爆炸半径,而且同一种群内部因个体支配强度的差异而具有不同的爆炸半径,以节省计算资源;利用简化的k-最近邻方法维持外部档案的多样性.本文算法与另5种对等比较算法一同在12个基准多目标测试函数上进行性能比较,实验结果表明eMOFEOA算法在收敛性、多样性和稳定性上具有总体上显著的性能优势.%In reality,the diversification and complexity of the multi-objective optimization problems (MOPs) require the development of some novel multi-objective optimization algorithms.Inspired by the hybrid multi-objective evolutionary algorithms (MOEAs) and new evolutionary instances,an enhanced multi-objective fireworks explosion optimization algorithm (eMOFEOA for short) is proposed to solve the hard MOPs efficiently in the paper.Firstly,the proposed approach uses the approach of combining uniformization and randomization to generate an initial population that are scattered uniformly over the feasible search space,so that the algorithm can acquire a good beginning for the subsequent
iterations.Secondly,a fine control strategy of explosion radius is adopted in the eMOFEOA,that is to say,different generation of population has different radius,and the different firework in the same generation have different radius based on its strength of Pareto dominace,so as to save the computation resource to the maximum extent.Thirdly,a simplified k-nearest neighbor approach is employed to maintain the diversity of external archive in the eMOFEOA.The proposed eMOFEOA is compared with the other five peer comparison algorithms in the performance of convergence and diversity based on 12 benchmark multi-objective test functions,and the experimental results show that our eMOFEOA has the overall performance advantages in convergence,diversity and stability.【总页数】9页(P2323-2331)
【作者】谢承旺;许雷;汪慎文;肖驰;夏学文
【作者单位】华东交通大学软件学院,江西南昌330013;华东交通大学软件学院,江西南昌330013;河北地质大学信息工程学院,河北石家庄050031;华东交通大学软件学院,江西南昌330013;华东交通大学软件学院,江西南昌330013
【正文语种】中文
【中图分类】TP301
【相关文献】
1.基于多目标烟花优化算法的正负量化关联规则挖掘 [J], 吴琼;曾庆鹏
2.基于烟花爆炸优化算法的测试数据生成方法 [J], 丁蕊;董红斌;冯宪彬;赵佳华
3.应用精英反向学习的混合烟花爆炸优化算法 [J], 王培崇;高文超;钱旭;苟海燕;汪
慎文
4.带有动态爆炸半径的增强型烟花算法 [J], 张水平;李殷俊;高栋;梁文
5.基于反向学习与机动爆炸烟花优化算法 [J], 李席广;韩守飞;拱长青
因版权原因,仅展示原文概要,查看原文内容请购买。