实变函数重点题集
实变函数试题库及参考答案
实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写)6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE = 2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|EmE x f x a f x dx a ≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质, 而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
(完整版)实变函数题库集答案
实变函数试题库及参考答案本科、题 1.设A,B 为集合,则A B UB A U B (用描述集合间关系的符号填写)2.设A是B 的子集,则A B (用描述集合间关系的符号填写)3.如果E中聚点都属于E ,则称E是闭集4.有限个开集的交是开集5.设E1、E2是可测集,则m E1UE2 mE1 mE2 (用描述集合间关系的符号填写)n*6.设E ? n是可数集,则m E = 07.设f x 是定义在可测集E上的实函数,如果a ?1,E x f x a 是可测集,则称f x 在E上可测8.可测函数列的上极限也是可测函数9.设f n x f x ,g n x g x ,则f n x g n x f x g x10.设f x 在E上L可积,则f x 在E上可积11.设A,B 为集合,则B A UA A (用描述集合间关系的符号填写)12.设A 2k 1k 1,2,L ,则A=a(其中a表示自然数集N 的基数)13.设E ? n,如果E 中没有不属于E,则称E 是闭集14.任意个开集的并是开集15.设E1、E2是可测集,且E1 E2 ,则mE1 mE216.设E 中只有孤立点,则m*E =017.设f x 是定义在可测集E上的实函数,如果 a ?1,E x f x a 是可测,则称f x 在E上可测18.可测函数列的下极限也是可测函数19.设f n x f x ,g n x g x ,则f n x g n x f x g x20.设n x 是E上的单调增收敛于f x 的非负简单函数列,则f x dx lim n x dxE n E21.设A,B 为集合,则A B UB B22.设A为有理数集,则A=a(其中a表示自然数集N 的基数)23.设E ? n,如果E 中的每个点都是内点,则称E是开集24.有限个闭集的交是闭集25.设E ? n,则m*E 0 26.设E是? n中的区间,则m*E =E的体积27.设f x 是定义在可测集E上的实函数,如果 a ?1,E x f x a 是可测集,则称f x 在E上可测28.可测函数列的极限也是可测函数29.设f n x f x ,g n x g x a.e. ,则f n x g x30.设f n x 是E 上的非负可测函数列,且单调增收敛于f x ,由勒维定理,有f x dx lim fx dxnnE n E31.设A, B为集合,则B AI B UA=AU B32.设A为无理数集,则A=c (其中c 表示自然数集0,1 的基数)33.设E ? n,如果E 中没有不是内点的点,则称E是开集 34.任意个闭集的交是闭集n n * * * c35.设E ? n,称E是可测集,如果T ? n,m*T m* T I E m*T I E c36.设E是外测度为零的集合,且F E,则m*F=037.设f x 是定义在可测集E上的实函数,如果a ?1,E x a f x b 是可测,( a b)则称f x 在E 上可测38.可测函数列的上确界也是可测函数39.设f n x f x ,g n x g x a.e. ,则f n x g n x f x g x40.设f n x f x ,那么由黎斯定理,f n x 有子列f n k x ,使f n k x f x a.e. 于E41.设A, B为两个集合 ,则A B__ AI B c.(等于)42.设E R ,如果E 满足E E (其中E 表示E 的导集 ), 则E 是闭 .43.若开区间( , )为直线上开集G的一个构成区间 ,则( , )满(i) (a,b) G (ii) a G,b G44.设A为无限集 .则A的基数A__a(其中a表示自然数集N 的基数) 答案:45.设E1,E2为可测集 , mE2 ,则m( E1 E2) __ mE1 mE2. 答案:46.设f (x)是定义在可测集E上的实函数 ,若对任意实数a,都有E[x f(x) a]是可测集E上的可测函数 .47.设x0是E( R)的内点 ,则m*E__0. 答案48.设f n(x) 为可测集E 上的可测函数列 ,且f n(x) ____________ f(x),x E,则由黎斯 __定理可知得 ,存在f n(x) 的子列a.ef n k(x) ,使得f n k(x) f (x) (x E).49.设f (x)为可测集E( R n)上的可测函数 ,则f(x)在E上的L积分值不一定存在且| f(x)|在E上不一定L可积.50.若f ( x)是[ a, b]上的绝对连续函数 ,则f (x)是[a,b]上的有界变差函数51.设A, B为集合,则A U B ___(B A)U A 答案= 52.设E R n,如果E满足E0 E(其中E0表示E的内部),则E是开集53.设G为直线上的开集,若开区间(a,b)满足(a,b) G且a G,b G,则(a,b)必为G的构成区间54.设A {x|x 2n,n为自然数} ,则A的基数= a (其中a表示自然数集N的基数)55.设A, B为可测集,B A且mB ,则mA mB__m(A B) 答案 =56.设f (x) 是可测集E上的可测函数,则对任意实数a,b(a b),都有E[x a f(x) b]是可测集57.若E( R)是可数集,则mE__0 答案=a.e58.设f n(x) 为可测集E上的可测函数列,f(x) 为E上的可测函数,如果f n(x) f(x) (x E) ,则f n(x) f(x) x E不一定成立59.设f (x)为可测集E( R n)上的非负可测函数,则f(x)在E上的L积分值一定存在60.若f (x) 是[a,b]上的有界变差函数,则f (x)必可表示成两个递增函数的差(或递减函数的差) 多项选择题(每题至少有两个以上的正确答案)1.设E 0,1 中无理数,则( ACD )A E 是不可数集B E 是闭集C E 中没有内点D mE 12.设E ? n是无限集,则( AB )A E 可以和自身的某个真子集对等B E a(a 为自然数集的基数)CED m*E 03.设f x 是E 上的可测函数,则( ABD )A 函数f x 在E 上可测B f x 在E 的可测子集上可测C f x 是有界的D f x 是简单函数的极限4.设f x 是a,b 上的有界函数,且黎曼可积,则( ABC )A f x 在a,b 上可测B f x 在a,b 上L可积C f x 在 a,b 上几乎处处连续D f x 在 a, b 上几乎处处等于某个连续函数设 E ? n,如果 E 至少有一个内点,则( BD ) m E 可以等于 0 B m E 0 C E 可能是可数集 D E 不可能是可数集5.6. 设 E ? n是无限集,则( AB )E 含有可数子集 B E 不一定有聚点 C E 含有内点 D E 是无界的7. 设 f x 是 E 上的可测函数,则( BD )函数 f x 在 E 上可测f x 是非负简单函数列的极限 f x 是有界的8. 设 f x 是 a,b 上的连续函数,则( ABD )A f x在 a,b上可测B f x 在a,b b上 L 可积,且 R f x dx Lf x dxa ba ,b C f x 在 a,b 上 L 可积,但 R f x dx L f xaa ,bD f x 在 a,b 上有界9. 设 D x 是狄利克莱函数,即x 为 x0,1 中有理数 ,则( BCD )中无理数 10.设x 几乎处处等于 1x 是非负可测函数n*E ? n, m *E 0 ,Dx 则( ABD几乎处处等于 0 是 L 可积函数11. E 是可测集 B E 的任何子集是可测集 C E 是可数集 D E 不一定是可数集设E n, E x1 x Ec,则( AB ) E 0 x E c当 E 是可测集时, E x 是可测函数Ex 是可测函数时, E 是可测集f x 在 E 的可测子集上D 当E x 是不是可测函数时,E不一定是可测集12.设f x 是a,b 上的连续函数,则( BD )A f x 在a,b 上有界B f x 在a,b 上可测C f x 在a,b 上L可积D f x 在a,b 上不一定L 可积13.设f x 在可测集E上L可积,则( AC )A f x ,f x 都是E上的非负可积函数B f x 和f x 有一个在E上的非负可积C f x 在E 上L 可积D f x 在E 上不一定L 可积14.设E ? n是可测集,则( AD )A E c是可测集B mEC E 的子集是可测集D E的可数子集是可测集15.设f n x f x ,则( CD )A f n x 几乎处处收敛于f xB f n x 一致收敛于f xC fn x 有子列fnx ,使fnx f x a.e. 于ED f n x 可能几乎处处收敛于f x16.设f x 是a,b 上有界函数,且L 可积,则( BD )A f x 在a,b 上黎曼可积B f x 在a,b 上可测C f x 在a,b 上几乎处处连续D f x 在a,b 上不一定连续17. 设E {[0,1] 中的无理点} ,则(CD)(A )E是可数集(B)E是闭集(C)E中的每个点均是聚点(D)mE 0 18.若E(R)至少有一个内点,则( BD )A) m * E 可以等于0 (B)m *E 0 (C) E 可能是可数集 (D) E 不可能是可数集设 f (x) 是[a,b] 上的单调函数,则( ACD)f n (x) f ( x),( x E) ,则下列哪些结果不一定成立( ABCD(A) f (x)dx 存在(B) f(x)在 E 上L -可积 a.e(C)f n (x) f (x) (x E) (D) limf n (x)dx f(x)dxn E E24.若可测集 E 上的可测函数 f(x)在E 上有 L 积分值,则( AD ) A) f (x) L(E) 与 f (x) L (E)至少有一个成立 B) f (x)L(E) 且f(x) L(E)C) |f(x)|在 E 上也有L - 积分值D)| f(x)|L(E)、单项选择1. 下列集合关系成立的是(A )A B A I A B A B IACA B UB A D B A UA B2. 若E R n 是开集, 则( B)A E EB E 0E C E E D E E19. 设E [a,b] 是可测集,则E 的特征函数 E (x) 是( ABC ) A) [a,b] 上的符号函数 C) E 上的连续函数 B) [a,b] 上的可测函数 D)[a,b] 上的连续函数20. 21. A) C) 设E f (x) 是 [a,b] 上的有界变差函数 f (x) 在[a,b] 上几乎处处收敛 {[0,1] 中的有理点 } ,则( AC B) f(x) 是[a,b] 上的绝对连续函数 D) f(x) 在[a,b] 上几乎处处可导 A) E 是可数集mE 0B ) E 是闭集D )E 中的每一点均为 E 的22.若 E( R) 的外测度为 0,则( AB )A) E 是可测集 C) E 一定是可数B) mE 0 D) E 一定不是可数23 .设 mE, f n (x) 为 E 上几乎处处有限的可测函数列, f(x) 为 E 上几乎处处有限的可测函数,如果4.设f n x 是E 上一列非负可测函数,则(B)Elnimf nEndxlimnxdxElimf nEndxlimnxdxElnimf nEndxlimnxdxlimEf nn EdxElimf nEn5.列集合关系成立的是(IA cUA U A cIA cUA6.若E R n是闭集,则E07.A 9.设E 为无理数集,E 为闭集B 下列集合关系成立的是(C )E 是不可测集B )则(mEIA c A cUA A c U A c10.设Rn,则( A )A E EE D ED mE 0P为康托集,则( B B mP11.设A P 是可数集13.下列集合关系成立的是()A)P 是不可数集D P 是开集B则B c A c B则A c B cB则AI BB B则AUB14.设E R n,则A E E0 CE ED15.设E x,0x 则( B )A mE mE 2C E是R2中闭集2E是R2中完备集16.设f x ,g x 是E 上的可测函数,则( B )21.下列集合关系成立的是( A )A)E 0C) E23. 设 Q 的有理数集,则(四、判断题A Ex f x g x 不一定是可测集B Ex f x g x 是可测集C Ex f x g x是不可测集D Ex f x g x 不一定是可测集17 .下列集合关系成立的是( A )(A) (A B)UBAUB (B) (A B)U B A(C) (B A)U A A (D ) B A A18.若E R n是开集,则 ( B )(A) E 的导集 E (B) E 的开核 E(C) EE(D) E 的导集 E19. 设 P 的康托集,则 (C)(A) P为可数集(B) P 为开集(C) mP 0( D) mP 1设 20、 E 是 R 1中的可测集, (x)是 E 上的简单函数,则A) (x)是 E 上的连续函数 B) (x) 是E 上的单调函数 C) (x)在 E 上一定不 L 可积D) (x) 是 E 上的可测函数A) AI (BUC) (AI B)U (AI C) B) (A B)I A C)(B A)I A D) AUBAI B22. 若 E R n是闭集,则B) D)A ) mQ 0 B) Q 为闭集 C) mQ 0D) Q 为不可测集24.设 E 是 R n中的可测集, f(x)为 E 上的可测函数,若 f(x)dx0 ,则A)在 E 上, f ( x)不一定恒为零 B)在 E 上, f (x) C)在 E 上, f(x) 0D)在 E 上, f (x)1. 可数个闭集的并是闭集 .2. 可数个可测集的并是可测集 .3. 相等的集合是对等的 .4. 称 f x ,g x 在 E 上几乎处处相等是指使( × )( √ )( √ )g x 的x 全体是可测集 . ( √ )5. 可数个 F 集的交是 F 集 .6. 可数个可测函数的和使可测函数 .7. 对等的集合是相等的 .8. 称 f x ,g x 在 E 上几乎处处相等是指使( × ) (√) (× )x g x 的 x 全体是零测集 . ( × )9. 可数个 G 集的并是 G 集 . 10. 零测集上的函数是可测函数 .11. 对等的集合不一定相等 .12. 称 f x ,g x 在 E 上几乎处处相等是指使 f13. 可数个开集的交是开集14. 可测函数不一定是连续函数 . 15. 对等的集合有相同的基数 .16. 称 f x ,g x 在 E 上几乎处处相等是指使 f17. 可列个闭集的并集仍为闭集 18. 任何无限集均含有一个可列子集 19. 设 E 为可测集,则一定存在 G 集 G ,使 E√) ( √ ) ( √ )x gx的 x 全体是零测集 . (√)( × )xgx ( √ )( √ )0 ( × )的 x 全体的测度( × )( √ ) G 且 m G E 0.( √ )21. 设 f x 为可测集 E 上的非负可测函数,则22. 可列个开集的交集仍为开集 23. 任何无限集均是可列集24. 设 E 为可测集,则一定存在 F 集 F ,使 F25. 设 E 为 零 测 集 , 则 f x 为 E 上 的 可 测 函 数 的 充 要 条 件 是 : 实 数 a 都 有 E x f (x ) a √)26. 设 f x 为可测集 E 上的可测函数,则 f x dx 一定存在 . E 五、简答题1. 简述无限集中有基数最小的集合,但没有最大的集合 . 答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集 合 A , A 的幂集 2A的基数大于 A 的基x L E ( × )(× )( × )E ,且 m EF 0.( √ )x 不一 定是 E 上的可测函数(×) 20. 设 E 为零测集, x 为 E 上的实函数,则 是可测集 ×)数 .2.简述点集的边界点,聚点和内点的关系 .答 : 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点 .3.简单函数、可测函数与连续函数有什么关系?答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.a,b 上单调函数与有界变差函数有什么关系?答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差 .5.简述集合对等的基本性质 .答:A: A;若A: B,则B: A;若A: B,且B : C,则A: C.6.简述点集的内点、聚点、边界点和孤立点之间关系. 答:内点一定是聚点,内点不是孤立点,边界点由点集的孤立点和聚点组成 .7.可测集与开集、G 集有什么关系?答:设E是可测集,则0,开集G,使G E,使m G E ,或G 集G,使G E,且m G E 0.8.a,b 上单调函数、有界变差函数与绝对连续函数有什么关系?答:绝对连续函数是有界变差函数,反之不然;有界变差函数是单调增函数的差,而单调函数是有界变差函数 .9.简述证明集合对等的伯恩斯坦定理 .答:若A: B B ,又B: A A,则A: B10.简述R1中开集的结构 .答: 设G为R1中开集,则G可表示成R1中至多可数个互不相交的开区间的并 .11.可测集与闭集、F集有什么关系?答:设E是可测集,则0,闭集F E ,使m E F或F集F E ,使m E F 0.12.为什么说绝对连续函数几乎处处可微?答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微 .13.简述连续集的基数大于可数集的基数的理由 .答 :连续集是无限集,因而包含可数子集,又连续集是不可数集,所以连续集的基数大于可数集的基数 . 14.简述R n中开集的结构 .答:R n中开集可表示成可数个互不相交的半开半闭区间的并15.可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系?答:设f n x , f x 是可测集E 上的一列可测函数,那当mE 时,f n x f x ,a.e 于E ,必有f n x f x .反之不成立,但不论mE 还是mE ,f n x 存在子列f n k x ,使f n x f x ,a.e于E .当mE 时,f n x f x ,a.e 于E ,由Egoroff 定理可得f n x 近一致收敛于f x ,反之,无需条件mE ,结论也成立 .16.为什么说有界变差函数几乎处处可微?答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处处可微,所以有界变差函数几乎处处可微 .17.简述无穷多个开集的交集是否必为开集?11 答:不一定,如 I 1 1, 1 11,1 n 1n n18. 可测集 E 上的可测函数与简单函数有什么关系? 答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单函数列的极限形式 19. a,b 上的有界变差函数与单调函数有什么关系?答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表示成单调函数之差 20. 简述无穷多个闭集的并集是否必为闭集?11 答:不一定 如 U 1 , 1 1,1 n 1n n21. 可测集 E 上的可测函数与连续函数有什么关系?答: E 上连续函数必为可测函数但 E 上的可测函数不一定时连续函数, E 上可测函数在 E 上是“基本上”22. a,b 上的绝对连续函数与有界变差函数有什么关系?答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数 六、计算题2xxE,其中 E 为0,1中有理数集,求 f1. 设 f x3xx dxx 0,1 E0,1解:因为 mE 0, 所以 f x x 3,a.e 于0,1 , 于是 f x dxx 3dx,0,1 0,1而 x 3在 0,1 上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,1 x r 1,r 2,L r n0 x 0,1 r 1,r 2,L ,求lim f n x dx .n0,1因此limf n x dx 0.n0,1解:因为 mP 0 ,所以 f x x 2, a.e 于 0,131 3x 3dxRx 3dx0,1因此 f x dx 10,14.4x44|1解:显然 f n x 在 0,1 上可测,另外由 f n x 定义知, f n x 0,a.e 于 0,1 n1所以 f nx dx0,10dx 00,1连续的函数 2. 设 r n 为 0,1 中全体有f n x3. 设 f xsinxxPx 0,1 PP 为康托集,求x dx .于是 f x dxx 2dx0,1 0,12而 x 2在 0,1 上连续,所以解:因为 f n x 在 0,1 上连续,所以可测 n 1,2,L而 lim 2 2 0 ,所以 lim f n x 0. n 1 n 2 x 2n因此由有界控制收敛定理lim f n x dxli f n x dx0dx 0n0,10,1n0,13xx E5. 设 x, E 为 0, 中有理数集,求 fx dxcosx x 0, E22 0,2解:因为 mE 0 ,所以x cosx,a.e 于 0,10,2而 cosx 在 0, 上连续,所以黎曼可积,由牛顿莱布尼公式2 cosxdx0,1R 2cos xdxsin x|021因此f x dx 10,26. 设f n x nxcos nx 0,1, 求lim f n x dx n 0,11 2 2 ,x nx 解:因为 f n x 在 0,1 上连续,所以可测 n 1,2,Lx 2dx0,1 x 2dx|1因此 0,1 x dx4. 设 fnx nxsinnx 2 2 ,x 1 n x0,1 ,求lim f n x dx . n0,1 又f n xnxsin nx22nxnx nx 11 n 2x2 2nx 2,x 0,1 ,n 1,2,L于是 f x dx cos xdx 0,2又 fn nxcosnx 22nx nx 22 1 n x 因此由有界控制收敛定理而lim n 0,所以lim n 0,1 n x dx0,1limn 7. 设 fx3sin x解:因为mP 0,所以 fnx221 n x lim f n x nx dx0,1nx 1 2nx 2,x 0.0dx 00,1P 为康托集,x, a.e 于 0,1而 x 在 0,1 上连续,所以1 2x 21 1xdx Rx dx |0 0,10 2 02因此 f x dx 1.0,12l n x nx 8. 求e cos xdx .n 0,nnln x n解:令 f n x0,n xn显然 f nx 在 0, 上可测,且 ln x ne cos xdxf n 0,n n0, ln x n x 因为 f n xe cosxn于是f x dx xdx0,1 0,1xe cosxx dx 0,1 ,n 0,11,2,Lx dx .ln x n, x 0, ,n 1,2,L n ln x n不难验证 g n x ,当 n 足够大时,是单调递减非负函数,且 nlim g n x 0 ,所以 n limnln x ndx nlimng n x dxl n im g n x 0, n0dx 0由勒贝格控制收敛定理lim f n x dx 0 n0,ln x n x 故lim e cos xdx 0. nn0,n9. 设 Dx1 x 为 0,1 上的有理点 0 x 为 0,1 上的无理点 ,求 D x dx .0,1 证明 记 E1 是 0,1中有理数集, E2 是 0,1 中无理数集,则 0,1E 1 U E 2, E 1 I E 2 , mE 1 0,mE 2 1,且E2所以 D x dx 1mE 1 0mE 2 0,1 0.10 求 l n im0 ln x n xe cos xdx . n 证明 易知 limnln x n x e cosx 0n对任意 0,n1, ln x n en x cosxln x nf(y ) ln x y 0 ,则 f (y)ylnxy 2yxy y 3时,yxyln x y , f (y)0.f(n) l n xn是单调减函数且非负( n 3 );l n lim nli mn 再由 limn xn li m n0,由 Levi 单调收敛定理得xn ln x n 0dx n0 l n imln x n dx n 0 0dx 0 , ln x nL(E),Lebsgue 控制收敛定理得ln x n x e cosxdx 0n ln x lim nnnx e cos xdx0dx2x11. 设 f x 3x 3x 0,1xP ,其中 P 为康托集,求dx .解:因为 P 为康托集,故 mP 0,m 0,1 P 1七、证明题证明 设{r n } 为全体有理数所成之集,则g(x)] U E[x| f (x) r n ]I E[x|g(x) r n ] n1因为 f (x),g(x)是 E 上的可测函数,所以 E[x| f (x) r n ], E[x|g(x) r n ]是可测集, n 1,2,L ,于是由可测所以 f x x 320,1 PxP所以0,1x dx23x mP x m 0,1 P12. 求 f nnxE0,1 ,求 limnx dx .解:易知: 令 f n xnx lim2 2 n 1 n 2x2 nx2 2,gx0,11nnxnx 1 n 2x 22 2 3n xnx nx 2 2 2 gx1 n x2 1 nx n x 0nx 2n 2 所以 0 n x gx x 0,1,n 1又因为 g x 在 0,1 上 Lebesgue 可积, 所以由控制收敛定理,得 lim 1n n x2x 2dxE 1 n x0dxE1.证明集合等式: (A B)U B AUB 证明 c(A B)U B (AI B c)U Bc (AI B c)U(AI B)UBcAI (BUB c)U B AUB2.设 E 是 [0,1] 中的无理数集,则 E 是可测集,且 mE 1 证明 设 F 是 [0,1] 中的有 理数集 ,则 F 是可数 集, 从 而 m *F 0 ,因此 F 是 可测集,从而 F c可 测, E [0,1] F [0,1] I F c,故 E 是可测集 .由于 EI F ,所以1 m[0,1] m(E UF) mE mF 0mF ,故 mF 13.设 f (x),g(x)是 E 上的可测函数,则 E[x| f (x) g( x)]是可测集E[x| f(x) g(x)] U E[x| f (x) r n n1集性质知 E[x|f(x) g(x)] 是可测集因为 f (x)在E 上可测,所以 | f (x) |在E 上非负可测,由非负可测函数积分性质,E[x|f(x)| a]adx E[x|f(x)| a]| f(x)|dx E |f(x)|dxE[x|f(x)| a]adx a mE[x |f (x)| a],所以4.设 f (x)是E 上的可测函数,则对任何常数 a 0,有 mE[x |f (x)| a]1a 1E | f ( x)证明 5.设 li m mE[x | f(x)|f ( x) 是 E 上的L 可积函数, f ( x)dx证明 因为 limmE0,所以 对连续性,0, 0,当e 于是当 n N 时, m E n 6.证明集合等式: ( A B)证明 A (A B ) 7.设 证明 1a] a 1E | f(x)|dx{E n }是 E 的一列可测子集,且 lim mE n 0,则 0, N E, me 因此 |E A I (AI B c )cA I(AI A c)U (A I A 1,A 2 是[0,1] 的可测子集,且 mA 1 因为 A 1 [0,1], A 2 [0,1] ,所以 另一方面, 1 ,当 n N 时, mE n ,又 f ( x) 在 E 上 L 时| f (x)dx| f ( x)dx |,即 lim f ( x)dx 0n E n 可积,所以由积分的绝 (A c U(B c )c) B) A I BmA 2 1 ,则 AI (A cUB)m(A 1 I A 2) 0A 1UA 2 [0,1] ,于是 m( A 1 U A 2 ) m[0,1] 1 A 1U A 2 [A 1 (A 1I A 2)] U A 2 ,所以m(A 1 U A 2 ) m [A 1 (A 1I A 2)]UA 2m[A 1 (A 1I A 2)] mA 2 mA 1 m(A 1I A 2) mA 2于是m(A 1I A 2) mA 1 mA 2 m(A 1U A 2) 08.设 f (x)是定义在可测集 E R n上的实函数, E n 为 E 的可测子集n 1,2,L ),且 E U E n ,则 f (x) 在 E 上n1可测的充要条件是 f (x) 在每个 E n 上可测 证明 对任何实数a ,因为E[x| f(x) a] U E n [x| f(x) a] U (E n I E[x| f(x) a])所以 f (x)在E 上可测的充要条件是对每个 n 1,2,L , f ( x)在每个 E n 上可测9.设 f (x)是 E 上的可测函数,则对任何常数 a 0,有 mE[x| f (x) a] e a E ef(x)dxaf (x)f (x)e dx e dx e dx E[x|f(x) a] E[x|f (x) a] Eaa而E[x|f(x) a]e a dx e amE[x| f (x) a],m *F 0 ,于是由卡氏条件易知 F 是可测集f n (x)g n (x) f (x) g(x).证明 对任何正数 0 ,由于|( f n (x) g n (x)) ( f (x) g(x))| | f n (x) f (x)| |g n (x) g(x)|所以 E[x |(f n (x) g n (x)) (f (x) g(x))| ]E[x | f n (x) f (x)| 2]U E[x |g n (x) g(x)| 2]于是 mE[x |(f n (x) g n (x)) (f (x) g(x))| ]mE[x | f n (x) f (x)| ] mE[x |g n (x) g(x) | ] 0(n )22证 明 因 为 f (x) 在 E 上 可 测 , 所以 e f(x)是 非 负 可 测 函数,于是由非负可测函数积分性质,所以mE[x| f (x) a]e ae f (x )dxE10.设 f (x) 是 E 上的可积函数, { E n } 为 E 的一列可测子集, mE ,如果 lim mE n mEn则lim nE f( x)dxE f ( x)dx 证明 因 f ( x) 在 E 上 L 可积, 由积分的绝对连续性知,对任意 0 ,存在 0, 对任何 A E , 当 mA有| A f (x)dx | , 由 于lim mE n mE n,故对上述的0,存在 k 0 , 当 n k 0 时 E nE , 且有mE mE n m( E E n )| E f ( x)dx Ef (x)dx| | E E f (x)dx|lim f ( x)dxE f (x)dx 11.证明集合等式: (AU B) C (A C) U(B C)证明 (AUB) C (AU B)I C c (AI C c )U(BI C c)(A C)U (B C)12.设 E R n是零测集,则 E 的任何子集 F 是可测集,且mF 证明 设 F E , m *E 0,由外测度的单调性和非负性, mF mE 0 , 所以13. 设 f n (x),g n (x), f (x), g( x) 是 E 上 几 乎 处 处 有 限 的可 测 函 数 , 且 f n (x) f (x) ,g n (x) g(x) ,则故f n(x) g n(x) f (x) g(x)14.设f(x),g(x)是E上L 可积函数,则f2(x) g2(x)在E上也是L 可积的证明因f(x),g(x)是E上L 可积,所以|f(x)|,|g(x)|在E上L 可积,从而| f(x)| |g(x)| L 可积,又f2(x) g2(x) (| f(x)| |g(x)|)2 | f(x)| |g(x)|故f 2(x) g2 (x) 在E 上L 可积15.设f (x)是可测集E上的非负可测函数,如果 f (x)dx 0,则f(x) 0 a.e 于E证明反证,令A E[x| f(x) 0],则由f (x)的可测性知,A是可测集 .下证mA 0,若不然,则mA 01由于A E[x| f(x) 0] U E[x| f(x) ] ,所以存在N 1,使n1 n1 mE[x| f (x) ]N d 0于是Ef( x)dx1 f( x)dxE[x|f (x)1]E[x|f(x) N1] N1dx N1mE[x| f(x) N1] N d0因此f( x)dx E0 ,矛盾,故f(x) 0 a.e 于E16.证明等式:A (B UC) (A B)I (A C)证明c c c c cA (BUC) AI (BUC)c AI (B c IC c) (AI B c)I (AI C c) (A B)I (A C) 17.设E R n是有界集,则m*E.证明因为E是有界集,所以存在开区间I ,使E I 由外测度的单调性,m*E m*I ,而m*I |I |m *E118.R1上的实值连续函数f (x) 是可测函数证明因为f ( x)连续,所以对任何实数a,{x| f(x) a}是开集,而开集为可测集,因此f(x)是可测函数19.设mE ,函数f (x)在E上有界可测,则f(x)在E上L 可积,从而[a,b]上的连续函数是L 可积的证明因为f (x)在E上有界可测,所以存在M 0,使| f(x)| M ,x E,| f ( x) |是非负可测函数,由非负可测函数的积分单调性,| f(x)|dx Mdx M mE故|f (x)|在E上L 可积,从而f(x)在E上L 可积因为[a,b] 上的连续函数是有界可测函数,所以L 可积的20.设f n(x)(n 1,2,L )是E上的L 可积函数,如果lim | f n( x) |dx 0,则f n(x) 0 n E n证明对任何常数0,mE[x | f n(x)| ] E[x|f (x)| ]| f n(x)|dx1所以mE[x | f n(x)| ] 1E[x|f n(x)| ]| f n(x)|dx1E| f n(x)|dx 0(n )因此f n (x) 021. 证明集合等式:AUB C A C U B C .证明AUB C AUB I C c AI C c U BI C c A C U B C22. 设E0 0,1 中的有理点,则E0为可测集且mE0 0.证明因为E0 为可数集,记为E0 r1,r2,L r n,L ,0,取I n r n2n 1,r n 2n 1 n 1,2,L显然E0 UI n ,所以E0 UI n0 m E0 I nn1 n1n1 n12让,得m E0 0.TR n,由于T TI E0 U TI Ec所以mT m TI E0 m TI E0ccc c又TI E0c T,m E0 0,所以mT m TI E0c m TI E0 m TI E0c.故mT m T I E0 m TI E0c其中|I | 表示区间I 的体积),所以故E0 为可测集,且mE0 01123. 证明:R1上的实值连续函数f x 必为R1上的可测函数11证明a,b R1,不妨假设a b,因为f x 是R1上的连续函数,故f x 是a,b 上的连续函数,记Fa,b ,由f x 在F 上连续,则M,m m M ,使m f x M ,则显然易证,R1,F f 是闭集,即f x为a,b 上的可测函数,由a,b的任意性可知,f x 是R1上的可测函数 .24. 设f x L E ,E n为E的一列可测子集,mE ,如果lim mE n mE,则lim f x dx f x dx .nnE n E证明因f (x)在E上L可积,由积分的绝对连续性知,对任意0,存在0,对任何A E,当mA 时有|Af( x)dx| m(E由于lim mE nnmE ,故对上述的0 ,存在k0 ,当n k0 时E n E ,且有E n),于是|Ef (x)dx Ef(x)dx| |EEEnE Enf(x)dx|即n limEn f(x)dxEf (x)dx25. 证明集合等式:A BUC ABU A C. 证明A BUC AI BUC c AIB cI CcAI B c I AIC cABI AC26. 设E R1,且mE0 ,则E 为可测集 .证明T R n,由于T R n T T I E UT I E c所以mT mT IE m T I E c又T I E c T,m E0 ,所以mTm TI Ec m T I E m T I E c.故mT m T I E m TI E c 所以E 为可测集27. 证明:R1上的单调函数f x 必为可测函数11证明a,b R1,不妨假设a b,因为f x 是R1上的单调函数,不妨设f x 为单调增函数,故f x 是a,b 上则R 1, 有1) 当 sup fx 时, E x f (x) ; xE 2) 当 inf f x 时, E x f (x) E; 3) 当 inf f x sup f x 1 时,必有 x 0 E I R ,使xE xEf x0 0 ,fx 0 或 f x 0 0 , f x 0 0 由 f x 的单调增知, E x f(x) EI x 0, 或 EI x 0, 在所有情况下, E x f(x) 都可测 . 即 f x 是 a,b 上的可测函数 由由 a,b 的任意性可知, f x 是 R 1上的可测函数 .充分性28. 设 f x 为可测集 E R n 上的可测函数,则f L E 的充要条件 证明 必要性 若 f x LE , 因为 f x x ,且 f x L E 所以 f Ex dx, f E x dx 中至少有一个是有限值,dx x dx xdx因为 f x x ,且 f xLE 所以 f Edx, f E x dx 中至少有一个是有限值,故f x dxEx dx f x dx ,E。
实变函数试题库参考答案
《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数B 、0,1 之间的实数全体C 、[0, 1]上的实函数全体D 、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{全体小个子}D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x :x>1}D 、{全体实数}6、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体大人}C 、{x :x>1}D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1,+∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1]D 、[-1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0,1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD 、(0, ∞)16、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( ) A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ 17、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 18、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( ) A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 19、设A 、B 、C 是三个集合, 则A-(A-B)= ( )A 、B B 、AC 、A ⋂BD 、A ⋃B20、设A 、B 、C 是三个集合, 则A-(B ⋃C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C21、设A 、B 、C 是三个集合, 则A-(B ⋂C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B A C s ⋂23、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B-C) = ( )A 、 A ⋃C-B B 、 A-B-C C 、 (A-B)⋃(A ⋂C)D 、 C-(B-A)25、集合E 的全体内点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包26、集合E 的全体聚点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包27、集合E 的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E-E '所成的集合是 ( )A 、开核B 、边界C 、外点D 、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包30、设点P 是集合E 的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(21, 1) C 、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(-1, 21) D 、(-1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(3, 4)C 、(0, 4)D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 3)C 、(0, 4)D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(-1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B 、A '⊂B 'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B 、 A '⋃B '=C ' C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C 的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B 、C '⊂ A '⋂B ' C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C 的孤立点}40、设CA 是A 的余集,则下列命题正确的是:( )A 、 )()(CA A C =B 、)(CA A ∂=∂C 、C(A ')=(CA )'D 、CA A C =)(41、设A -B=C, 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B 、C B A =- C 、A '-B '=C 'D 、{A 的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4-1-2) 下列命题错误的是:( )A 、A 是闭集B 、A '是闭集C 、A ∂是闭集D 、 A 是闭集43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 44、若A 是开集,B 是闭集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 45、若}{n A 是一开集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 46、若}{n A 是一开集列,则n n A ∞=⋂1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 49、若]1,0[ QE =,则=mE ( )A 、0B 、1C 、2D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥*C 、E m E m **<D 、E m E m **≤51、下列说法正确的是( )A 、x x f 1)(=在(0,1)有限B 、x x f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=Ex E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0B 、1C 、2D 、356、下列说法不正确的是( )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a.e.一致收敛59、设⎩⎨⎧-∈-∈=E x x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -60、一个函数在其定义域中的( )点处都是连续的.A 、边界点B 、内点C 、聚点D 、孤立点.61、0P 是康托尔(cantor )集,则=0mP ( )A 、0B 、1C 、2D 、362、设A 是B 的真子集,则( )A 、B m A m **< B 、B m A m **≤C 、B m A m **>D 、B m A m **≥63、下列说法正确的是( )A 、x x f ctg )(=在)2,4(ππ无界 B 、⎪⎩⎪⎨⎧=∞+∈=0,]2,0(ctg )(x x x x f π在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=0,1]2,0(ctg )(x x xx f π在]2,0[π有界 D 、x x f ctg )(=在)2,0(π有限64、函数列n n n x x f 2)(=在]21,0[上( )于0. A 、收敛 B 、一致收敛、 C 、基本上一致收敛 D 、a. e.一致收敛65、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=E x xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( ). A 、)(x f B 、)(x f + C 、|)(|x f D 、)(x f -66、设E 为可测集,则下列结论中正确的是( )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f67、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( )A 、0B 、1C 、2D 、368、设21,S S 都可测,则21S S ( )A 、可测B 、不可测C 、可能可测也可能不可测D 、以上都不对69、下列说法正确的是( )A 、x x f sec )(=在)4,0(π上无界 B 、x x f sec )(=在)4,0(π上有限C 、⎪⎩⎪⎨⎧=∞+∈=2)2,0[sec )(ππx x x x f 在]2,0[π上有限 D 、⎪⎩⎪⎨⎧=∈=21)2,0[sec )(ππx x x x f 在]2,0[π上有界 70、函数列n n n x x f 3)(=在]31,0[上( )于0 A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a. e.一致收敛71、设⎩⎨⎧-∈∈-=Ex x E x x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f72、关于连续函数与可测函数,下列论述中正确的是( )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数73、()=-)2,1()1,0( m ( )A 、1、B 、2C 、3D 、474、A 可测,B 是A 的真子集,则( )A 、mB mA ≥ B 、B m mA *≥C 、B m mA *=D 、以上都不对75、下列说法正确的是( )A 、21)(x x f =在(0, 1)有限、B 、21)(xx f =在]1,21[无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(2x x x x f 在[0, 1]有限 D 、⎪⎩⎪⎨⎧=∈=1,1]1,0(,1)(2x x x x f 在[0, 1]有界76、函数列x x f n n sin )(=在]2,0[π上( )于0.A 、收敛B 、基本上一致收敛C 、一致收敛D 、a. e.一致收敛77、设⎩⎨⎧-∈∈-=Ex x E x x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -78、关于简单函数与可测函数下述结论不正确的是( )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念79、()=-]3,2()1,1[ m ( )A 、1B 、2C 、3D 、480、L 可测集类,对运算( )不封闭.A 、可数和B 、有限交C 、单调集列的极限D 、任意和.81、下列说法正确的是( )A 、31)(x x f =在)1,21(无界B 、31)(xx f =在)1,0(有限C 、⎪⎩⎪⎨⎧=∞+∈=0]1,0(1)(3x x x x f 在[0, 1]有限D 、⎪⎩⎪⎨⎧=∈=01]1,0(1)(3x x x x f 在[0, 1]有界82、函数列x x f n n cos )(=在]2,0[π上( )于0.A 、基本一致收敛B 、收敛C 、一致收敛D 、a. e.一致收敛83、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π 则下列函数在]2,0[π上可测的是( ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f -84、关于依测度收敛,下列说法中不正确的是( )A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上 a.e.收敛于 a.e.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f85、设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定86、设)(x f 在可测集E 上可积,则在E 上( )A 、)(x f +与)(x f -只有一个可积B 、)(x f +与)(x f -皆可积C 、)(x f +与)(x f -不一定可积D 、)(x f +与)(x f -至少有一个不可积87、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( )A 、)(x f 在E 上不一定可测B 、)(x f 在E 上可测但不一定可积C 、)(x f 在E 上可积且积分值为0D 、)(x f 在E 上不可积88、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数89、设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( ) A 、 0 B 、 1 C 、1/2 D 、不存在90、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( ) A 、 0 B 、 1/3 C 、2/3 D 、 1填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 7、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋂=8、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋃= 9、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋂= 10、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋃= 11、若}{n A 是任意一个集合列, 则=∞→n n A lim 12、若}{n A 是任意一个集合列, 则=∞→n n A lim13、欧氏空间n R 中, 任意两点),,(21n x x x x =, ),,(21n y y y y =的距离d(x, y)=14、C[a, b]空间中,任意两元素x(t), y(t) 的距离 d(x, y)= 15、2l 空间中, 任意两元素 ),,,(21 n x x x x =, ),,(21 n y y y y =的距离 d(x, y)=16、欧氏空间2R 中, 任意两点),(21x x x =, ),(21y y y =的距离 d(x, y)=17、欧氏空间3R 中, 任意两点),,(321x x x x =, ),,(321y y y y =的距离d(x, y)=18、欧氏空间4R 中, 任意两点),,,(4321x x x x x =, ),,,(4321y y y y y =的距离d(x,y)=19、设2R X =,}1:),{(22<+=y x y x E ,则E =20、设3R X =, }1:),,{(222<++=z y x z y x E , 则E =21、设2R X =,}1:),{(22<+=y x y x E ,则E ∂=22、设2R X =,}1:),{(22<+=y x y x E ,则E '=23、设3R X =, }1:),,{(222<++=z y x z y x E , 则 E ∂=24、设3R X =, }1:),,{(222<++=z y x z y x E , 则E '=25、设A= [0, 1] , B = [3, 4] , 则 d(A, B) =26、设C 是康托完备集, G= [0, 1]-C , 则d (C, G) =27、设C 是康托完备集, 则C 的半径)(C δ=28、两个非空集合A, B 距离的定义为 d (A, B ) =29、一个非空集合A 的直径的定义为)(A δ=30、设A = [0, 1] ⋂Q, 则)(A δ=31、n R E ⊂,对每一列覆盖E 的开区间 ∞=⊃1i i E I ,定义=E m *________。
实变函数本科试题及答案
实变函数本科试题及答案一、选择题(每题5分,共20分)1. 实变函数论主要研究的是:A. 数学分析B. 复变函数C. 函数的实值性D. 函数的连续性答案:C2. 以下哪个命题是实变函数论中的基本定理?A. 中值定理B. 泰勒公式C. 勒贝格控制收敛定理D. 柯西-施瓦茨不等式答案:C3. 勒贝格积分与黎曼积分的主要区别在于:A. 定义方式B. 积分值C. 积分对象D. 积分方法答案:A4. 若函数f在区间[a,b]上连续,则以下哪个命题一定成立?A. f在[a,b]上可积B. f在[a,b]上可微C. f在[a,b]上单调D. f在[a,b]上一致连续答案:A二、填空题(每题5分,共20分)1. 若函数f在区间[a,b]上处处有定义,则f在[a,b]上是______的。
答案:有界2. 函数f(x)=x^2在区间[0,1]上的勒贝格积分值为______。
答案:1/33. 勒贝格积分的一个重要性质是______。
答案:可加性4. 若函数f在区间[a,b]上单调增加,则f在[a,b]上是______的。
答案:可积三、简答题(每题10分,共30分)1. 简述实变函数论与复变函数论的主要区别。
答案:实变函数论主要研究实数域上的函数,关注的是函数的实值性质,如连续性、可积性等。
而复变函数论研究的是复数域上的函数,关注的是函数的解析性质,如解析延拓、复积分等。
2. 描述勒贝格积分的定义过程。
答案:勒贝格积分的定义过程首先将积分区间划分为若干子区间,然后选择每个子区间上的样本点,计算函数在这些样本点上的值与子区间长度的乘积之和,最后取这个和的极限,当这个极限存在时,就定义为函数的勒贝格积分。
3. 举例说明实变函数论在数学分析中的应用。
答案:实变函数论在数学分析中的应用非常广泛,例如在研究函数的极限性质、连续性、可微性和可积性等方面都有重要应用。
一个具体的例子是勒贝格控制收敛定理,它在处理函数序列的极限问题时非常有用,特别是在概率论和统计学中,勒贝格积分被用来定义随机变量的期望值。
实变函数(复习资料,带答案)
---《实变函数》试卷一一、单项选择题( 3 分×5=15 分)1、下列各式正确的是()( A) lim A n A k ;(B) lim A nn 1 k n A k ;n n 1 k n n( C) lim A n A k ;( D) lim A nn 1 k A k ;n n 1 k n n n2、设 P 为 Cantor 集,则下列各式不成立的是()(A)P c (B)mP 0(C)P'P(D)P P3、下列说法不正确的是()(A)凡外侧度为零的集合都可测( B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n ( x) 是 E 上的a.e.有限的可测函数列 , 则下面不成立的是()(A)若f n(x) f ( x) ,则f n( x) f ( x)(B)sup f n ( x) 是可测函数(C)inf f n (x) 是可测函数 ; ( D)若n nf n (x) f (x) ,则 f (x) 可测5、设 f(x) 是[ a,b]上有界变差函数,则下面不成立的是()(A) f (x) 在 [ a, b] 上有界(B)f ( x) 在 [ a,b] 上几乎处处存在导数(C)f'( x)在[ a, b]上 L 可积 (D)bf '(x)dx f (b) f (a)a二.填空题 (3 分× 5=15 分 )1、(C s A C s B) ( A ( A B))_________2、设 E 是 0,1 上有理点全体,则oE' =______, E =______, E =______.3、设 E 是 R n中点集,如果对任一点集T 都,则称 E是L可测的4、f ( x)可测的 ________条件是它可以表成一列简单函数的极限函数 . (填“充分”,“必要”,“充要”)5、设f (x)为 a, b 上的有限函数,如果对于a, b 的一切分划,使_____________________________________则,称f ( x)为a, b 上的有界变差函数。
实变函数(复习资料_带答案)资料
集。
0, 开集 G E,使 m* (G E)
,则 E 是可测
(第 7 页,共 19 页)
3. (6 分)在 a, b 上的任一有界变差函数 f ( x) 都可以表示为 两个增函数之差。
5. (8 分)设 f ( x) 在 E a,b 上可积,则对任何 0 ,必存
b
在 E 上的连续函数 ( x) ,使 | f ( x) (x) | dx . a
E
四、解答题 (8 分× 2=16 分) .
1、(8分)设 f (x)
x2, x为无理数 ,则 f ( x) 在 0,1 上是否 R
1, x为有理数
可积,是否 L 可积,若可积,求出积分值。
五、证明题 (6 分× 4+10=34 分) . 1、(6 分)证明 0,1 上的全体无理数作成的集其势为 c
可测集;
二. 填空题 (3 分× 5=15 分)
1、设 An
11 [ , 2 ], n 1,2,
,则 lim An
_________。
nn
n
2、设 P 为 Cantor 集,则 P
o
,mP _____,P =________。
3、设 Si 是一列可测集,则 m i 1 Si ______ mSi i1 4、鲁津定理:
4.(8 分)设函数列 fn (x) ( n 1,2, ) 在有界集 E 上“基本上” 一致收敛于 f ( x) ,证明: fn (x) a.e.收敛于 f ( x) 。
2. x
E , 则存在 E中的互异点列
{
xn },
使 lim n
xn
x ……… .2
分
xn E, f ( xn ) a ………………… .3 分
实变函数复习要点
实变函数期末考试复习要点一、 题型:选择题、填空题、判断题、计算题、证明题。
二、典型例题:1、设n E R ⊂,若对任意的0ε>,存在可测集G E ⊃,使*()m G E ε-<,则E 是可测集;2、证明E 可测的充分必要条件是 c c ,(E A E B E E ∀⊂⊂是的补集),有*()**.m A B m A m B =+ ;3、证明:A 是一个无穷集合, 则必有*A A ⊂, 使*A 与A 对等, 而且*-A A 可数;4、证明:设()f x 在[],E a b =上可积,则对任何0ε>,必存在E 上的连续函数()g x ,使得[,]|()()|a b f x g x dx ε-<⎰;5、证明积分的绝对连续性:若f (x)在可测集E 上L 可积, ,则对任意的ε>0, 存在δ>0,使当E 中任意的子集A 的测度mA <δ时,有 |()|A f x dx ε<⎰;6、证明:若可测函数列n {()}f x 满足条件:(1)n ()f x 依测度收敛于可测函数()f x ,即()()n f x f x ⇒;(2)存在E 上的非负可测函数F()x ,使得|()|F()1,2,)n f x x n ≤= ,(,则()1,2,)n f x n = (及)('x f 于E 可积,并且⎰⎰=∞→E En n dx x f dx x f )()(lim ; 7、设)(x f 于[,]a b 可微,证明'()f x 于[,]a b 可测;8、设)(x f 于],[b a L-可积,若对任意的],[b a C ∈,有0)(],[=⎰dx x f c a ,则0)(=x f a.e.于],[b a 。
实变函数试题库及参考答案
实变函数试题库及参考答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限 4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\x x E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB 三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
实变函数(复习资料,带答案)
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
(完整版)实变函数(复习资料_带答案)
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( )(A )=P c (B) 0mP = (C) P P =' (D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
实变函数(复习资料,带答案).doc
《实变函数试卷一一、单项选择题(3分X5=15分)1、下列各式正确的是( )_________ oo oo oo oo(A) limA = u n A ; (B) lim A = n u A ;n—H=1k=n,?一z?=l k=n00 00 00 00(C) limA" = n u ; (D) lim= A k ;打一>oo z:=l k=n z?=l k=n2、设P为Cantor集,则下列各式不成立的是( )(A) ~P= c (B) mP = 0 (C) P = P (D) P=P3、下列说法不正确的是( )(A)凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测4、设以(4是£上的E有限的可测函数列,则下而不成立的是( )(A)若又(x)=>/(x),则又(x) + /(x) (B)sup{/…Cr)}是可测函数(O inf{//%)}是可测函数;(D)若/T H又⑺=>/U),则/(X)可测5、设f(X)是上有界变差函数,则卜*面不成立的是()(A) /(X)在[6Z,/7]上有界(B) /(X)在[6/,刎上儿乎处处存在导数c b(C) / (X)在上L 可积(D) J a f\x)cbc=f(b)-f(a)二.填空题(3分X 5=15分)1、(C s AuC v5)n(A-(A-B))= ________________2、设£是[0,1]上有理点全体,则E - ______ , E- ________ , E- _______ .3、设£是/?。
中点集,如果对任一点集r都,贝1J称£是£可测的4、/⑶可测的________ 条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设/(x)为上的有限函数,如果对于的一切分划,使_____________________________________ ,则称/(x)为[6Z,/7]上的有界变差函数。
实变函数重点题集
3、下列说法不正确的是( B )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=∅2、设E 是[]0,1上有理点全体,则'E =[]0,1,oE =∅,E =[]0,1. 3、设E 是n R 中点集,如果对任一点集T 都有***()()m T m T E m T CE =⋂+⋂,则称E 是L 可测的4、)(x f 可测的充要条件是它可以表成一列简单函数的极限函数.5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使11|()()|n i i i f x f x -=⎧⎫-⎨⎬⎩⎭∑成一有界数集,则称()f x 为 [],a b 上的有界变差函数。
1、设1E R ⊂,若E 是稠密集,则CE 是无处稠密集。
错误2、若0=mE ,则E 一定是可数集.错误例如:设E 是Cantor 集,则0mE =,但E =c , 故其为不可数集3、若|()|f x 是可测函数,则()f x 必是可测函数。
错误二、2. 下列说法不正确的是(C )(A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点 (D) 内点必是聚点3. 下列断言(B )是正确的。
(A )任意个开集的交是开集;(B) 任意个闭集的交是闭集;(C) 任意个闭集的并是闭集;(D) 以上都不对;4. 下列断言中( C )是错误的。
(A )零测集是可测集; (B )可数个零测集的并是零测集;(C )任意个零测集的并是零测集;(D )零测集的任意子集是可测集;1、设11[,2],1,2,n A n n n =-= ,则=∞→n n A lim _________。
实变函数复习资料,带答案
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的就是( )(A)1lim n k n n k n A A ∞∞→∞===⋃⋂; (B)1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C)1lim n k n n k nA A ∞∞→∞===⋂⋃; (D)1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的就是( ) (A)=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的就是( )(A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集与闭集都就是波雷耳集 (D)波雷耳集都可测 4、设{}()n f x 就是E 上的..a e 有限的可测函数列,则下面不成立的就是( )(A)若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 就是可测函数(C){}inf ()n nf x 就是可测函数;(D)若()()n f x f x ⇒,则()f x 可测5、设f(x)就是],[b a 上有界变差函数,则下面不成立的就是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二、 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 就是[]0,1上有理点全体,则'E =______,oE =______,E =______、 3、设E 就是n R 中点集,如果对任一点集T 都_________________________________,则称E 就是L 可测的4、)(x f 可测的________条件就是它可以表成一列简单函数的极限函数、(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
实变函数试题库及参考答案
实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写)6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE = 2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|EmE x f x a f x dx a ≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质, 而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
实变函数(复习资料,带答案)
《实变函数》试卷一一、单项选择题(3分X 5=15分)1、下列各式正确的是( )(A)limA n A k;(B) lim 代A;n nlkn n nlkn(C)limA n ik A k;( D) l imA n 人;n nikn n nikn2、设P为Cantor集,则下列各式不成立的是( )(A)P c (B) mP 0 (C) P' P (D) P P3、下列说法不正确的是( )(A)凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n(x)是E上的ae•有限的可测函数列,则下面不成立的是()(A)若f n(x) f(x),则f n(x) f (x) (B)sup f n(x)是可测函数(C) inf f n(x)是可测函数;(D)若nnf n(x) f(x),则f(x)可测5、设f(x)是[a,b]上有界变差函数,则下面不成立的是( )(A) f(x)在[a,b]上有界(B) f(x)在[a,b]上几乎处处存在导数b (C) f'(x)在[a, b]上L 可积(D) f'(x)dx f(b) f(a)a二.填空题(3分X 5=15分)E f(x)1、 ___________________________________ (C s A C s B) (A (A B))2、设E是0,1上有理点全体,则' o—E = _____ , E = _____ , E = _____3、设E是R n中点集,如果对任一点集T都___________________________________ 则称E是L可测的4、f(x)可测的_________ 件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设f (x)为a,b上的有限函数,如果对于a, b的一切分划,使 _______________________________________ 则称f (x)为a,b上的有界变差函数。
实变函数题库
《实变函数》试题题库一、计算题1、设⎩⎨⎧=为无理数时当为有理数时当x x x x f x ,,)(1 ,计算⎰]1,0[)(dx x f 。
2、设⎪⎩⎪⎨⎧=为无理数时当为有理数时当x e x e x f x x ,,)(2,计算⎰]1,0[)(dx x f 。
3、设⎩⎨⎧=为无理数时当为有理数时当x x x x x f ,sin ,cos )(,计算⎰]1,0[)(dx x f 。
4、设0P 为Cantor 集,⎩⎨⎧-∈∈=时当时当002]1,0[,,)(P x x P x x x f ,计算⎰]1,0[)(dx x f 。
5、设0P 为Cantor 集,⎪⎩⎪⎨⎧-∈∈=时当时当00]1,0[,,)(2P x e P x e x f x x ,计算⎰]1,0[)(dx x f 。
6、设0P 为Cantor 集,⎩⎨⎧-∈∈=时当时当00]1,0[,sin ,cos )(P x x P x x x f ,计算⎰]1,0[)(dx x f 。
7、求⎰+∞→1051sin )(lim 22nxdx R xn nxn 。
8、求⎰+∞→101sin )(lim 222/1nxdx R xn nx n 。
9、求⎰+∞→121cos )(lim 22nxdx R x n nx n 。
10、求⎰+∞→101cos )(lim 223/2nxdx R xn nx n 。
11、求⎰++∞→1021)cos (sin )(lim 242dx nx nx R xn x n n 。
12、求⎰+∞→101242/33)(lim dx R xn x n n 。
二、简答题1、构造{自然数全体}到{偶数全体}的一一映射.2、构造(0, 1)到R 的一一映射.3、构造(0, 1)到 [0, ∞] 的一一映射.4、构造{能被3整数整除的正整数}到{正整数全体}的一一映射.5、构造(0,1)到(0, 1)⋃(2, 3) 的一一映射.6、构造{奇数全体}到{偶数全体}的一一映射.7、(请说明:在),0(+∞=E 上的函数列nxx x f n +=)(, ,2,1=n ,不测度收敛于x x f =)( 8、请叙述L 测度的可列可加性。
中国海洋大学实变函数复习题总汇
第一章重点:●集合的交、并、差、余运算,对偶定理●上、下限集的定义、求法●有关函数集合的表示●对等的判定建立、定理●可数集的性质、判定●基的判定●具体集合的基习题:12,20,21,22,26,28,29第二章重点:●边界点、内点、聚点、边界、导集、闭包等的含义和求法●稠密集、疏朗集、孤立集的定义、性质●开集、闭集的定义、性质、判定、构造●Cantor集的性质习题:5,6,7,13,16,28第三章重点:●外测度的性质(非负性、单调性、次可加性、次可数可加性、条件可加性、平移不变形)●测度的性质(非负性、单调性、可加性、可数可加性、平移不变形、上下连续性)●可测集全体M关于交、并、差、余的可列运算及极限封闭,是 代数。
●可测集全体M的构成、构造(与开集闭集的关系)习题:1,2,13,25,33第四章重点:●可测函数的定义、性质、判定●可测函数全体是线性空间,关于极限封闭,与简单函数的关系●依测度收敛,几乎处处收敛,一致收敛的定义,它们之间的关系(Egoroff, Lebesgue, Riesz定理)。
●可测函数的构成(与连续函数的关系,Lusin定理)习题:4,7,12,18,20,26第五章重点:●积分与可积的定义、性质、运算●极限定理(Levi定理, Fatou引理, Vitali定理,Lebesgue控制收敛性定理)●积分的绝对连续性。
●R-积分和L-积分间的关系习题:1,2,10,12,1412 设实函数列{})(x f n 在E 上定义,又设{})(inf )(1x f x h n n ≥=. 证明对R a ∈∀,成立[] ∞=<=<1][n n a f E a h E .证明:因))(()(n x f x h n ∀≤,故当()n f x a <时,必有()h x a <,这表明[])]([n a h E a f E n ∀<⊂<,因此[] ∞=<⊃<1][n n a f E a h E .另一方面,任取][a h E x <∈,由下极限的定义,知存在n ,使a x f n <)((若否,则对任意的n ,有()n f x a ≥,这表明inf{()}()n f x h x a =≥,矛盾). 当然有[]∞=<∈1n n a f E x ,故[]∞=<⊂<1][n n a f E a h E . 综上,左等于右.20 空间中坐标为有理数的点的全体K 成一可数集.证明:显然{}(,,):,,K a b c a b c Q Q Q Q =∈=⨯⨯是三个可数集的乘积,从而是可数集. 21 1R 中以互不相交的的开区间为元素的集合为至多可数集.证明:设该集合为K . 因为对任意的开区间K b a ∈),(,存在有理数),(b a r ab ∈. 这样,可作一映射Q K f →:,使得()ab r b a f =),(. 由于K 中的开区间是互不相交的,所以这一映射是一单射. 因此Q K f K ⊂)(~,也就说明了K 是一至多可数集. 22 1R 上单调函数)(x f 的不连续点的全体A 为至多可数集.证明:不妨设函数单增. 任取断点A x ∈0. 由于函数单调,所以在0x 点的左极限)(0x f -和右极限)(0x f +都存在,且)()(00x f x f ++<. 让断点0x 对应于开区间())(),(00x f x f ++,由于函数单增,所以不同断点所对应的开区间是不相交的. 再利用21题即得. 26 ]1,0[中无理数的全体成一不可数集.证明:反证法. 假设]1,0[中无理数的全体K 是至多可数集,而]1,0[中有理数的全体0Q 是可数集,这样0[0,1]K Q = 是可数集(可数集和至多可数集的并是可数集). 这与]1,0[是不可数集矛盾.28 证明c a=2,其中a 为可数基数,c 为连续基数.证明:设},,,,{21 n r r r A =,即证明A 的所有子集的全体A2的势为c . 作从A2到二进位小数全体K 的映射:2Af K →为 n a a a B f 21.0)(=,其中当B r n ∈时,1=n a ;当B r n ∉时,0=n a . 因为不同的集合的元素不完全相同,所以该映射是单射,故c K A =≤2. 另一方面,作映射:2A g K →为B a a a g n =).0(21 ,其中{}:1,1,2,i i B r a i === 若,该映射也是单射,因此c K A =≥2. 综上,有c K A ==2.29 ]1,0[上连续函数的全体[0,1]C 的基数是c .证明:因常函数都是连续函数,故[0,1]C R c ≥=. 设0[0,1]Q Q =⋂,则它是可数集. 不妨设{}012,,...,,n Q r r r =. 对任意的[0,1]f C ∈,让其对应于R ∞中的实数组 {}12(),(),...,(),n f r f r f r ,则这个对应是从[0,1]C 到R ∞的一个单射. 事实上,若g f ,是对应于同一数组的两个连续函数,即(),...2,1,)(==i r g r f i i . 对任意的实数]1,0[∈a ,存在有理数序列{}]1,0[⊂k i r ,使得)(∞→→k a r k i . 这样由函数的连续性得到)()(lim )(lim )(a g r g r f a f k k i k i k ===∞→∞→,也即f g ≡,也就是说该对应是一个单射.因此[0,1]C 和∞R 的某子集对等,故有[0,1]C R c ∞≤=. 综上,[0,1]C c =.5. 证明:A B A B ⋃=⋃.证明:因为()'''A B A B = ,所以有()()()()()()'''''A B A B A B A B A B A A B B A B ⋃=⋃⋃=⋃⋃=⋃⋃=⋃ .6. 在1R 中,设[0,1]E Q =⋂,求',E E . 解: '[0,1]E E ==7. 在2R 中,设{}22(,):1E x y x y =+<,求',E E .解: {}22'(,):1E E x y x y ==+≤11. 证明以下三个命题等价:(1) E 是疏朗集.(2) E 不含任何邻域.(3) c E )(是稠密集. 证明: (1)→(2):反证法 假设存在E r x O ⊂),(, 按闭包的等价定义, ),(r x O 中任意点的任意邻域中都含有E 中的点, 与疏朗集的定义矛盾.(2)→(3):由假设, 对x ∀, 0δ∀>, 有E x O ⊄),(δ, 从而()∅≠cEx O ),(δ,即任一点的任一邻域中都有c E )(中的点,也即c E )(是稠密集.(3)→(1):反证法 若E 不是疏朗集,则存在),(δx O ,使得),(δx O 中没有子邻域与E 不相交. 这实际上意味着对任意的),(),(δx O r y O ⊂都有∅≠⋂E r y O ),(, 由r 的任意小性知道E y ∈, 再由y 的任意性知道E r y O ⊂),(, 由此知道()cE 不是稠密的. 由这个命题知道疏朗集的余集是稠密的, 但稠密集的余集不一定是疏朗的, 如Q . 13. 证明:疏朗集的余集必是稠密集,但稠密集的余集未必是疏朗集.证明:由第11题知若E 是疏朗集,则c E )(是稠密集. 而由于E E ⊂,故()cc E E ⊂,从而由c E )(是稠密集得到cE 是稠密的. 反例:Q 和c Q 都是稠密集.16. 孤立集nR E ⊂必是至多可数集.证明:令(0,)k E E O k = ,则{}k E 是有界集列,且1k k E E ∞==,故只需要证明每个k E 是至多可数集即可. 注意到k E 也是孤立集并且有界,方便起见,不妨仍记k E 为E .这样,问题转为证明:有界的孤立集E 是至多可数集. 任取x E ∈,由孤立性,存在()0x δ>使得{}(,())O x x E x δ= . (*) 得到满足(*)式开球族{}(,()):O x x x E K δ∈=. 明显的,E 和开球族K 对等. 对K 中的球按半径分类.令n K 是K 中半径大于1n的球的全体. 则1n n K K ∞== ,若能证明每个n K 都是有限集,就得到K 是至多可数集,从而E 是至多可数集.下证明:n K 都是有限集. 注意到n K 中每个球的半径大于1n ,且每个球的球心不在其他的球中(由(*)式),这表明各个球心之间的距离大于1n. 另一方面,这些球心是一致有界的. 再结合有界的无限集必有收敛的子列这一命题,知n K 中只能有有限个球. 28. 证明:1R 中既开又闭的集合只能是1R 或∅.证明:设A 是非空的既开又闭集. 它必有构成区间,不妨设),(b a 是A 的一个构成区间.若a 有限, 则A a ∉; 另一方面,由A 是闭集得A A b a b a a ⊂⊂=∈')',(],[, 得到矛盾. 所以a =-∞,同理得b =+∞. 因此1A R =,所以1R 中既开又闭的集或是空集或是1R . 实际上:n R 中既开又闭的集或是空集或是nR .证明: 反证法. 设n R A ⊂是既开又闭的非空又非nR 的集合. 则必存在nx R ∈,但x A ∉. 一方面因为A 是非空闭集, 所以存在A y ∈, 使得()()0,,>=y x A x ρρ. 另一方面, 因为A 又是开集, 所以y 是内点,而取得非零距离的点绝不能是内点(只能在边界上达到非零的距离),就导出了矛盾, 所以nR 中既开又闭的集或是空集或是nR . 1若E 有界,则∞<E m *.证明:因E 有界,故存在0M >,使得,x M x E <∀∈. 因此E 包含在开区间{}12(,,,):,1,2,,n i I x x x x M i n =<= 中. 取开覆盖为 ,,,21I I I ,其中从第二项开始全是空集. 则有()*12ni m E I I I M ∞=≤+==<∞∑.2可数点集的外测度为零. .证明:设可数点集{} ,,,,21n a a a E =,则{} ∞-=1n na E . 由外测度的次可数可加性和单点集的外测度为零得到{}()0}{01*1**=≤=≤∑∞=∞-n n n n a m a mE m,于是0*=E m . 13 设1E 可测且1mE <∞. 证明:若*1221,E E m E mE ⊂=,则2E 可测. 证明:因1E 可测,在可测性的Caratheodory 条件中取2T E =得()()12*12*2*\E E m E E m E m += .因12E E ⊃,所以112E E E = ,又∞<=12*mE E m ,代入上等式得到()0\12*=E E m . 这表明12\E E 是零测集,故是可测集. 而()1212\E E E E =,右边是两个可测集的并,故2E 可测.25 E 可测的充要条件是:对0ε∀>,存在开集E G ⊃和闭集E F ⊂,使得()\m G F ε<. 证明:必要性:因为E 可测,所以对任意的0>ε, 存在开集E G ⊃, 使得()2\ε<E G m ,同时存在闭集EF ⊂, 使得()2\ε<F E m ,此时()()()εεε=+<+=22\\\F E m E G m F G m .充分性:取n1=ε, 则得到一列开集{}n G 和一列闭集{}n F , 使得n n F E G ⊃⊃且()nF G m n n 1\<. 令 ∞==1n n G H , ∞==1n n F K . 则K E H ⊃⊃,且K H ,可测,同时)(\\n F G K H n n ∀⊂,这表明K H \是零测集. 因为K H K E \\⊂,故K E \也是零测集. 而()K K E E \=,故E 可测.33 反证法:若否,则该零测集中会含有开球,此与集合是零测集矛盾. 4.有界闭集E 上的连续函数()f x 是有界函数证明:只需证明函数的最大最小值可达即可. 以最大值为例.令sup{():}M f x x E =∈,则存在点列{}n x E ⊂,使得()n f x M →. 因为E 是有界闭集,所以有界点列{}n x E ⊂必有在E 中收敛的子列,不妨设{}n x 自身收敛到x E ∈.另一方面,由于函数()f x 连续,故()()n f x f x →. 由极限的唯一性知()M f x =<+∞,也即最大值可取到. 同理,最小值也可达到. 因此函数()f x 必是有界的. 实际上,有界闭集E 上的连续函数()f x 是一致连续函数.证明:对0ε∀>. 由于函数连续,任取x E ∈,则()0x δ∃>,使得当(,())y E O x x δ∈ 时,必有()()2f x f y ε-<(*).这样,也就得到E 的一族开覆盖{}(,()):O x x x E δ∈,其中()x δ使得(*)式成立. 由于E 是有界闭集,故必有从属于{}(,()):O x x x E δ∈的Lebesgue 数0δ>,即对任意的0x E ∈,必存在某个x E ∈,使得0(,)(,())O x O x x δδ⊂.任取12,x x E ∈,12x x δ-<. 由上述所言,必存在x E ∈,使1(,)(,())O x O x x δδ⊂,则也有2(,())x O x x δ∈. 由(*)式,得到1212()()()()()()22f x f x f x f x f x f x εεε-<-+-<+=.也就证明了一致连续性.7.设mE <∞,f 是E 上几乎处处有限的可测函数. 证明:对0ε∀>,存在闭集F E ⊂,使得(\)m E F ε<,且f 在F 上有界.证明:设[],[]n E E f E E f n ∞==∞=>,则{}n E E ⊂是单减的可测集列,且lim n n E E →∞∞=. 因为mE <∞,所以lim n n mE mE →∞∞=. 又因为f 是E 上几乎处处有限的可测函数,故lim 0n n mE mE →∞∞==. 因此对0ε∀>,存在N ,使得当n N ≥时2n mE ε<,特别的,2N mE ε<. 在\N E E 上,恒有()f x N ≤. 根据可测集的构造,存在闭集\N F E E ⊂,使得()(\)\2N m E E F ε<. 这样,()()()()F E E E F E E E F E N N N N \\\\\ ==,因而()()()\\\22N Nm E F mE mE EF εεε≤+<+=,且在闭集F 上,有()f x N ≤12.构造反例说明:由f 可测得不到f 可测.反例:设[0,1]E =,A 是[0,1]E =的不可测子集,\()()()A E A f x x x χχ=-. 则1f ≡是E 上的可测函数,而[0]E f A >=不是可测集,因而f 不是E 上的可测函数.18.设f 和{}1n n f ∞=均是可测集E 上几乎处处有限的可测函数. 对0,δ∀> 存在可测子集E E δ⊂,使得()\m E E δδ<,且在E δ上{}n f 一致收敛到f . 证明:在E 上{}n f 几乎处处收敛到f .证明:由题设知,对任意的i N ∈,存在可测子集i F E ⊂,使得()1\i m E F i<, 且在iF 上{}n f 一致收敛到f . 令1i i F F ∞==. 则{}n f 在F 上收敛到f . 由测度的单调性得1(\)(\),i m E F m E F i i≤≤∀,故而(\)0m E F =. 因此,在E 上{}n f 几乎处处收敛到f .20.设在E 上,有f f n ⇒且g f n ⇒,证明在E 上)(x f 和)(x g 几乎处处相等. 证明:不妨假定函数)(),(x g x f 是处处有限的. 这样有[]⎥⎦⎤⎢⎣⎡≥-=≠-∞=k g f E g f E k 101 .所以只需证明右边的每个集合是零测集就行了.注意到若kb a 1>-,则由于b a b a -≥+,故必有k a 21≥或k b 21≥. 因而当k x g x f 1)()(≥-时,必有k x f x f n 21)()(≥-或kx f x g n 21)()(≥-.因此对任意的n 有⎥⎦⎤⎢⎣⎡≥-⎥⎦⎤⎢⎣⎡≥-⊂⎥⎦⎤⎢⎣⎡≥-k f g E k f f E k g f E n n 21211由依测度收敛性知上式右边两个集合的测度当∞→n 时趋于零,故对任意的k 都成立01=⎥⎦⎤⎢⎣⎡≥-k g f mE . 完成证明.26. Lusin 定理的逆定理:设f 是可测集nR E ⊂上的广义实函数,若对0>∀ε,存在闭集E F ⊂,使得()ε<F E m \且f 在F E \上连续,则f 是E 上几乎处处有限的可测函数.证明:由题设得,对任意的n ,存在闭集E F n ⊂使得()nF E m n 1\<且f 在E F n ⊂上连续. 当然这时f 在n F 上可测且处处有限. 令∞==1n n F F ,则由可测函数的性质知f 在F上可测同时还是处处有限的. 而()()())(1\\\1n nF E m F E m F E m n n n ∀<≤=∞= ,这表明()0\=F E m . 因此f 在E 上可测且几乎处处有限.。
《实变函数》复习题
《实变函数》复习题黔南民族师范学院数学系2006年7月第一章 集 合 论 基 础一、填空题1.设⎭⎫⎩⎨⎧−≤≤+−=i x i x A i 1111,,则U =_________________.N i ∈∞=1i i A 2.设⎭⎬⎫⎩⎨⎧+<≤=i x x A i 110,,则_________________.N i ∈=∞=I 1i i A 3.⎥⎦⎤⎢⎣⎡+−=+1212,012m A m ,⎥⎦⎤⎢⎣⎡+=m A m 211,02,L ,2,1=m ,则=n nA lim ____________,=n nA lim ______________.4.,,2,1),,0(1,0(212L ===−m m A mA m m 则=n nA lim ____________,=n nA lim _______________.5.欲使{自然数全体}~{正奇数全体},只须令映照=)(n ϕ___________,为自然数. n6.欲使~),0(+∞),(+∞−∞,只须令映照=)(x ϕ_____________,x 为正实数.7.设M ={代数数全体},则M =___________,=M R \1___________________.8.设{实数列全体},则的势为___________. E ∞=E ∞9.设[0,1]中无理数全体所成集为E ,则=E _________.10.设集合A 、B 、满足:,若C A B C ⊂⊂A ~,则___________________. C二、证明题1.证明:)()()(C A B A C B A U I U I U =.2.证明:.)\(\)(B A B A IIαααα∈∈=U U 3.对任一给定的集列{}i E ,试将U 表示成一个彼此互不相交集列的并集.∞=1i iE4.证明:)\(lim lim \n nn nA S A S =.5.证明:单调函数的不连续点最多只有可数多个.6.设A 是1R 上互不相交的开区间构成的集合,证明:A 至多是一个可数集. 7.证明:若集合M 的所有子集构成的集类为ℜ,则M >ℜ. 8.证明:设A 至多可数,B 是任一无限集,则B B A =U .第二章 中 点 集n R一、填空题1.设,则[]Q E I 1,0==′E ____________, =0E ____________,=E ____________.2.设⎭⎬⎫⎩⎨⎧=>=x y x y x E 1cos ,0),(,则=′E ___________________________________________.3.设nR E ⊂,试用邻域描述:是0P E 的孤立点__________________________________________;⇔⇔∈E P 0______________________________________________.4.设nR E ⊂,若_______________,则称E 为闭集;若_____________,则称E 为自密集;若_____________,则称E 为完备集.5.无限个开集的交未必是开集,试写出一个例子:____________________________________________________________________________.6.1R 上任一非空开集可以表示成_______________________________________________________ G______________________的并集.7.根据闭集结构可断言:1R 上的完备集必是_______________________________________________________________________的闭集.8.设nR E ⊂,称E 为稠密集是指__________________________________________________________________________________.9.设n R E ⊂,称E 为疏朗集是指__________________________________________________________________________________.10.设nR E ⊂,,在1:R E f →)(x f E x ∈0连续⇔____________________________________________________________________________.11.设P 为Cantor 集,则=P ___________, =0P ____________.12.设P 是Cantor 集,Q 是有理数集,{}N n n A ∈=,U ∞=⎥⎦⎤⎢⎣⎡−=212,1n n nB , 则它们中的闭集有_____________, 开集有 ____________,完备集有____________,稠密集有____________,疏朗集有_____________.二、证明题1.证明:G 为开集;为闭集⇔G G =0F ⇔F F =.2.证明:开集减闭集后的差集仍是开集.3.证明: =0E {x x 为E 的内点}是开集.4.证明:nR 中任一闭集都可表示成可数个开集的交集.5.证明:A 是包含A 的最小闭集,即对任意闭集,若F A F ⊃,那么A F ⊃.6.证明:CE E C =0,0)(CE E C =.7.设1R A ⊂,A 既是开集又是闭集,证明:=A Φ或者1R A =.8.证明:在上连续函数对)(x f [b a ,]⇔∀实数,集合c {}c x f x E ≥=)(1和{}c x f x E ≤=)(2都是闭集.9.设,证明:在1:R R f n→)(x f nR 上连续⇔对1R 中∀开集,它的原象G {}G x f R x x G fn ∈∈=−)(,)(1是n R 中开集.第三章 测 度 论L一、填空题1. 设nR E ⊂,L 外测度定义________________________________________________________________________________________________________.2.设n R E ⊂为有界集,I 是任一包含E 的开区间,则L 内测度定义为_________________________________________________________.3.设nR E ⊂,根据卡氏条件,若nR T ⊂∀,都有_______________________________________, 则称E 是L 可测的.4.L 测度与L 外测度的重要差异在于_________________________________________________________________________________________________.5.设nR E ⊂可测,则对∀0>ε,∃闭集E F ⊂,使_______________________.6.设n R E ⊂可测,则∃δG 型集,使______________________. E G ⊃7.−σBorel 代数是指nR 中全体____________________________________________,其元素称为_________________________________________.8.设为Cantor 集,则__________,=_____________. P =mP )\]1,0([P m9.取递减可测集列{_________________________,就有 }=n E n n n n mE E m ∞→∞→≠lim )lim (.10.半开闭区间可写成_________________________,故它是型集,又可写成______________ ],(b a σF___________________,故它也是型集. δG二、证明题1.设nR A ⊂为可测集,nR B ⊂为任意集,证明: +)(*B A mU =)(*B A m I +A m *B m *.2.证明:0)]1,0([=Q m I .3.设A 可测, 证明:,0*=B m mA B A m =)\(.4.设为实常数,记a {}+∞<<−∞==312321,,),,(x x a x x x x E ,证明:E 是3R 中的零测集. 5.证明:设是一列互不相交的可测集,则也可测.{}n E U ∞=1n nE6.证明:设是一个递增的可测集列,则{}n E n n n n mE E m ∞→∞→=lim )lim (.7.设nR E ⊂为可测集,证明:对0>∀ε,∃开集E G ⊃,使ε<)\(E G m .8.设,且, 证明:对],[b a E ⊂0*>E m <<∀c c 0:E m *,E E ⊂∃0,使得. c E m =0*9.试在1R 中构造一个仅含无理数的闭集,使得. F 0)(>F m第四章可 测 函 数L一. 填空题1._________________,=−<∞=][1n f E n I =⎥⎦⎤⎢⎣⎡+≥∞=U 11n n a f E ___________________. 2.设可测函数,记)(x f {}0),(max )(x f x f =+,{}0),(min )(x f x f −=−,则=)(x f ____________________,=)(x f _____________________.3.定义在⎥⎦⎤⎢⎣⎡−4,4ππ上的函数列:,x x f n n 1cos )(−=L ,2,1=n ,则{}=)(inf x f n n_______________________________.4.定义在[]π,0上的函数列:x x f π22)(1=,,则L ,3,2,cos )(==n x x f n n=)(lim x f n n____________________________________.5.根据叶果洛夫定理,设,{是∞<mE })(x f n E 上收敛于一个有限函数的可测函数 ..e a ..e a )(x f列,则__________________________________________________________________________________________________________.6.根据鲁津定理,设是可测集)(x f E 上有限的可测函数,那末____________________________ ..e a______________________________________________.7.于)()(.x f x f m n ⎯→⎯E 的定量描述是______________________________________________________________________________________________________.8.设在E 上,,则可测函数与满足:______________ )()(.x f x f m n ⎯→⎯)()(.x g x f m n ⎯→⎯)(x f )(x g________________________________.9.收敛的可测函数列未必依测度收敛,试写出一个例子:__________________________________ ..e a_____________________________________________________.10.写出一个不可测函数的例子:___________________________________________________________________________________________________.二、证明题1.设nR E M =⊂,是特征函数, 证明:⎩⎨⎧∈∈=,\,0,,1)(M E x M x x M χM 与)(x M χ同为可测或同为不可测.2.设nR E ⊂为可测集, 于)()(x g x f =..e a E ,证明:若在)(x f E 上可测,则在)(x g E 上也可测.3.证明:可测集nR E ⊂上的连续函数是可测函数.)(x f 4.设{为可测集})(x f n E 上的可测函数列,证明它的收敛点集和发散点集均是可测集.5.设是)(x f 1R 上的连续函数,是)(x g []b a ,上的可测函数,证明:[])(x g f 是=E [b a ,]上的可测函数.6.设及)(x f L ,2,1),(=n x f n 是可测集E上的可测函数,若在E 上,证明: 在f f un a n ⎯⎯→⎯..E 上.f f e a n ⎯→⎯..7.设在E 上,且 于)()(.x f x f m n ⎯→⎯0)(≥x f n ..e a E ,L ,2,1=n .证明: 于0)(≥x f ..e a E . 8.设在E 上,且 于)()(.x f x f m n ⎯→⎯)()(1x f x f n n +≥..e a E ,L ,2,1=n .证明:在E 上.f f e a n ⎯→⎯..9.设在E 上,且)()(.x f x f m n ⎯→⎯)()(x g x f n n = 于..e a E ,L ,2,1=n .证明:在E 上.)()(.x f x g m n ⎯→⎯10.设是定义在可测集)(x f nR E ⊂上的函数,证明:若对0>∀δ,∃闭集,使在上连续,且E F ⊂δ)(x f δF δδ<)\(F E m ,则是)(x f E 上的可测函数.11.设是可测集)(x f 1R E ⊂上的可测函数,证明: ∃一个1R 上的连续函数列{,使得在}n g E 上.f g e a n ⎯→⎯..第五章 积 分 论L一. 填空题1. 设在0)(≥x f qR E ⊂上可测,定义,其中为_________∫∫=nE n nEdx x f dx x f )]([lim )({}n E_______________________________,=n x f )]([_______________________.2.根据L 积分的绝对连续性,若在)(x f E 上L 可积,则____________________________________________________________________________________________.3.设在)(x f E 上L 可积,则=∞=][f mE ____________________.4.根据引理,设{是可测集Fatou })(x f n qR E ⊂上一列非负可测函数, 则_____________________________________________________________________.5.设A 、B 分别为pR ,qR 中可测集,则B A ×是qp R +中________________,且=×)(B A m______________________.6.设是)(x f n R E ⊂上的非负函数,则它的下方图形是___________中的点集,可表示成:=),(f E G _____________________________________________.7.设P 为Cantor 集,则=______________,=_______________.])1,0[(×P m ∫Ptgxdx8.设是[上的有限函数,则______________________________________________)(x f ]]b a ,=)(f V ba_____________________________________________________.9.设是[上的有限函数,若______________________________________________________ )(x F b a ,________________________________________________, 则称是)(x F []b a ,上的绝对连续函数.10.分解定理表明:上的任一有界变差函数都可以表示为____________________ Jordan ],[b a )(x f_________________________________________.11.根据定理,若是上的单增函数,则Lebesgue )(x f [b a ,])(x f ′在[]b a ,上___________________,且有____________________________________________.12.设在上)(x f ],[b a L 可积,则的一个不定积分可表示为_____________________________ )(x f_______________________.13.是上的绝对连续函数)(x F [b a ,]⇔___________________________________________________.14.写出一个连续但非有界变差函数的例子______________________________________________________________________________________________.15.写出一个使公式不成立的单增函数的例子_________________________________________L N −________________________________________________________.二、证明题1.设在Cantor 集上等于1,而在的长度为)(x f P P n31的余区间上等于,试证在上)(N n n ∈)(x f ]1,0[L 可积,并求.∫]1,0[)(dx x f 2.设在)(x f E 上非负L 可积,且,证明:∫=E dx x f 0)(0)(=x f 于..e a E .3.设,在∞<)(E m )(x f E 上L 可积,并记)(n f E E n ≥=,证明:.0)(lim =⋅∞→n n E m n 4.设,{是∞<)(E m })(x f n E 上有限的可测函数列,证明:..e a ⇔=+∫∞→0)(1)(lim dx x f x f E n n n 在E 上.0)(.⎯→⎯m n x f 5.设在[]上)(x f b a ,L 可积,证明:对0>∀ε,必[]b a ,∃上的连续函数)(x ϕ,使得εϕ<−∫dx x x f ba )()(.6.设在[中取出个可测子集,若]1,0n n E E E L ,,21[]1,0中任一点至少属于这个集中的个集,试证必有一个集的测度n q nq ≥. 7.设,在0)(>E m )(x f E 上L 可积,证明:若对E 上任意有界可测函数)(x ϕ,都有,则 于∫=E dx x x f 0)()(ϕ0)(=x f ..e a E .8.证明:时,0≥a ∫∞∞→=⎟⎠⎞⎜⎝⎛+),(111lim a a n n n et n t dt .9.证明:∑∫∞=+=−1210)12(4111n n dx x n x x . 10.设于,0)(≥x f n f f e a n ⎯→⎯..E ,且(常数),证明:在∫<E n K dx x f )()(x f E 上L 可积.11.在[-2,2;-2,2]上定义D ⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,)(),(322y x y x y x xy y x f ,证明:这两个累次积分存在且相等,但在上非),(y x f D L 可积.12.设{}为[上有界变差函数列,,且)(x f n ]b a ,)()(x f x f n →∞<)(x f ,证明:若{的全变差数列有界,则是上有界变差函数.})(x f n )(x f ],[b a 13.设在上绝对连续函数,证明:必是上有界变差函数.)(x f ],[b a )(x f ],[b a 14.设在上绝对连续,且)(x f ],[b a ,0)(≤′x f ..e a 于,证明:是上单调递减函数.],[b a )(x f ],[b a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、下列说法不正确的是( B )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测二. 填空题(3分×5=15分)1、2、设是上有理点全体,则()(())s s C A C B A A B ⋃⋂--=∅E []0,1=,=,=.'E []0,1oE ∅E []0,13、设是中点集,如果对任一点集都有,则称E n R T ***()()m T m T E m T CE =⋂+⋂是可测的E L 4、可测的充要条件是它可以表成一列简单函数的极限函数.)(x f 5、设为上的有限函数,如果对于的一切分划,使()f x [],a b [],a b 成一有界数集,则称为 上的有界变差函数。
11|()()|n i i i f x f x -=⎧⎫-⎨⎬⎩⎭∑()f x [],a b 1、设,若E 是稠密集,则是无处稠密集。
错误1E R ⊂CE 2、若,则一定是可数集.错误例如:设是集,则,但c 0=mE E E Cantor 0mE =E =, 故其为不可数集3、若是可测函数,则必是可测函数。
错误|()|f x ()f x 二、2. 下列说法不正确的是(C )(A) 的任一领域内都有中无穷多个点,则是的聚点0P E 0P E (B) 的任一领域内至少有一个中异于的点,则是的聚点 0P E 0P 0P E (C) 存在中点列,使,则是的聚点E {}n P 0n P P →0P E (D) 内点必是聚点3. 下列断言(B )是正确的。
(A )任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对;4. 下列断言中( C )是错误的。
(A )零测集是可测集; (B )可数个零测集的并是零测集;(C )任意个零测集的并是零测集;(D )零测集的任意子集是可测集;1、设,则_________。
11[,2],1,2,n A n n n=-= =∞→n n A lim 2、设为Cantor 集,则 ,_____,=________。
P =P mP =oP 3、设是一列可测集,则{}i S 11______i ii i m S mS ∞∞==⎛⎫⋃ ⎪⎝⎭∑4、鲁津定理:______________________________________________________5、设为上的有限函数,如果_________则称为上的绝对连续函数。
()F x [],a b ()F x [],a b 答案: 2,c ;0 ; 3, 4,设是上有限的可测函数,则()0,2∅≤()f x E ..a e 对任意,存在闭子集,使得在上是连续函数,且。
0δ>E E δ⊂()f x E δ(\)m E E δδ<5,对任意,使对中互不相交的任意有限个开区间0,0εδ>∃>[],a b 只要,就有(),,1,2,,,i i a b i n = ()1n i i i b a δ=-<∑1|()()|ni i i F b F a ε=-<∑1、由于,故不存在使之间对应的映射。
错误[](){}0,10,10,1-=()[]0,101和,11-2、可数个零测度集之和集仍为零测度集。
正确3、收敛的函数列必依测度收敛。
错误..a e4、连续函数一定是有界变差函数。
错误2.(6分) 设使,则E 是可测集。
0,,G E ε>∃⊃开集*()m G E ε-<证明:对任何正整数,由条件存在开集使 令,则n ,n G E ⊃*1()n m G E n -<1n n G G ∞== 是可测集,又因对一切正整数成立,因而,G *()m G E -*1()n m G E n≤-<n *()0m G E -=即是一零测度集,所以也可测. 由知,可测。
M G E =-()E G G E =--E 4.(8分)设函数列 在有界集上“基本上”一致收敛于,证()n f x (1,2,)n = E ()f x 明:收敛于。
()..n f x a e ()f x 证明:因为在上“基本上”一致收敛于,所以对于任意的,存在可()n f x E ()f x k Z +∈测集,在上一致收敛于,且 令,则k E E ⊂()n f x k E ()f x 1(\)k m E E k <*1k k E E ∞== 在上处处收敛到,,k=1,2()n f x *E ()f x *11(\)(\)(\)k k k m E E m E E m E E k ∞==≤<所以…*(\)m E E 0=1、设集合,则N M ⊂()M M N --=N2、设为Cantor 集,则 ,0,=。
P =P c mP =oP ∅3、设是中点集,如果对任一点集都有,则称E n R T ***()()m T m T E m T CE =⋂+⋂是可测的E L 4、叶果洛夫定理:设是上一列收敛于一个有限的函数 的可}{,)(n f E m ∞<E ..e a ..e a f 测函数,则对任意存在子集,使在上一致收敛且。
,0>δE E ⊂δ}{n f δE δδ<)\(E E m 5、设在上可测,则在上可积的充要条件是||在上可积.)(x f E )(x f E )(x f E 1、任意多个开集之交集仍为开集。
不成立反例:设G n =( ),n=1,2, , 每个nn11,11+---G n 为开集 但 不是开集.∞=-=1]1,1[n n G 2、若,则一定是可数集。
不成立;设是集,则, 但c 0=mE E E Cantor 0mE =E =, 故其为不可数集。
3、收敛的函数列必依测度收敛。
不成立..a e4、连续函数一定是有界变差函数。
不成立1、(6分)试证(0,1)~[0,1]证明:记中有理数全体,令(0,1)12{,,}Q r r =显然所以()x ϕ=122(0)(1)(),1,2(),[01]n n r r r r n x x x ϕϕϕϕ+=⎧⎪=⎪⎨==⎪⎪=⎩ 为,中无理数,[01]0111ϕ-是,到(,)上的映射(0,1)~[0,1]2、设是上的实值连续函数则对任意常数 c , 是一开集.()f x ),(+∞-∞})(|{c x f x E >=证明: 因f (x )连续,故. .)(,00c x f E x >∈∀即c x f x x >⋃∈∀>∃)时,有(),(,00δδ即.所以是E 的内点.由的任意性,E 的每一个点都是内点,从而E 为开集.E x ⊂⋃)(00x 0x 1、设是上的实值连续函数,则对于任意常数是闭集。
()f x (),-∞+∞,{|()}a E x f x a =≥证明: ;;,{},lim n n n x E E x x x →∞'∀∈=则存在中的互异点列使,()n n x E f x a ∈∴≥ ;;()()lim ()n n f x x f x f x a →∞∴=≥ 在点连续,x E ∴∈E ∴是闭集.3、(6分)设是可测集的非负可积函数,是的可测函数,且()f x E ()g x E ,则也是上的可积函数。
|()|()g x f x ≤()g x E 证明:,|()|()g x f x ≤ 是可测集()(),()()g x f x g x f x +-∴≤≤[]()()()nnnn E E Eg x dx f x dx f x dx +⎡⎤∴≤≤⎣⎦⎰⎰⎰ ()f x 的非负可积函数 是上的可积函数. 同E ∴limn →∞()()nnE Eg x dx f x dx +⎡⎤≤⎣⎦⎰⎰<+∞∴()g x +E 理,也是上的可积函数.是上的可积函数。
()g x -E ∴()g x E 1.设P 为Cantor 集,则 (C )(A ) 0 (B) (C) (D) =P 1=mP P P ='P P =5.设为上的有界变差函数,则下面不成立的是( D ))(x f ],[b a (A)在上可积 (B)在上可积)(x f ],[b a L )(x f ],[b a R (C)在上可积 (D)在上绝对连续)('x f ],[b a L )(x f ],[b a 2、设,若则是闭集若,则是开集;若则是完备集.E R ⊂,E E ⊂'E 0E E ⊂E 'E E =E 5、设为上的有限函数,如果对于的一切划分,使()f x [],a b [],a b 成一有界数集,则称为上的有界变差函数。
11|()()|n i i i f x f x -=⎧⎫-⎨⎬⎩⎭∑()f x [],a b 1、A 为可数集,B 为至多可数集,则A B 是可数集;成立⋃2、若,则;不成立;为中的全体有理点集,则有,而0=mE 0=E m E ]1,0[0=mE 1=E m 3、若是可测函数,则必是可测函数;不成立. 设是上的不可测集,|()|f x ()f x E [],a b 则是上的可测函数,但不是上的…[],;(),,;x x E f x x x a b E ∈⎧⎪=⎨-∈-⎪⎩|()|f x [],a b ()f x [],a b 4.设在可测集上可积分,若,则;不成立. 见下页()f x E ,()0x E f x ∀∈>()0Ef x >⎰。