万山区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万山区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .2
2. 为得到函数的图象,只需将函数y=sin2x 的图象( )
A .向左平移个长度单位
B .向右平移个长度单位
C .向左平移
个长度单位
D .向右平移
个长度单位
3. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )
A .10 13
B .12.5 12
C .12.5 13
D .10 15
4. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )
A .{2,1,1}--
B .{1,1,2}-
C .{1,1}-
D .{2,1}--
【命题意图】本题考查集合的交集运算,意在考查计算能力.
5. 双曲线的焦点与椭圆
的焦点重合,则m 的值等于( )
A .12
B .20
C .
D .
6. 已知集合{}
2
|10A x x =-=,则下列式子表示正确的有( )
①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.
A .1个
B .2个
C .3个
D .4个 7. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差
8. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0)
D .(0,1)
9. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )
A . 1±
B . ±
C .
D .10.设a=60.5,b=0.56,c=log 0.56,则( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a 11.下列各组函数中,表示同一函数的是( )
A .y=1,y=x 0
B .y=
•
,y=
C .y=x ,y=
D .y=|x|,t=()2
12.已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )
A .﹣1
B .0
C .1
D .2
二、填空题
13.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R x
f x x a a x =+-∈,若曲线122e e 1
x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.
14.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .
15.如图所示是y=f (x )的导函数的图象,有下列四个命题: ①f (x )在(﹣3,1)上是增函数; ②x=﹣1是f (x )的极小值点;
③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数; ④x=2是f (x )的极小值点.
其中真命题为 (填写所有真命题的序号).
16.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:
①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k
,2
k+1
)”;其中所有正确
结论的序号是 .
17.8
1()x x
-的展开式中,常数项为___________.(用数字作答)
【命题意图】本题考查用二项式定理求指定项,基础题.
18.1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆的内切圆半径与外接圆半径之比为1
2
,则该双曲线的离心率为______________.
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
三、解答题
19.已知复数z 的共轭复数是,且复数z 满足:|z ﹣1|=1,z ≠0,且z 在复平面上对应的点在直线y=x 上.
求z 及z 的值.
20.已知双曲线过点P (﹣3,4),它的渐近线方程为y=±x .
(1)求双曲线的标准方程;
(2)设F 1和F 2为该双曲线的左、右焦点,点P 在此双曲线上,且|PF 1||PF 2|=41,求∠F 1PF 2的余弦值.
21.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;
(1) 求实验室这一天的最大温差;
(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?
22.已知:函数f(x)=log2,g(x)=2ax+1﹣a,又h(x)=f(x)+g(x).
(1)当a=1时,求证:h(x)在x∈(1,+∞)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围.
23.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求函数f(x)的解析式.
24.已知向量=(,1),=(cos,),记f(x)=.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.
万山区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】C
【解析】解:∵复数(2+ai )2=4﹣a 2
+4ai 是实数,
∴4a=0, 解得a=0. 故选:C .
【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.
2. 【答案】A
【解析】解:∵
,
只需将函数y=sin2x 的图象向左平移个单位得到函数
的图象.
故选A .
【点评】本题主要考查诱导公式和三角函数的平移.属基础题.
3. 【答案】C
【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,
∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5
而中位数是把频率分布直方图分成两个面积相等部分的平行于Y 轴的直线横坐标 第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可 ∴中位数是13 故选:C .
【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距
×
,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.
4. 【答案】C
【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .
5. 【答案】A
【解析】解:椭圆的焦点为(±4,0),
由双曲线
的焦点与椭圆的重合,可得
=4,解得m=12.
故选:A .
6. 【答案】C 【解析】
试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 7. 【答案】D
【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88. B 样本数据84,86,86,88,88,88,90,90,90,90 众数分别为88,90,不相等,A 错. 平均数86,88不相等,B 错. 中位数分别为86,88,不相等,C 错 A 样本方差S 2
= [(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2, B 样本方差S 2
= [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D 正确
故选D .
【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.
8. 【答案】C
【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,
又f (﹣1)=﹣1<0,f (0)=30
+0=1>0,
∴f (﹣1)f (0)<0,
可知:函数f (x )的零点所在的区间是(﹣1,0). 故选:C .
【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.
9. 【答案】B 【解析】
试题分析:由圆226260x y x y +--+=,可得22
(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,
要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于
1
2
r
,即1=
,解得a =,故选B. 1 考点:直线与圆的位置关系.
【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力
和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于1
2
r 是解答的关键.
10.【答案】A
【解析】解:∵a=60.5>1,0<b=0.56<1,c=log0.56<0,
∴c<b<a.
故选:A.
【点评】本题考查了指数函数与对数函数的单调性,属于基础题.
11.【答案】C
【解析】解:A中的两个函数y=1,y=x0,定义域不同,故不是同一个函数.
B中的两个函数定义域不同,故不是同一个函数.
C中的两个函数定义域相同,y=x,
y==x,对应关系一样,故是同一个函数.
D中的两个函数定义域不同,故不是同一个函数.综上,只有C中的两个函数是同一个函数.故选:C.
12.【答案】D
【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.
下列a的取值能使“¬p”是真命题的是a=2.
故选;D.
二、填空题
13.【答案】
1
,
e ⎛⎤-∞
⎥⎝⎦
【解析】结合函数的解析式:
1
2
2e
e1
x
x
y
+
=
+
可得:
()
()
12
2
2
21
'
1
x x
x
e e
y
e
+-
=
+
,
令y′=0,解得:x=0,
当x>0时,y′>0,当x<0,y′<0,
则x∈(-∞,0),函数单调递增,x∈(0,+∞)时,函数y单调递减,则当x=0时,取最大值,最大值为e,
∴y0的取值范围(0,e],
结合函数的解析式:()()R lnx
f x x a a x =+-∈可得:()22ln 1'x x f x x
-+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.
假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.
令函数()ln x
f x x a x x =
+-=. 设()ln x g x x =,求导()2
1ln 'x
g x x -=,
当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e
=, 当x →0时,a →-∞, ∴a 的取值范围1,e
⎛⎤-∞ ⎥⎝
⎦
.
点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.
(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.
14.【答案】 2 .
【解析】解:∵一组数据2,x ,4,6,10的平均值是5, ∴2+x+4+6+10=5×5, 解得x=3,
∴此组数据的方差 [(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,
∴此组数据的标准差S==2
.
故答案为:2
.
【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.
15.【答案】 ①
【解析】解:由图象得:f (x )在(1,3)上递减,在(﹣3,1),(3,+∞)递增, ∴①f (x )在(﹣3,1)上是增函数,正确, x=3是f (x )的极小值点,②④不正确;
③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确, 故答案为:①.
16.【答案】 ①②④ .
【解析】解:∵x ∈(1,2]时,f (x )=2﹣x .
∴f (2)=0.f (1)=f (2)=0. ∵f (2x )=2f (x ),
∴f (2k x )=2k
f (x ).
①f (2m )=f (2•2m ﹣1)=2f (2m ﹣1)=…=2m ﹣1f (2)=0,故正确;
②设x ∈(2,4]时,则x ∈(1,2],∴f (x )=2f ()=4﹣x ≥0.
若x ∈(4,8]时,则x ∈(2,4],∴f (x )=2f ()=8﹣x ≥0. …
一般地当x ∈(2m ,2m+1
),
则∈(1,2],f (x )=2
m+1
﹣x ≥0,
从而f (x )∈[0,+∞),故正确;
③由②知当x ∈(2m ,2m+1),f (x )=2m+1﹣x ≥0,
∴f (2n +1)=2n+1﹣2n ﹣1=2n ﹣1,假设存在n 使f (2n
+1)=9, 即2n ﹣1=9,∴2n
=10,
∵n ∈Z ,
∴2n
=10不成立,故错误;
④由②知当x ∈(2k ,2k+1)时,f (x )=2k+1﹣x 单调递减,为减函数,
∴若(a ,b )⊆(2k ,2k+1
)”,则“函数f (x )在区间(a ,b )上单调递减”,故正确.
故答案为:①②④.
17.【答案】70
【解析】81
()x x -的展开式通项为8821881()(1)r r r r r r
r T C x C x x
--+=-=-,所以当4r =时,常数项为
448(1)70C -=.
18.1
【解析】
三、解答题
19.【答案】
【解析】解:∵z在复平面上对应的点在直线y=x上且z≠0,
∴设z=a+ai,(a≠0),
∵|z﹣1|=1,
∴|a﹣1+ai|=1,
即=1,
则2a2﹣2a+1=1,
即a2﹣a=0,解得a=0(舍)或a=1,
即z=1+i,=1﹣i,
则z=(1+i)(1﹣i)=2.
【点评】本题主要考查复数的基本运算,利用复数的几何意义利用待定系数法是解决本题的关键.20.【答案】
【解析】解:(1)设双曲线的方程为y2﹣x2=λ(λ≠0),
代入点P(﹣3,4),可得λ=﹣16,
∴所求求双曲线的标准方程为
(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,
又由双曲线的几何性质知|d1﹣d2|=2a=6,
∴d12+d22﹣2d1d2=36即有d12+d22=36+2d1d2=118,
又|F1F2|=2c=10,
∴|F1F2|2=100=d12+d22﹣2d1d2cos∠F1PF2
∴cos∠F1PF2=
【点评】本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求∠F1PF2的余弦值.着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题.
21.【答案】
【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),
∴≤t+<,故当t+=时,函数取得最大值为10+2=12,
当t+=时,函数取得最小值为10﹣2=8,
故实验室这一天的最大温差为12﹣8=4℃。
(2)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin(t+),
由10﹣2sin(t+)>11,求得sin(t+)<﹣,即≤t+<,
解得10<t<18,即在10时到18时,需要降温。
22.【答案】
【解析】解:(1)证明:h(x)=f(x)+g(x)=log2+2x,
=log2(1﹣)+2x;
∵y=1﹣在(1,+∞)上是增函数,
故y=log2(1﹣)在(1,+∞)上是增函数;
又∵y=2x在(1,+∞)上是增函数;
∴h(x)在x∈(1,+∞)上单调递增;
同理可证,h(x)在(﹣∞,﹣1)上单调递增;
而h(1.1)=﹣log221+2.2<0,
h(2)=﹣log23+4>0;
故h(x)在(1,+∞)上有且仅有一个零点,
同理可证h(x)在(﹣∞,﹣1)上有且仅有一个零点,
故函数h(x)有两个零点;
(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为
1﹣=2ax+1﹣a在(﹣∞,﹣1)∪(1,+∞)上有两个不相等实数根;
故a=;
结合函数a=的图象可得,
<a<0;
即﹣1<a<0.
【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题.
23.【答案】
【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,
由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
故f(x)在(0,+∞)上是减函数.
(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.
又f(0)=0,故函数f(x)的解析式为f(x)=.
24.【答案】
【解析】解:(1)∵向量=(,1),=(cos,),记f(x)=.
∴f(x)=cos+=sin+cos+=sin(+)+,
∴最小正周期T==4π,
2kπ﹣≤+≤2kπ+,
则4kπ﹣≤x≤4kπ+,k∈Z.
故函数f(x)的单调递增区间是[4kπ﹣,4kπ+],k∈Z;
(2))∵将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为
:y=g(x)=sin[(x﹣+)]+=sin(﹣)+,
∴则y=g(x)﹣k=sin(x﹣)+﹣k,
∵x∈[0,],可得:﹣≤x﹣≤π,
∴﹣≤sin(x﹣)≤1,
∴0≤sin(x﹣)+≤,
∴若函数y=g(x)﹣k在[0,]上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,
∴实数k的取值范围是[0,].
∴当k<0或k>时,函数y=g(x)﹣k在的零点个数是0;
当0≤k<1时,函数y=g(x)﹣k在的零点个数是2;
当k=0或k=时,函数y=g(x)﹣k在的零点个数是1.
【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.。