信号与系统总复习(推荐完整)

合集下载

(完整版)信号与系统知识要点

(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。

信号与系统复习大纲(含答案)

信号与系统复习大纲(含答案)

选择题、填空题、画图题(2道)、计算题1、信号f (2t 4)-+跟f (2t)-的图像相比,移位多少?P9 信号f (2t 4)-+是信号f (2t)-的图像右移两个单位得到的。

2、掌握判断一个系统是否线性的方法。

P27 (课后1.23) 线性系统满足三个条件:1)响应可分解性:y(t)=yzi(t)+yzs(t),其中yzi(t)为零输入响应,yzs(t)为零状态响应; 2)零输入线性:当所有输入信号为零时,系统的零输入响应对于各初始状应呈现线性,如:T[{ax1(0)+bx2(0)}, {0}]=aT[{ x1(0)}, {0}]+bT[{ x2(0)}, {0}];3)零状态响应:当所有初始状态均为零时,系统的零状态响应对于各输入信号应呈现线性, 如:T[{0},{af1(t)+bf2(t)}]=aT[{0},{f1(t)}]+bT[{0},{f2(t)}].3、掌握单位冲激信号的取样特性和尺度变化特性。

P18,P21 取样特性:f(t) δ(t)=f(0) δ(t); ∫﹢∞﹣∞f(t)δ(t)dt=f(0)尺度变化特性:δ(at)= δ(at)/|a|;δ(n)(t)=(1/|a|)*(δ(n)(t)/a n )4、信号有哪些分类方式?怎样判断两个周期信号的和是否周期信号?P2-P8 1)分类方式:①根据信号定义域的特点可分为连续时间信号和离散时间信号; ②根据信号按时间自身的变化规律可分为周期信号和非周期信号; ③根据信号的物理可实现性可分为实信号和复信号; ④根据信号的能量性质可分为能量信号和功率信号。

2)设两周期信号的周期分别为T1和T2,若T1和T2有最小公倍数,则这个最小公倍数就是这两个周期信号的和的周期,若T1和T2没有最小公倍数,则为非周期信号。

(详见1.5 (2)、(5))5、若f1 (k) ={ 2 , 1 , 5},f 2(k) ={ 0,3 , 4, 6}↑k=0 ↑k=0二者的卷积和等于多少?P101 2 ,1 ,5× 3 ,4 ,6 12, 6 ,30 8 , 4 ,20 6 , 3, 156 ,11,31, 26,30 ↑k=1(左边起第一个非零的数字的下角标之和)6、一连续LTI 系统的单位阶跃响应3()()t g t e t ε-=,则此系统的单位冲激响应h(t)为多少? P56h(t)=dg(t)/dt= -3e -3t ε(t)+ e -3t δ(t)7、理想低通滤波器是因果系统还是非因果的系统?物理可实现吗?P177-182 理想低通滤波器是非因果系统,物理不可实现。

(完整版)信号与系统复习题

(完整版)信号与系统复习题

信号与系统试题库一、填空题绪论:1。

离散系统的激励与响应都是____离散信号 __。

2.请写出“LTI ”的英文全称___线性非时变系统 ____。

3.单位冲激函数是__阶跃函数_____的导数. 4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。

5.如果一线性时不变系统的输入为f(t ),零状态响应为y f (t )=2f (t —t 0),则该系统的单位冲激响应h (t )为____02()t t δ-_________。

6。

线性性质包含两个内容:__齐次性和叠加性___。

7。

积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______。

8。

已知一线性时不变系统,当激励信号为f (t)时,其完全响应为(3sint-2cost )ε(t );当激励信号为2f (t )时,其完全响应为(5sint+cost )ε(t),则当激励信号为3f(t )时,其完全响应为___7sint+4cost _____。

9。

根据线性时不变系统的微分特性,若:f (t)−−→−系统y f (t)则有:f ′(t)−−→−系统_____ y ′f (t )_______。

10。

信号f (n )=ε(n )·(δ(n)+δ(n-2))可_____δ(n)+δ(n —2)_______信号。

11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- 。

12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。

13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----.14、[]2cos32t d ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。

信号与系统复习试题(含答案)

信号与系统复习试题(含答案)
D。激励与H(s)的极点
76.某二阶LTI系统的频率响应H (j)
A.y2y3y
B。y3y2yf2
D。y3y2yf
H(s)的共轭极点在虚轴上,则它的
2,-1,H ()1,则系统函数H(s)为(
C。(s1)(s2)
(t)的傅氏变换是(
B。j(
D。j(2
A.系统在(t)作用下的全响应
C.系统单位阶跃响应的导数
6。对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积
分器数目最少是__3个_____个。
7。一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S平面
的___左半平面_______。
8.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为
其中x(0)是初始状态,
f(t)为激励,y(t)为全响应,试回答该系统是否是线性的?[答案:非线性]
2.y'(t)sinty(t)f(t)试判断该微分方程表示的系统是线性的还是非线性的,
是时变的还是非时变的?[答案:线性时变的]
3.已知有限频带信号f(t)的最高频率为100Hz,若对f(2t)*f(3t)进行时域取样,
B。f(t)f(t8)
12
C.f(t)f(t8)
D。f(t3)f(t1)
69.已知一连续系统在输入f(t)的作用下的零状态响应为yzs(t)f(4t),则该系统为()
70.已知f(t)是周期为T的函数,f(t)-f (t
T)的傅里叶级数中,只可能有(
71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为(e
h(t)=(1et)(t),则其系统函数
15.已知一信号f(t)的频谱F(j)的带宽为,则f(2t)的频谱的带宽为

信号与系统总复习要点

信号与系统总复习要点

《信号与系统》总复习要点第一章绪论1.信号的分类:模拟信号,数字信号,离散信号,抽样信号2.信号的运算:移位、反褶、尺度、微分、积分、加法和乘法3. δ(t)的抽样性质 (式1-14)4.线性系统的定义:齐次性、叠加性5.描述连续时间系统的数字模型:微分方程描述离散时间系统的数字模型:差分方程6.连续系统的基本运算单元:加法器,乘法器,积分器离散系统的基本运算单元:加法器,乘法器,延时器7.连续系统的分析方法:时域分析方法,频域分析法(FT),复频域分析法(LT)离散子系统的分析方法:时域分析方法,Z域分析方法8.系统模拟图的画法9.系统线性、时不变性、因果性的判定第二章连续时间系统的时域分析1.微分方程的齐次解+特解的求法自由响应+强迫响应2.系统的零输入响应+零状态响应求法3.系统的暂态响应+稳态响应求法4.0-→0+跳变量冲激函数匹配法5.单位冲激响应h(t), 单位阶跃响应g(t), 与求法h(t)=g'(t), g(t)=h (-1)(t)类似δ(t)与u(t)的关系6.卷积的计算公式,零状态响应y zs (t)=e(t)*h(t)=∫∞-∞e(τ)h(t-τ)d τ=h(t)*e(t)7.卷积的性质串连系统,并联系统的单位冲激响应f(t)*δ(t)= f(t)f(t)*δ(t-3)= f(t-3)8. 理解系统的线性 P57 (1) (2) (3)第三章 傅立叶变换 t →w1.周期信号FS ,公式,频谱:离散谱,幅度谱2.非周期信号FT ,公式,频谱:连续谱,密度谱3. FT FT -14.吉布斯现象 P100---P1015.典型非周期信号的FT (单矩形脉冲)6.FT 的性质①对称性②信号时域压缩,频域展宽 P127,P128 ()[]⎪⎭⎫ ⎝⎛=a F a at f F ω1()()j t F f t e dt ωω∞--∞=⎰1()()2j t f t F e d ωωωπ∞-∞=⎰③尺度和时移性质 P129④频移性质:频谱搬移 cos(w 0t)的FT⑤时域微积分特性,频域微分特性⑥卷积定理(时域卷积定理、频域卷积定理)7.周期信号的FT :冲激8.抽样信号f s (t)的FT 及频谱F s (ω)9.抽样定理①条件 f s >=2f m w s >=2w m②奈奎斯特频率 f s =2f m③奈奎斯特间隔 T s =1/f s10.关于频谱混叠的概念第四章 拉普拉斯变换、连续时间系统的s 域分析 t →s 1. LT LT -12.典型信号的LT3.LT 性质:时移,频移,尺度,卷积()j 1e baf at b F a a ωω⎛⎫+↔⋅ ⎪⎝⎭0001[()cos()][()()]2F f t t F F ωωωωω=++-()()⎰∞∞--=tt f s F ts d e ()()⎰∞+∞-=j j d e j π21 σσss F t f t s []000()()()e st L f t t u t t F s ---=()e ()αt L f t F s α-⎡⎤=+⎣⎦[]()1() 0s L f at F a a a ⎛⎫=> ⎪⎝⎭4.LT 的逆变换①查表法②部分分式展开法(系数求法)③留数法5.LT 分析法 (第四章课件63张,64张,78张,81张) 求H(s), h(t), y zi (t), y zs (t), y(t)6.系统函数H(s) h(t) 一对拉氏变换对 H(s)的极点决定h(t)的形式H(s)的零点影响h(t)的幅度和相位7.H(s)的零极点 稳定性: ①②极点全在S 面左半面 P241 例4-26 8.连续系统的频响特性 H(jw)=H(s)│s=jw9.全通网络(相位校正),最小相移网络第五章 傅立叶变换应用于通信系统-滤波、调制与抽样1.h(t) H(jw) 构成傅式变换对2.无失真传输概念3.实现无失真传输的系统要满足的时域条件、频域条件4.理想低通滤波器的频响特性,及其单位冲激响应5.信号调制、解调的原理()||h t dt M ∞-∞≤⎰第七章 离散时间系统的时域分析1.离散序列的周期判定:2π/w 0,分三种情况讨论2.离散时间信号的运算、典型离散时间信号3.离散系统的阶次确定4.离散时间系统的差分方程,及模拟图的画法5.u(n), δ(n), g(n), h(n)的关系δ(n)= u(n)- u(n-1) h(n)= g(n)- g(n-1) 6.离散时间系统的时域求解法 (迭代、齐次解+特解、零输入+零状态)7.离散系统的单位冲激响应h(n)及其求法8.卷积和9.系统的零状态响应y zs (n)=x(n)*h(n) 10.有限长两序列求卷积:x 1(n):长N x 2(n):长M 见书例7-16, 对位相乘求和法, 长度:N+M-111.卷积性质:见课件第七章2,第35张12.离散系统的因果性,稳定性时域:因果性 n<0 ,h(n)=0稳定性 h(n)绝对可和()()k u n n k δ∞==-∑0()()k g n h n k ∞==-∑()()()()∑∞-∞=-=*m m n h m x n h n x ()n h n ∞=-∞<∞∑第八章 Z 变换、离散时间系统的Z 域分析1.LT →ZT: z=e sTZ 平面与S 平面的映射关系2. ZTZT -13.典型序列的Z 变换 4.Z 变换的收敛域: 有限长序列 有无0,∞右边序列 圆外左边序列 圆内双边序列 圆环5.逆Z 变换 ①查表法②部分分式展开法(与LT -1不同的,先得除以Z ) ③留数法6.ZT 的性质时移性质 (1)双边序列移位(2)单边序列移位 ①左移 ②右移 序列的线性加权性质序列的指数加权性质卷积定理7.Z 域分析法解差分方程:书P81 例8-16第八章课件2 第33张~37张 ()()n n X z x n z ∞-=-∞=∑()⎰-π=c n z z z X jn x d 21)(18.系统函数H(z) h(n) H(z) Z 变换对 求H(z), h(n), y zs (n), y zi (n), y(n), H(e jw ) *见书P86:例8-19, P109 8-36 8-379.离散系统的稳定性,因果性稳定性 因果性时域 n<0, h(n)=0 频域 H(z)所有极点在单位圆内 收敛域(圆外)含单位圆10.离散系统的频响特性H(e jw )=H(z)│z=ejw =│H(e jw )│e j ψ(w)幅度谱:描点作图,2π为周期相位谱书P98,例8-22, 第八章课件:59张,60张 ()n h n ∞=-∞<∞∑。

(完整版)信号与系统复习知识点

(完整版)信号与系统复习知识点
《信号与系统》复习要点
第一章
1.信号的运算:时移、反褶、尺度变换、微分、积分等;
2.LTI系统的基本性质:叠加性、时不变特性、微分特性、因果性、可分解线性;
3.阶跃型号与冲激信号及其特性。
单位冲激信号的性质:
1.
2.
3.
4.
5.
6.
7.
例、求下列积分
例、已知信号 的波形如下图1所示,试画出下列各信号的波形
抽样信号的拉氏变换
求半波整流和全波整流周期信号的拉氏变换
(1)
(2)
4-29求下列波形的拉氏变换
(1)
解题思路:单对称方波 ——周期方波——乘
—— ——
(2)
第一周期:
周期信号的拉氏变换:
第五章
1.频域系统函数 ,理想低通滤波器频谱特性;
2.无失真传输条件:幅频特性为常数,相频特性是过原点的直线;
3.系统的物理可实现性判断(1)佩利-维纳准则;(2)系统可实现性的本质是因果性。
被理想抽样信号的傅立叶变换:
被非理想抽样信号傅立叶变换:
第四章
1.典型信号的拉氏变换及拉氏变换的基本性质;
2.S域元件模型、系统函数、系统函数与激励信号极点分布与电响应的关系、系统函数与输入输出方程的关系(利用拉氏变换求解电系统响应);
3.线性系统的稳定性分析。
周期信号的拉氏变换
为信号第一个周期 的拉氏变换;整个周期信号 的拉氏变换为:
第七章
1.离散系统和信号的描述方法、基本性质
2.差分方程的经典解法
3.卷积和定义及其求解方法
第八章
1. z变换的定义、收敛域和基本性质,常用序列的z变换
2.逆z变换的求解方法
3. 的定义、零极点分布与信号/系统性质的关系

信号与系统期末重点总结

信号与系统期末重点总结

信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。

2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。

3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。

4. 系统的定义:系统是将输入信号转换为输出信号的过程。

5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。

二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。

(2)幅度谱与相位谱:复指数信号的频谱特性。

(3)周期信号:特点是在一个周期内重复。

(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。

2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。

(2)冲击响应与系统特性:系统的特性通过冲击响应得到。

(3)卷积积分:输入信号与系统冲激响应的积分运算。

3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。

(2)Fourier变换:将时域信号转换为频域信号。

(3)Laplace变换:用于解决微分方程。

三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。

(2)离散频谱:离散时间信号的频域特性。

(3)周期信号:在离散时间中周期性重复的信号。

(4)离散时间系统的线性时不变性:线性组合和时延等。

2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。

(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。

(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。

3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。

(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。

(3)Z变换:傅立叶变换在离散时间中的推广。

四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。

完整版)信号与系统知识点整理

完整版)信号与系统知识点整理

完整版)信号与系统知识点整理第一章信号是信息的表现形式,是传递和处理信息的载体,可以传达某种物理现象的特性。

系统是由若干相互作用和相互依赖的事物组合而成的整体,具有特定的功能。

信号作用于系统会产生反应,系统对信号有选择做出的反应。

通常把信号分为五种类型:连续信号与离散信号、偶信号和奇信号、周期信号与非周期信号、确定信号与随机信号、能量信号与功率信号。

连续信号在所有的时刻或位置都有定义,而离散信号只在某些离散的时刻或位置才有定义。

确定信号任何时候都有确定值,而随机信号出现之前具有不确定性。

能量信号的平均功率为零,功率信号的能量为无穷大,因此信号只能在能量信号与功率信号间取其一。

自变量线性变换的顺序应该先时间平移,后时间变换做缩放。

需要注意的是,对离散信号做自变量线性变换会产生信息的丢失。

系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力,也称为开关效应。

单位冲激信号是持续时间极短、幅度极大的实际信号的数学近似。

对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可以揭示系统的有关特性,例如测试电路的瞬态响应。

冲激偶是单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大,另一个位于t=0+处,强度负无穷大。

要求冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数。

斜升信号是单位阶跃信号对时间的积分,即为单位斜率的斜升信号。

系统具有六个方面的特性,包括稳定性、记忆性、因果性、可逆性、时变性与非时变性、线性性。

对于任意有界的输入都只产生有界的输出的系统称为有界输入有界输出(BIBO)意义下的稳定系统。

记忆系统的输出取决于过去或将来的输入,而非记忆系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。

信号与系统复习题含答案完整版

信号与系统复习题含答案完整版

信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。

总复习(信号与线性系统必过知识点)

总复习(信号与线性系统必过知识点)
n 0,1,2, ,
( t0,t0 +T )
2)指数函数集 ejnt n 0,1,2, ,
( t0,t0 +T )
3.2 周期信号的傅里叶级数展开
(1) f(t)为奇函数 正弦分量
(2) f(t)为偶函数 (3) f(t)为奇谐函数 (4) f(t)为偶谐函数
余弦分量+直流分量 奇次谐波 偶次谐波+直流分量
rzi (0 ), r 'zi (0 ), rz(in1) (0 )
4) 将初值带入rzi(t)的通解表达式,求出待定系数。
例1:已知某系统激励为零,初始值r(0)=2, r’(0)=1,r”(0)=0,描述系统的传
输算子为 解:
H(
p)

2p2 8p 3 ( p 1)( p 3)2
当激励e(t)=3 ε(t) ,初始状态保持不变时,响应 r2(t)=(8e-2t -7e-3t) ε(t)。
求:(1)激励e(t)=0,初始状态x1(0-)=1, x2(0-)=2时的响应 r3(t)=? (2)激励e(t)=2 ε(t),初始状态为零时的响应r4(t)=?
解:
当激励e(t)= ε(t) ,初始状态x1(0-)=1, x2(0-)=2时, 响应
2
2
2
例2:计算
4
(2 4t)(t 2)dt
1
解:4 (2 4t)(t 2)dt 1
4 1 (t 1)(t 2)dt 0
14
2
注意积 分区间
1. 2 信号的运算
1)折叠:y(t)=f (-t) 2)时移:y(t)=f (t-to) 3)倒相:y(t)=-f (t) 4)展缩:y(t)=f (at) 其中:a>0

信号与系统重点总结

信号与系统重点总结

信号与系统重点总结一、信号的分类与特征1.根据信号的时间性质划分,可分为连续时间信号和离散时间信号。

连续时间信号在时间上连续变化,离散时间信号在时间上以离散的形式存在。

2.根据信号的取值范围划分,可分为有限长信号和无限长信号。

有限长信号在一定时间段内有非零值,无限长信号在时间上无边界。

3.根据信号的周期性划分,可分为周期信号和非周期信号。

周期信号在一定时间内以固定的周期重复出现,非周期信号没有固定的周期性。

4.根据信号的能量和功率划分,可分为能量信号和功率信号。

能量信号能量有限且为有限幅,功率信号在无穷时间上的平均能量有限。

二、连续时间信号的表示与处理1.连续时间信号的表示可以使用函数形式:s(t),其中t为连续变量,s(t)为连续时间信号的幅值。

2.连续时间信号的处理包括时域分析和频域分析。

时域分析主要研究信号的幅值和时间关系,频域分析主要研究信号的频率和振幅关系。

3.连续时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、微分和积分等操作,以实现信号的滤波、平滑和增强等功能。

三、离散时间信号的表示与处理1.离散时间信号的表示可以使用序列形式:x[n],其中n为整数变量,x[n]为离散时间信号的幅值。

2.离散时间信号的处理包括时域分析和频域分析。

时域分析主要研究信号的幅值和时间关系,在离散时间上进行运算,频域分析主要研究信号的频率和振幅关系,在离散频率上进行运算。

3.离散时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、差分和累加等操作,以实现信号的滤波、平滑和增强等功能。

四、连续时间系统的特性与分析1.连续时间系统可以通过输入信号和输出信号之间的关系来描述。

输入信号经系统处理后,输出信号的幅值和时间关系可以通过系统的传递函数来表示。

2.系统的特性包括因果性、稳定性、线性性和时不变性等。

因果性要求系统的输出只能依赖于过去的输入,稳定性要求系统的输出有界,线性性要求系统满足叠加原理,时不变性要求系统的特性不随时间变化。

信号与系统复习题(答案全)

信号与系统复习题(答案全)

1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。

3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。

4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。

5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。

6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。

7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。

8、 f (t) 的周期为0。

1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。

试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。

信号与系统复习资料总结

信号与系统复习资料总结
-2 x ″(t) x ′(t) x(t) 4 -5 -3
f (t)




y(t)
例图
解 选图中右端积分器的输出为中间变量x(t),则其输入 为x′(t),左端积分器的输入为x″(t), 如图所示。写出左端加 法器的输出
x" (t ) = − x ' (t ) − 3x (t ) + f (t ) x" (t ) + 5 x ' (t ) + 3x (t ) = f (t )
卷积图形计算
• 卷积积分图解(反转) f (t)
1
f2(t)=3/4t 1.5
2 O 4 t
O
2
t
f1(τ) 2 O 4 τ –2 O
f2(– τ) 1.5 τ
卷积图形计算
• 卷积积分图解(平移)
t=0 f2(t – τ) 1.5 –2 O τ
t<0
f2(t – τ) 1.5 t–2 t O τ
所以u1(t) f(t) u (t)对f(t)的传输算子为
2( p + 1) H ( p) = 2 p + 2p + 2
它代表的实际含义是
u (t ) + 2u (t ) + 2u1 (t ) = 2 f ' (t ) + 2 f (t )
" 1 ' 1
卷积计算方法
• 卷积最重要的用法:系统零状态响应y(t)=f(t)*h(t) • 时域计算方法,又分为
信号与系统复习重点
信号自变量的线性变换: 已知f(t) 图 形,求f(at-b)
• 按“平移-翻转-展缩”顺序。 • (a)平移:b>0,则先将f(t)沿t轴右移b个单位 得到f(t-b)波形。若b<0, 则将f(t)沿t轴左移b 个单位得到f(t-b)波形

信号与系统知识点汇总总结

信号与系统知识点汇总总结

信号与系统知识点汇总总结一、信号与系统概念1. 信号的定义和分类2. 系统的定义和分类3. 时域和频域分析二、连续时间信号与系统1. 连续时间信号与系统的性质2. 连续时间信号的基本操作3. 连续时间系统的性质4. 连续时间系统的特性方程和驻点三、离散时间信号与系统1. 离散时间信号与系统的性质2. 离散时间信号的基本操作3. 离散时间系统的性质4. 离散时间系统的特性方程和驻点四、傅里叶分析1. 傅里叶级数2. 傅里叶变换3. 傅里叶变换的性质4. 傅里叶变换的逆变换五、拉普拉斯变换1. 拉普拉斯变换的定义2. 拉普拉斯变换定理3. 拉普拉斯变换的性质4. 拉普拉斯变换的逆变换六、Z变换1. Z变换的定义2. Z变换的性质3. Z变换与拉普拉斯变换的关系4. Z变换在离散时间系统分析中的应用七、系统的时域分析1. 系统的冲击响应2. 系统的单位脉冲响应3. 系统的阶跃响应4. 系统的时域性能指标八、系统的频域分析1. 系统的频率响应2. 系统的幅频特性3. 系统的相频特性4. 系统的频域性能指标九、信号与系统的稳定性1. 连续时间系统的稳定性2. 离散时间系统的稳定性3. 系统的相对稳定性十、线性时不变系统1. 线性系统的性质2. 时不变系统的性质3. 线性时不变系统的连续时间性能分析4. 线性时不变系统的离散时间性能分析十一、激励响应系统1. 激励响应系统的特性2. 激励响应系统的连续时间分析3. 激励响应系统的离散时间分析十二、卷积运算1. 连续时间信号的卷积运算2. 离散时间信号的卷积运算3. 卷积的性质和应用结语信号与系统是电子信息专业的重要基础课程,掌握好这门课程的知识对学生日后的学习和工作都有重要的帮助。

通过本文的知识点汇总总结,相信读者对信号与系统这门课程会有更深入的理解和掌握,希望对大家的学习有所帮助。

信号与系统复习资料

信号与系统复习资料

信号与系统复习资料一、信号与系统的基本概念信号在工程和科学领域中起着重要的作用,它们传输着信息和能量。

信号可以是连续的或离散的,并且可以是模拟的或数字的。

系统是用来处理信号的工具,它们可以是线性的或非线性的,并且可以是时不变的或时变的。

在信号与系统的学习中,我们需要了解信号的性质、系统的特性以及它们之间的相互关系。

二、连续时间信号与离散时间信号连续时间信号是在连续时间域上表示的信号,它们在每个时间点都有定义。

离散时间信号是在离散时间点上采样的信号,它们只在有限的时间点上有定义。

连续时间信号和离散时间信号可以通过采样和保持操作相互转换。

三、信号的分类根据信号的性质,信号可以被分类为周期信号和非周期信号。

周期信号具有重复的模式,并且在无穷远处也保持有界。

非周期信号则没有重复的模式,并且在无穷远处不保持有界。

另外,信号还可以是基带信号或带通信号,基带信号是直接由信息源产生的信号,而带通信号是通过调制技术从基带信号中得到的。

四、连续时间系统与离散时间系统连续时间系统是用连续时间输入信号产生连续时间输出信号的系统,离散时间系统是用离散时间输入信号产生离散时间输出信号的系统。

系统可以是线性的或非线性的。

线性系统遵循叠加原则,输出信号是输入信号的线性组合。

非线性系统则不遵循叠加原则。

五、信号的时域分析时域分析是通过观察信号在时间上的变化来研究信号的性质。

常用的时域分析技术包括时域图、自相关函数、互相关函数等。

时域图是信号在时间轴上的表示,可以直观地观察信号的振幅、频率和相位等特性。

自相关函数衡量信号与自身在不同时间点之间的相似度,互相关函数衡量两个信号之间的相似度。

六、信号的频域分析频域分析是通过观察信号在频率上的变化来分析信号的性质。

傅里叶变换是常用的频域分析工具,它将信号从时域转换到频域。

傅里叶变换可以将信号表示为一系列复指数函数的线性组合,其中每个复指数函数对应一个频率。

功率谱密度函数是衡量信号在不同频率上的能量分布情况和频率成分的重要工具。

(完整版)信号与系统复习试题(含答案)

(完整版)信号与系统复习试题(含答案)

电气《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是( d )15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( c )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( ) A )0(f B )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应 D .全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。

信号与系统总复习共97页

信号与系统总复习共97页
能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
信号与系统总复习

46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸傲东轩下,聊复得此生。

49、勤学如春起之苗,不见其增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。

信号与系统_复习知识总结

信号与系统_复习知识总结

重难点1。

信号的概念与分类按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号;周期信号和非周期信号;能量信号与功率信号;因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。

其周期为各个周期的最小公倍数.①连续正弦信号一定是周期信号。

②两连续周期信号之和不一定是周期信号。

周期信号是功率信号。

除了具有无限能量及无限功率的信号外,时限的或的非周期信号就是能量信号,当,的非周期信号是功率信号。

1.典型信号①指数信号:,②正弦信号:③复指数信号:,④抽样信号:奇异信号(1)单位阶跃信号是的跳变点。

(2)单位冲激信号(当时)单位冲激信号的性质:(1)取样性相乘性质:(2)是偶函数(3)比例性(4)微积分性质;(5)冲激偶;;带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。

正跳变对应着正冲激;负跳变对应着负冲激.重难点2.信号的时域运算①移位:,为常数当>0时,相当于波形在轴上左移;当〈0时, 相当于波形在轴上右移。

②反褶:的波形相当于将以=0为轴反褶。

③尺度变换:,为常数当〉1时,的波形时将的波形在时间轴上压缩为原来的;当0<〈1时,的波形在时间轴上扩展为原来的。

④微分运算:信号经微分运算后会突出其变化部分。

2.系统的分类根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统;重难点3。

系统的特性(1)线性性若同时满足叠加性与均匀性,则称满足线性性。

当激励为(、分别为常数时),系统的响应为.线性系统具有分解特性:零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数。

(2)时不变性 :对于时不变系统,当激励为时,响应为。

(3)因果性线性非时变系统具有微分特性、积分特性。

重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5。

信号与系统期末考试知识点梳理

信号与系统期末考试知识点梳理

信号与系统知识点综合CT:连续信号DT:离散信号第一章信号与系统1、功率信号与能量信号性质:1能量有限信号的平均功率必为0;2非0功率信号的能量无限;3存在信号既不是能量信号也不是功率信号;2、自变量变换1时移变换 xt→xt-t0,xn→xn-n2时间反转变换 xt→x-t,xn→x-n3尺度变换 xt→xkt3、CT、DT复指数信号周期频率CT所有的w对应唯一TDT为有理数4、单位脉冲、单位冲激、单位阶跃1DT信号关系2CT信号t=0时无定义关系3筛选性质aCT信号bDT信号5、系统性质(1)记忆系统 yn=yn-1+xn无记忆系统 yt=2xt(2)可逆系统 yt=2xt不可逆系统 yt=x2t(3)因果系统 yt=2xt非因果系统 yt=x-t(4)稳定系统 yn=xn+xn-1不稳定系统(5)线性系统零输入必定零输出齐次性 axt→ayt可加性 x1t+x2t→y1t+y2t(6)时不变系统 xt-to →yt-t第二章1、DT卷积和,CT卷积积分2、图解法(1)换元;2反转平移;3相乘;4求和第三章 CFS DFSCFS收敛条件:xt平方可积;Dirichlet条件;存在“吉伯斯现象”;DFS无收敛条件无吉伯斯现象1、三角函数表示第四、五章 CTFT DTFT1、1CTFTa非周期收敛条件充分非必要条件:xt平方可积;Dirichlet条件; 存在“吉伯斯现象”;2DTFTa非周期存在收敛条件不存在吉伯斯现象b周期2、对偶(1)CTFT、DFS 自身对偶CTFT的对偶性DFS的对偶性2DTFT与CFS 对偶3、时域、频域特性4、性质(1)时移与频移aCT信号bDT信号(2)时域微分差分和频域微分求和(a)CT信号(b)DT信号(3)时域扩展内插(a)CT信号(4)共轭性质(a)CT信号bDT信号5、系统稳定系统才存在Hjwyt=xthtYjw=XjwHjw第六章时频特性1、模、相位2、无失真条件3、理想滤波器非因果,是物理不可能实现的;4、非理想滤波器第七章采样1、理想采样2、Nyquist采样定理1xt带限于wmNyquist频率;2ws >2wmNyquist率;3、欠采样ws <=wm1高频→低频;2相位倒置;应用:1取样示波器;2频闪测速;4、CT信号用DT系统处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 典型题目 例7.1-1 例7.1-2 例7.1-3 例7.2-1 例7.2-2,例7.2-1 例7.2-2 例7.3-1, 例7.3-2 例7.3-3 例7.4-1 例7.4-2 例7.4-3
第八章 系统的状态变量分析
• 要求掌握的内容 1. 熟悉状态变量、状态方程等状态变量描述法中的基本概念 2. 掌握从一般的输入输出方程以及实际的电路中建立状态方程和输 出方程
信号与线性系统
总复习
西南大学 电子信息工程学院 李传东
内容回顾
• 1、信号分析
时域:信号分解为冲激信号的线性组合
连续信号 频域:信号分解为不同频率正弦信号的线性组合
复频域:信号分解为不同频率复指数的线性组合






时域:信号分解为脉冲序列的线性组合
离散信号 频域:不作要求
z域:信号分解为不同频率复指数的线性组合
贯穿课程的三个基本问题
• 基本信号及其响应 •以信号分解为核心思想,研究确知信号的分析方法 •以信号分析为基础,建立分析LTI系统的相应方法
第一章 信号与系统
• 要求掌握的内容 1. 掌握基本信号时域描述方法、特点及性质; 2. 掌握信号的基本运算; 3. 冲激函数与阶跃函数的定义和性质 4. 掌握系统的描述方法 要求掌握的内容 5. 熟悉线性时不变系统的基本特性;
• 典型题目 例1.4-2; 习题:1.1;1.2;1.6;1.7;1.10
第二章 连续系统的时域分析
• 要求掌握的内容 1、掌握单位阶跃函数和冲激函数的性质 2、掌握信号脉冲分解的方法 3、掌握阶跃与冲激响应的求解方法; 4. 了解卷积运算的方法 5、熟悉卷积的主要性质
• 典型题目 例2.2-1 例2.2-2 例2.2-3 例2.2-4例2.3-1 例2.3-2 例2.4-2 例2.4-4 作业:2.1,2.2,2.4,2.5 2.6 2.7, 2.15 2.16 2.17
• 典型题目 例6.1-1 例6.1-2 例6.1-3,例6.2-1 例6.2-2 例6.2-4 例6.2-5 例6.2-7, 例6.2-10 例6.2-11 例6.2-12 例6.3-3 例6.3-5
第七章 系统函数
• 要求掌握的内容 1. 熟悉系统函数零、极点分布的概念 2. 掌握极零点与系统的稳定性的关系 3. 掌握线性系统稳定性判定法则 4. 掌握线性系统稳定性判定法则 5. 熟悉线性系统的信号流图 6. 掌握用梅森公式求解系统函数的方法 7. 熟悉系统函数的实现方式
• 典型题目 例5.1-1例5.1-2 例5.1-3,例5.2-1例5.2-2 例5.2-3 例5.2-4 例5.2-5 例5.3-3 例5.3-4 例5.3-6,例5.4-1 例5.4-2
第六章 离散系统的Z域分析
• 要求掌握的内容 1、熟悉Z变换的定义、收敛域以及与拉普拉斯变换之间的关系 2. 熟悉基本序列的Z变换 3. 熟悉Z变换的主要性质; 4. 掌握用部分分式法求解逆z变换 5. 掌握离散系统Z域的分析方法 6. 了解Z域与S域的映射关系
2j
cos(t) 1 (e jt e jt )
2
核心内容
两大LTI系统:连续时间系统、离散时间系统 (连续时间信号)、(离散时间信号)
三类分析:时域分析、频域分析和变换域分析
三大变换:傅立叶变换、拉普拉斯变换和Z 变换
• 典型题目 例8.2-1 例8.2-2 例8.2-3 例8.2-4
(二) 典型信号
阶跃、冲激和冲激偶信号
冲激信号
t
( )d (t)
(t) d (t)
dt
冲激偶信号
定义

(t)dt 1
t
( )d (t)


数据流图
系 统
时域: yzs (k ) f (k ) * h(k )
系统响应 的求解
频域: 不作要求
Y 复频域: zs ( z) F ( z)H ( z)
两对关系式
欧拉
e jt cos(t) j sin( t)
公式
e jt cos(t) j sin( t)
• 典型题目 例4.3-1 例4.4-1 例4.4-2 例4.4-1,例4.5-1 例4.5-2 例4.5-3 例4.5-4,例4.6-1 例4.7-1
例4.7-2 例4.7-3,例4.8-1 例4.8-3 例4.8-4
第五章 连续系统的S域分析
• 要求掌握的内容 1、掌握拉氏变换定义和收敛域 2、掌握拉普拉斯变换的性质,并能熟练应用 3、熟悉求拉普拉斯逆变换的方法; 4. 掌握系统函数及其求解方法 5、熟悉卷积的主要性质
• 2、系统分析
系统的描述:线性常系数微分方程,方框图,S域模拟图,
连 续 系
数据流图
时域: yzs (t) f (t) * h(t)


系统响应 的求解
频域:
Yzs ( j ) F ( j )H ( j )
统 分
复频域: Yzs (s) F (s)H (s)

系统的描述:线性常系数差分方程,方框图,Z域模拟图,
第四章 傅里叶变换和系统的频域分析
• 要求掌握的内容 1.理解并掌握信号在正交函数集中的分解, 2. 掌握周期性连续信号的傅里叶级数展开 3. 掌握非周期性连续信号的傅里叶变换 4.掌握傅里叶变换的性质,并能应用于傅里叶变换的计算 5. 熟悉能量谱与功率谱,从能量或功率的角度研究信号在各个频率分量上的能量或功 率,以频谱的形式表达出 6. 掌握常用信号的频谱 7. 掌握用傅里叶变换进行信号分析的方法 8. 了解系统的激励与响应在频域中的关系 9. 掌握无失真传输的条件 10. 熟悉时域取样定理
第三章 离散系统的时域分析
• 要求掌握的内容 1. 了解离散信号与系统的基本概念 2. 掌握零输入响应的求解方法 3. 掌握离散信号单位序列响应和阶跃响应的求解方法 4. 掌握利用性质求解卷积和的方法
• 典型题目 例3.1-1 例3.1-2 例3.1-3 例3.1-4 例3.1-5,例3.2-1 例3.2-2 例3.2-3 例3.3-1 例3.3-2 例3.3-3 例3.3-4
相关文档
最新文档