表面粗糙度轮廓及其检测(精选合集)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面粗糙度轮廓及其检测(精选合集)
第一篇:表面粗糙度轮廓及其检测
第五章表面粗糙度轮廓及其检测
思考题
5-1 为了研究机械零件的表面结构而采用的表面轮廓是怎样确定的?实际表面轮廓上包含哪三种几何误差?
5-2 表面结构中的粗糙度轮廓的含义是什么?它对零件的使用性能有哪些影响?
5-3 测量表面粗糙度轮廓和评定表面粗糙度轮廓参数时,为什么要规定取样长度?标准评定长度等于连续的几个标准取样长度?5-4 为了评定表面粗糙度轮廓参数,首先要确定基准线,试述可以作为基准线的轮廓的最小二乘中线和算术平均中线的含义?5-5 试述GB?T3505-2000《产品几何技术规范表面结构轮廓法表面结构的术语、定义及参数》规定的表面粗糙度轮廓更衣室参数中常用的两个幅度参数和一个间距参数的名称、符号和含义?5-6 规定表面粗糙度轮廓的技术要求时,必须给出的两项基本要求是什么?必要时还可给出哪些附加要求?
5-7 试述在表面粗糙度轮廓代号上给定幅度参数Ra或Rz允许值(上限值、下限值或者最大值、最小值)的标注方法?按GB/T10610-1998《产品几何技术规范表面结构要轮廓法评定表面结构的规则和方法》的规定,各种不同允许值的合格条件是什么?5-8 试述表面粗糙度轮廓幅度参数Ra和Rz分别用什么量仪测量?试述这些量仪的测量原理和分别属于哪种测量方法?5-9 试述表面粗糙度轮廓幅度参数允许值的选用原则?
5-10 GB/T131-1993《机械制图表面粗糙度符号、代号及其注法》规定了哪三种表面粗糙度轮廓符号?
5-11 试述表面粗糙度轮廓代号中幅度参数允许值和其他技术要求的标注位置?
习题
一、判断题〔正确的打√,错误的打X〕
1.确定表面粗糙度时,通常可在三项高度特性方面的参数中选取。

()
2.评定表面轮廓粗糙度所必需的一段长度称取样长度,它可以包含几个评定长度。

()
3.Rz参数由于测量点不多,因此在反映微观几何形状高度方面的特性不如Ra参数充分。

()
4.Ry参数对某些表面上不允许出现较深的加工痕迹和小零件的表面质量有实用意义。

()
5.选择表面粗糙度评定参数值应尽量小好。

()
6.零件的尺寸精度越高,通常表面粗糙度参数值相应取得越小。

()
7.零件的表面粗糙度值越小,则零件的尺寸精度应越高。

()8.摩擦表面应比非摩擦表面的表面粗糙度数值小。

()9.要求配合精度高的零件,其表面粗糙度数值应大。

()10.受交变载荷的零件,其表面粗糙度值应小。

()
二、选择题(将下列题目中所有正确的论述选择出来)1.表面粗糙度值越小,则零件的__。

A.耐磨性好。

B.配合精度高。

C.抗疲劳强度差. D.传动灵敏性差。

E.加工容易。

2.选择表面粗糙度评定参数值时,下列论述正确的有__.A.同一零件上工作表面应比非工作表面参数值大。

B.摩擦表面应比非摩擦表面的参数值小。

C.配合质量要求高,参数值应小。

D.尺寸精度要求高,参数值应小。

E.受交变载荷的表面,参数值应大。

3.下列论述正确的有__。

A.表面粗糙度属于表面微观性质的形状误差。

B.表面粗糙度属于表面宏观性质的形状误差。

C.表面粗糙度属于表面波纹度误差。

D.经过磨削加工所得表面比车削加工所得表面的表面粗糙度值大。

E.介于表面宏观形状误差与微观形状误差之间的是波纹度误差。

4.表面粗糙度代(符)号在图样上应标注在__。

A.可见轮廓线上。

B.尺寸界线上。

C.虚线上。

D.符号尖端从材料外指向被标注表面。

E.符号尖端从材料内指向被标注表面。

三、填空题
1.表面粗糙度是指__。

2.评定长度是指__,它可以包含几个__。

3.测量表面粗糙度时,规定取样长度的目的在于__。

4.国家标准中规定表面粗糙度的主要评定参数有__、__、__三项。

四.综合题
1.国家标准规定的表面粗糙度评定参数有哪些?哪些是基本参数?哪些是附加参数?
2评定表面粗糙度时,为什么要规定取样长度?有了取样长度,为什么还要规定评定长度?
3.评定表面粗糙度时,为什么要规定轮廓中线?4.将表面粗糙度符号标注在图2-38上,要求
(1)用任何方法加工圆柱面φd3,R a最大允许值为3.2μm。

(2)用去除材料的方法获得孔φd1,要求R a最大允许值为3.2μm。

(3)用去除材料的方法获得表面a,要求Ry最大允许值为3.2μm。

(4)其余用去除材料的方法获得表面,要求R a允许值均为25μm。

5.指出图2-39中标注中的错误,并加以改正。

图 2-38 图2-39 6.试解释图1-5.1所示六个表面粗糙度轮廓代号中的各项技术要求?
7.试将下列的表面粗糙度轮廓技术要求标注在图1-5.2所示的机械加工的零件的图样上。

①φD1孔的表面粗糙度轮廓参数Ra的上限值为3.2μm;②φD2孔的表面粗糙度轮廓参数Ra的上限值为6.3μm,最小值为3.2μm;
③零件右端面采用铣削加工,表面粗糙度轮廓参数Rz的上限值为
12.5μm,下限值为6.3μm,加工纹理呈近似放射形;④φd1和φd2圆柱面粗糙度轮廓参数Rz的上限值为25μm;⑤其余表面的表面粗糙度轮廓参灵敏Ra的上限值为12.5μm。

8.试将下列的表面粗糙度轮
廓技术要求标注在图1-5.3所示的机械加工的零件的图样上。

①两上φd1圆柱面的表面粗糙度轮廓参数Ra的上限值为1.6μm,下限值为0.8μm;
②φd2轴肩的表面粗糙度轮廓参灵敏Rz的最大值为20μm;
③φd2圆柱面的表面粗糙度轮廓参数Ra的最大值为3.2μm,最小值为1.6μm;
④宽度为b的键槽两侧面的表面粗糙度轮廓参灵敏Ra的上限值为
3.2μm;
⑤其余表面的表面粗糙度轮廓参灵敏Ra的最大值为12.5μm。

9.在一般情况下,φ60H7孔与φ20H7相比较,φ40H6/f5与φ40H6/s5中的两个孔相比较,哪个孔应选用较小的表面粗糙度轮廓幅度参数值?10.在一般情况下,圆柱度公差分别为0.01mm和0.02mm的两个φ45H7孔相比较,哪个孔应选用较小的表面粗糙度轮廓幅度参数值?
第二篇:表面粗糙度测量仪的工作原理
表面粗糙度测量仪的工作原理
分析及其改进方案
阳旭东
(贵州工业大学机械系,贵州贵阳550003)摘要:分析了传统表面粗糙度测量仪的基本原理,对采用计算机系统的改进方案进行了讨论,并指出其发展方向。

关键词:表面粗糙度;表面粗糙度测量仪;计算机中图分类号:TH71 文献标识码:A
0 引言
表面质量的特性是零件最重要的特性之一,在计量科学中表面质量的检测具有重要的地位。

最早人们是用标准样件或样块,通过肉眼观察或用手触摸,对表面粗糙度做出定性的综合评定。

1929年德国的施马尔茨(G.Schmalz)首先对表面微观不平度的深度进行了定量测量。

1936年美国的艾卜特(E.J.Abbott)研制成功第一台车间用的测量表面粗糙度的轮廓仪。

1940年英国Taylor-Hobson公司研制成功表面粗
糙度测量仪“泰吕塞夫(TALYSURF)”。

以后,各国又相继研制出多种测量表面粗糙度的仪器。

目前,测量表面粗糙度常用的方法有:比较法、光切法、干涉法、针描法和印模法等,而测量迅速方便、测值精度较高、应用最为广泛的就是采用针描法原理的表面粗糙度测量仪。

本文将详细讨论表面粗糙度测量仪的原理及其改进方案。

传统表面粗糙度测量仪的工作原理
1.1 针描法
针描法又称触针法。

当触针直接在工件被测表面上轻轻划过时,由于被测表面轮廓峰谷起伏,触针将在垂直于被测轮廓表面方向上产生上下移动,把这种移通过电子装置把信号加以放大,然后通过指零表或其它输出装置将有关粗糙度的数据或图形输出来。

1.2 仪器的工作原理
采用针描法原理的表面粗糙度测量仪由传感器、驱动器、指零表、记录器和工作台等主要部件组成,见图1。

图1 测量系统图图2 电感传感器工作原理图
电感传感器是轮廓仪的主要部件之一,其工作原理见图2,在传感器测杆的一端装有金刚石触针,触针尖端曲率半径r很小,测量时将触针搭在工件上,与被测表面垂直接触,利用驱动器以一定的速度拖动传感器。

由于被测表面轮廓峰谷起伏,触状在被测表面滑行时,将产生上下移动。

此运动经支点使磁芯同步地上下运动,从而使包围在磁芯外面的两个差动电感线圈的电感量发生变化。

图3为仪器的工作原理主框图。

传感器的线圈与测量线路是直接接入平衡电桥的,线圈电感量的变化使电桥失去平衡,于是就输出一个和触针上下的位移量成正比的信号,经电子装置将这一微弱电量的变化放大、相敏检波后,获得能表示触针位移量大小和方向的信号。

此后,将信号分成三路:一路加到指零表上,以表示触针的位置,一路输至直流功率放大器,放大后推动记录器进行记录;另一路经滤波和平均表放大器放大之后,进入积分计算器,进行积分计算,即可由指示表直接读出表面粗糙度Ra值。

图3 传统表面粗糙度测量仪工作原理框图
指零表的作用反映铁芯在差动电感线圈中所处的位置。

当铁芯处于差动电感线圈的中间位置时,指零表指针指示出零位,即保证处于电感变化的线性范围之内。

所以,在测量之前,必须调整指零表,使其处于零位。

噪声滤波的目的在于剔除一些干扰信号,如电气元件的噪声所引起的虚假信号。

大量的测试表明,高于400Hz的信号即不是被测表面粗糙度所引的信号,必须从总信号中加以剔除。

所以噪声滤波器是一种低通(低频能通过)滤波器,它使400Hz以下的低频信号顺利通过,而将400Hz以上的高频信号迅速衰减,从而达到滤波的目的。

波度滤波的目的则是用以滤掉距大于取样长度的波度,因此它是一个高通(高频能通过)滤波器,使表面粗糙度所引起的高频(相对于波度引起的低频而言)信号能自由通过。

经过噪声滤波和波度滤波以后,剩下来的就是与被测表面粗糙度成比例的信号,再经平均表放大器后,所输出的电流I与被测表面轮廓各点偏离中线的高度y的绝对值成正比,然后经积分器完成 0ydx的积计算,得出Ra值,由指零表显示出来。

这种仪器适用于测定0.02-10μm的Ra值,其中有少数型号的仪器还可测定更小的参数值,仪器配有各种附件,以适应平面、内外圆柱面、圆锥面、球面、曲面、以及小孔、沟槽等形状的工件表面测量。

测量迅速方便,测值精度高。

传统表面粗糙度测量仪的不足
传统表面粗糙度测量仪存在以下几个方面的不足:
(1)测量参数较少,一般仅能测出Ra、Rz、Ry等少量参数;
(2)测量精度较低,测量范围较小,Ra值的范围一般为0.02-10μm左右;(3)测量方式不灵活,例如:评定长度的选取,滤波器的选择等;(4)测量结果的输出不直观。

造成上述几个方面不足的主要原因是:系统的可靠性不高,模拟信号的误差较大且不便于处理等。

对传统表面粗糙度测量仪的改进
3.1 传统表面粗糙度测量仪的改进方案
为了克服传统表面粗糙度测量仪的不足,应该采用计算机系统对其进行改进。

例如,英国兰克精密机械有限公司制造的“泰吕塞夫
(TALYSURF)”10型和我国哈尔滨量具刃具厂制造的2205型表面粗糙度测量仪就采用了计算机系统,使其性能较之传统表面粗糙度测量仪有极大的提高。

其基本原理如图4所示,从相敏整流输出的模拟信号,经过放大及电平转换之后进入数据采集系统,计算机自动地将其采集的数据进行数字滤波和计算,得到测量结果,测量结果及轮廓图形在显示器显示或打印输出。

图4 改进后的表面粗糙度测量仪工作原理框图
要采用计算机系统对传统的表面粗糙度测量仪进行改进,就要编制相应的计算机软件,最好采用比较直观的菜单形式。

可以按如图5所示的菜单使用流程图编制软件:
图5 菜单使用流程框图
3.2 改进后的表面粗糙度测量仪的功能及使用效果
由于采用计算机系统,将模拟信号转换为数字信号进行灵活的处理,显著地提高了系统的可靠性,所以既大大增加了测量参数的数量,又提高了测量精度。

例如:哈尔滨量具刃具厂制造的2205型表面粗糙度测量仪的测量参数多达二十六个,测量范围为0.001~50μm,可任选1~5倍的取样长度作为评定长度,测量结果及图形在显示器、打印机或绘图仪上非常直观地输出来。

它还采用了较为先选的可选择的数字滤波器,它与模拟滤波器相比其特性更为准确,且不会有元器件参数误差带来的影响。

另一方面,若在表面粗糙度测量仪测量实验的教学过程中引入改进后的表面粗糙度测量仪,就实验的直观教学功能而言,也很有意义。

改进后的电动输廓仪,通过计算机软件与硬件的结合(尤其是软件)大大加强了实验过程的直观性,这体现在以下几个方面:
(1)整个实验过程非常直观地通过软件的各级菜单进行控制。

操作简单、一目了然。

(2)输入与显示同步,即在测量进行过程的同时,触针在被测表面上滑行的轨迹动态地显示在计算机屏幕上。

(3)测量结果及相关图形能非常直观地、准确地输出在显示器、打印机或绘图仪上。

很显然,以上这些直观的教学效果是其它传统的表面粗糙度测量实验方法所不具备的。

它在得到正确的测量结果的同时,
还充分运用了直观教学的原理,帮助学生加深对表面粗糙度的概念及其各种参数的直观理解。

结语
(1)传统的表面粗糙度测量仪由传感器、驱动器、指零表、记录器和工作台等主要部件组成,从输入到输出全过程均为模拟信号。

而在传统的表面粗糙度测量仪的基础上,采用计算机系统对其进行改进后,通过模-数转换将模拟量转换为数字量送入计算机进行处理,使得仪器在测量参数的数量、测量精度、测量方式的灵活性、测量结果输出的直观性等方面有了极大的提高。

(2)从前面的分析知,整个改进方案并不复杂,因此对于目前仍广泛使用的传统的表面粗糙度测量仪的改进具有一定的意义。

(3)随着电子技术的进步,某些型号的表面粗糙度测量仪还可将表面粗糙度的凹凸不平作三维处理,测量时在相互平行的多个截面上进行,通过模-数变换器,将模拟量转换为数字量,送入计算机进行数据处理,记录其三维放大图形,并求出等高线图形,从而更加合理的评定被测面的表面粗糙度。

第三篇:影响机械加工表面粗糙度的几个因素及措施[定稿] 职教类
影响机械加工表面粗糙度的几个因素及措施
摘要:表面粗糙度是零件表面所具有的微小峰谷的不平程度,它是评价零件的一项重要指标。

一般说来,它的波距和波高都比较小,是一种微观的几何形状误差。

对机械加工表面,表面粗糙度是由切削时的刀痕,刀具和加工表面之间的摩擦,切削时的塑性变形,以及工艺系统中的高频振动等原因所造成的。

表面粗糙度是检验零件质量的主要依据,它的选择直接关系到生产成本、产品的质量、使用寿命。

关键词:机械加工
表面粗糙度
提高措施
随着工业技术的飞速发展,机器的使用要求越来越高,一些重要零件在高压力、高速、高温等高要求条件下工作,表面层的任何缺陷,不仅直接影响零件的工作性能,而且还可能引起应力集中、应力腐蚀
等现象,将进一步加速零件的失效,这一切都与加工表面质量有很大关系。

因而表面质量问题越来越受到各方面的重视。

一、机械加工表面粗糙度对零件使用性能的影响
表面粗糙度对零件的配合精度,疲劳强度、抗腐蚀性,摩擦磨损等使用性能都有很大的影响。

1、表面质量对零件配合精度的影响
(1)对间隙配合的影响
由于零件表面的凹凸不平,两接触表面总有一些凸峰相接触。

表面粗糙度
过大,则零件相对运动过程中,接触表面会很快磨损,从而使间隙增大,引起配合性质改变,影响配合的稳定性。

特别是在零件尺寸和公差小的情况下,此影响更为明显。

(2)对过盈配合的影响
粗糙表面在装配压入过程中,会将相接触的峰顶挤平,减少实际有效过盈量,降低了配合的连接强度。

2、表面质量对疲劳强度的影响
零件表面越粗糙,则表面上的凹痕就越深明,产生的应力集中现象就越严重。

当零件受到交变载荷的作用时,疲劳强度会降低,零件疲劳损坏的可能性增大。

3、表面质量对零件抗腐蚀性的影响
零件表面越粗糙,则积聚在零件表面的腐蚀气体或液体也越多,且通过表面的微观凹谷向零件表层渗透,形成表面锈蚀。

4、表面质量对零件摩擦磨损的影响
两接触表面作相对运动时,表面越粗糙,摩擦系数越大,摩擦阻力越大,因摩擦消耗的能量也越大,并且还影响零件相对运动的灵活性。

此外,表面越粗糙,两配合表面的实际有效接触面积越小,单位面积压力越大,更易磨损。

此外,表面粗糙度还影响零件的接触刚度、密封性能、产品的美观和表面涂层的质量等。

因此,提高产品的质量和寿命应选取合理的表面粗糙度。

二、影响表面粗糙度的因素及措施
1、切削加工影响表面粗糙度的因素
在加工表面留下了切削层残留面积,其形状是刀具几何形状的复映。

减小
进给量vf、主偏角、副偏角以及增大刀尖圆弧半径,均可减小残留面积的高度。

此外,适当增大刀具的前角以减小切削时的塑性变形程度。

合理选择润滑液和提高刀具刃磨质量以减小切削时的塑性变形和抑制刀瘤、鳞刺的生成,也是减小表面粗糙度值的有效措施。

2、工件材料的性质
加工塑性材料时,由于刀具对金属的挤压产生了塑性变形,加之刀具迫使切屑与工件分离的撕裂作用,使表面粗糙度值加大。

加工脆性材料时,其切屑呈碎粒状,由于切屑的崩碎而在加工表面留下许多麻点,使表面粗糙度值加大。

3、切削用量
(1)进给量ƒ影响
采用较小的进给量ƒ,加工表面残留面积高度较小,对减小粗糙度Ra值有利。

(2)切削速度υ的影响
切削塑性材料,当切削速度υ小于5 m/min或大于100 m/min 时,不易产生积屑瘤,对减小粗糙度Ra值有利。

当切削速度υ在20--25 m/min,且切削温度约为300ºC时,切屑与刀具前刀面摩擦系数最大,此时积屑瘤高度最大,使粗糙度Ra值增加。

(3)切削深度αp影响
切削深度αp比进给量ƒ和切削速度υ对粗糙度Ra值的影响要小。

当αp减小时,切削力减小,不易产生振动,对减小粗糙度Ra值有利。

4、磨削加工影响表面粗糙度的因素
像切削加工时表面粗糙度的形成过程一样,磨削加工表面粗糙度的形成也
是由几何因素和表面金属的塑性变形来决定的。

影响磨削表面粗
糙的主要因素有:(1)砂轮的粒度;(2)砂轮的硬度;(3)砂轮的修整;(4)磨削速度;(5)磨削径向进给量与光磨次数;(6)工件圆周进给速度与轴向进给量;(7)冷却润滑液。

三、提高表面粗糙度的措施
1、减小切削加工表面粗糙度的措施
(1)刀具方面:在工艺系统刚度足够时,采用较大的刀尖圆弧半径re,较小副偏角k'r,使用长度比进给量稍大一些的k'r=0的修光刃;采用较大的前角r。

加工塑性的材料,提高刀具的刃磨质量,减小刀具前、后刀面的粗糙度数值,使其不大于Ra1.25μm;选用与工件亲和力小的刀具材料;对刀具进行氧、氮化处理;限制副刀刃上的磨损量;选用细颗粒的硬质合金做刀具等。

(2)工件方面:应有适宜的金相组织(低碳钢、低合金钢中应有铁素体加低碳马氏体、索氏体或片状珠光体,高碳钢、高合金钢中应有粒状珠光体);加工中碳钢及中碳合金钢时若采用较高切削速度,应为粒状珠光体;若采用较低切削速度,应为片状珠光体组织。

合金元素中碳化物的分布要细匀;易切钢中应含有硫铅等元素;对工件进行调质处理,提高硬度,降低塑性;减小铸铁中石墨的颗粒尺寸等。

(3)切削条件方面:以较高的切削速度切削塑性材料;减小进给量;采用高效切削液;提高机床的运动精度,增强工艺系统刚度;采用超声波振动切削加工等。

2、减小磨削加工表面粗糙度参数值的措施
(1)砂轮特性方面:采用细粒度砂轮;提高磨粒切削刃的等高性;根据工件材料、磨料等选择适宜的砂轮硬度;选择与工件材料亲和力小的磨料;采用适宜的弹性结合剂的砂轮,采用直径较大的砂轮;增大砂轮的宽度等。

(2)砂轮修整方面:金刚石的耐磨性、刃口形状、安装角度应满足一定要求;选择适当的修整用量。

(3)磨削条件方面:提高砂轮速度或降低工作速度,使V砂/V工的比值增大;采用较小的纵向进给量、磨削深度,最后进行无进给光磨。

正确选用切削液的种类、浓度比、压力、流量和清洁度等;提高砂轮
的平衡精度;提高主轴的回转精度、工作台运动的平衡性及整个工艺系统的刚度。

四、结论
由于机械加工表面对机器零件的使用性能如耐磨性、接触刚度、疲劳强度、配合性质、抗腐蚀性能及精度的稳定性等有很大的影响,因此对机器零件的重要表面应提出一定的表面粗糙度要求。

由于影响表面粗糙度的因素是多方面的,因此应该综合考虑各方面的因素,对表面粗糙度根据需要提出比较经济适用的要求。

第四篇:电火花线切割加工的表面粗糙度及其主要影响因素电火花线切割加工的表面粗糙度及其主要影响因素
2010-03-27
电火花线切割加工是通过放电能量的热效应使工件材料熔化、蒸发以达到尺寸加工的目标。

因为线切割的工作液具有介电功能,所以在加工过程中还伴有一定的电解效应。

切割时的热效应和电解效应使加工表面产生变质层,以致电火花线切割加工的模具发生早期损耗,缩短了模具的使用年限。

表面形貌
电火花线切割的加工表面从宏观上看是带有切割条纹的,但又无机械切削那样明显切痕的表面。

切割条纹的深度和条纹之间的宽窄主要与放电能量、电极丝的走丝方式、张力和振动的大小以及工作液、机床精度、进给方式和进给速度等因素有关。

高速走丝的条纹一般较低速走丝的条纹明显,使用乳化油的水溶液还容易形成黑白相间的条纹。

从微观来看,加工表面是由许多放电痕重叠而成。

因为在加工中每次脉冲放电都在工件表面形成一个放电痕,连续放电使放电痕相互重叠就形成了无明显切痕的表面。

放电痕的深度和直径主要决定于单个脉冲放电能量和脉冲参数。

表面变质层
电火花线切割表面变质层与工件材料、工作液和脉冲参数有关。

1、金相组织及元素成分:由于火化放电的热作用使材料急剧加热。

相关文档
最新文档