《概率论与数理统计》习题三答案详解

合集下载

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

《概率论与数理统计》习题三答案解析

《概率论与数理统计》习题三答案解析

《概率论与数理统计》习题及答案习题二1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以丫表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和丫的联合分布律.【解】X和丫的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以丫表示取到红球的只数.求X和丫的联合分布律.3.设二维随机变量(X, Y)的联合分布函数为F(x, y)Jsinxsiny,。

沁兰才gy 写L0, 其他.求二维随机变量(X, Y)在长方形域{o<x< -,n y<内的概率.I 4 6 3., n n n【解】如图P{0 cx < - —c Y<—}公式(3.2)4 6 3F(n,n)-F(n n-F(o, n+F(o, n4 3 4 6 3 6n n n — n厂n厂n=sin — 0n — —sin — sin — -sin0sin — + sin 比sin — 4 3 4" 6 3 6出(屁1). 4[k(6 - X - y),0 c X c 2, 2 c y c 4, (x ,y )=( 0,其他.确定常数 求 P{X <1 , Y v 3}; 求 P{X<1.5}; 求 P{X+Y W 4}. 【解】(1)由性质有说明:也可先求出密度函数, 4.设随机变量 求:(1)(2) (3) 【解】(1)(X , 丫)的分布密度f (X , y )=0,,XA0,yA0,其他.常数A ;随机变量(X , 丫)的分布函数; P{0 <X<1 , 0<丫<2}.-be -be -be -be由 L LcfXyMxdy^ .0 Ae严d y)dxdy=4=112 得(2) A=12由定义,有y XF (x, y) = LcL f (u,v)dudv」「[任4和dudv 10,"(1-e 」X )(1-e"4y )y A 0,XA 0,0,其他⑶ P{0 <X <1,0 < 丫 <2}= P{0 cX <1,0cY <2}1「0[12e 5.设随机变量(仲枷)dxdy =(1-e 冷(1-e*“ 0.9499.Y ) 的概率密度为(1)(2) (3) (4) k ;-be -be2 4f f f(x,y)dxdy = r r k(6-x-y)dydx=8k=1,・0・21 R = -81 3-UU f (x ,y)d y d x1 313=0 L8k (6_x-y )dydx=8⑶ P{X v 1.5} = JJ f (x, y)dxdy 如图 a JJ f (x, y)dxdyx £5D 11.541 27=f dx f -(6 — x- y)dy =——. 0 28、 ” y 32⑷ P{X + Y <4} = ff f (x,y)dxdy 如图b JJ f (x, y)dxdyX -Y <D224_x12 =[dx f -(6 - X - y)dy =-. 0」2 8 3y,1.5 2 fa)求:(1) X 与丫的联合分布密度;(2) P{Y^X}.题6图【解】(1)因X 在(0, 0.2 )上服从均匀分布,所以X 的密度函数为I 1I ——,0ex <0.2, fx (X )= \ 0.2 0,其他.(2) P{X <1,Yc3} 6.设X 和丫是两个相互独立的随机变量,0.2)上服从均匀分布,丫的密度函数为 yf Y ( y )=y>o,其他.题5图X 在(0,y=yf(x,y X Y 独立f x xCf Y y()(2) P(Y <X) = ff f (x,y)dxdy 如图仃25e'y dxdyy < D0.2 x50.2 5=f 0 dx 0 25e ydy = J o (-5e +5)dx-1=e 止 0.3679.7.设二维随机变量(X ,Y )的联合分布函数为「(1—e"x )(1 —e 'y ), XA 0, y 》。

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222⨯⨯222⨯⨯=2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324C 35= 324C 35= 3224C 35= 113224C C 12C 35=1324C 2C 35= 213224C C 6C 35= 2324C 3C 35=3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin4346362(31).4=--+=-题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X,Y)的分布密度f(x,y)=⎩⎨⎧>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=⎰⎰(34)340012e d d(1e)(1e)0,0,0,0,y y u vx yu v y x-+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499.x yP X Yx y-+--=<≤<≤==--≈⎰⎰5.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<<--.,0,42,2),6(其他yxyxk(1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.【解】(1)由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-5500-1d 25e d (5e 5)d =e 0.3679.xyx x y x -==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0, .y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03(2) X 与Y 是否相互独立? 2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXYXY(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z zP z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V的分布律为V=max(X,Y) 0 1 2 3 4 5P 0 0.04 0.16 0.28 0.24 0.28(3) {}{min(,)}P U i P X Y i===351{,}{,}{,}{,}k i k iP X i Y i P X i Y iP X i Y k P X k Y i==+==≥+>====+==∑∑0,1,2,3,i=于是U=min(X,Y) 0 1 2 3P 0.28 0.30 0.25 0.17W=X+Y0 1 2 3 4 5 6 7 8P0 0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.05(1)求P{Y>0|Y>X};(2)设M=max{X,Y},求P{M>0}.题20图【解】因(X,Y)的联合概率密度为22221,,(,)π0,.x y Rf x y R⎧+≤⎪=⎨⎪⎩其他(1){0,}{0|}{}P Y Y XP Y Y XP Y X>>>>=>(,)d(,)dyy xy xf x yf x yσσ>>>=⎰⎰⎰⎰π2π/405π42π/401d dπ1d dπRRr rRr rRθθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和y 1 y 2 y 3P {X =x i }=p ix 1 x 21/81/8P {Y =y j }=p j 1/61【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= YX而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.习题四1.设随机变量X 的分布律为求E (X ),E (X ),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为X 0 1 2 3 4 5P5905100C 0.583C = 1410905100C C 0.340C = 2310905100C C 0.070C = 3210905100C C 0.007C = 4110905100C C 0C = 5105100C 0C =故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量X -1 0 1Pp 1 p 2 p 3且已知E 123【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-++=+=……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】1221()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因1001(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他 求E (XY ).【解】方法一:先求X 与Y 的均值12()2d ,3E X x x x ==⎰ 5(5)5()ed 5e d e d 51 6.z y y zz E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他 于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X -3Y 2). 【解】22-200()()d 2e d [e ]e d x x xX X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d e d 12k x c f x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e dk x E X xf x x x k x x +∞+∞--∞==⎰⎰222202e d 2k x kx x k+∞-==⎰(3) 22222221()()d()2e .kxE X x f x x x k x k +∞+∞--∞==⎰⎰故 222221π4π()()[()].24D X E X E X k k k⎛⎫-=-=-= ⎪ ⎪⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下: X 0 1 2 3 P0.7500.2040.0410.005由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元 /41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ; (3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑. (3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )= -1,计算:Cov (3X -2Y +1,X +4Y -3). 【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰同理E (Y )=0. 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x 显然()()(,).X Y f x f y f x y ≠故X 和Y 不是相互独立的.17.验证X 和【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 的分布律,其分布律如下表X -1 0 1P382838Y -11P382838XY -11P28 48 28由期望定义易得E (X )=E (Y )=E (XY )=0. 从而E (XY )=E (X )·E (Y ),再由相关系数性质知ρXY =0, 即X 与Y 的相关系数为0,从而X 和Y 是不相关的. 又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=- 从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY . 【解】如图,S D =12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他. ()(,)d d DE X xf x y x y =⎰⎰11001d 2d 3xx x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y ==而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而112)()XY D Y ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4(π4)π8π164.πππ8π32π8π32)()2162XY D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+- 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故12122)()Z Z D Z ρ===21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy -Schwarz )不等式. 【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=- 2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5. 依题意Y =min(X ,2).对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为 P {X ≤x }=1 -e -λx ,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1 -e -y/5.。

陈国华等主编概率论与数理统计第三章习题解答

陈国华等主编概率论与数理统计第三章习题解答

⎧1 PX ( x) = ⎨ ⎩0
0 < x <1 其他
⎧e− y PY ( x) = ⎨ ⎩0
y>0 其他
由 X,Y 的独立性知 X 与 Y 的联合密度函数为
⎧e − y P ( x, y ) = PX ( x) PY ( y ) = ⎨ ⎩0
(2) P ( y ≤ x ) =
0 < x < 1, y > 0 其他
所以 U 的分布列为 U P 同理 V 的分布列为 V 0 1 2 1 0.12 2 0.37 3 0.51
P
0.40
0.44
0.16
2. 设随时机变量 X 和 Y 的分布列分别为 X -1 0 1 P Y 1/4 0 1/2 1 1/4
1/2 1/2 P 已知 P(XY=0)=1,试求 Z=max(X,Y)的分布列. 答案:解:记(x,y)的联合也分布列及其边际分布为 Y X -1 0 1 P(Y=j) 0 1 P(X=i)
1 ⎧1 2 ⎪ 1< x < e ,0 < y < P( X , Y ) = ⎨ 2 x ⎪ 其他 ⎩0
由此得,当 1 < x < e 时
2
PX ( x) = ∫
+∞
−∞
1 1 1 f ( x, y )dy = ∫ x dy = 0 2 2x
所以 X 的边际密度函数为
⎧1 1 < x < e2 ⎪ PX ( x) = ⎨ 2 x ⎪ 其他 ⎩0
(2)采用不放回抽样时(x,y)的联合分布为 Y X 0 1 联合分布律. 答案:解:以 x 表示取到的红球只数,y 表示取到的白球只数,则任取四只球的可能情况如 下 红 白 黑 4 0 0 3 1 0 3 0 1 2 1 1 2 0 2 1 1 2 1 0 3 0 1 3 0 1\5 1\5 3\5 0 1

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

《概率论与数理统计》习题及答案第三章

《概率论与数理统计》习题及答案第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。

解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有kr kb aC C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+,此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。

则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

概率论与数理统计(经管类)第三章课后习题答案

概率论与数理统计(经管类)第三章课后习题答案
P Z 40 P X 20, Y 20 20 6
P Z 30 P X 10, Y 20 20 3
P Z 20 P X 20, Y 0 20
P Z 10 P X 10, Y 0 P X 20, Y
P Z 0 P X 10, Y 则 Z=X‐Y 的分布律为
2 10 20
Z=X‐Y ‐40 ‐30 ‐20 ‐10 0
4. 设随机变量 X,Y 相互独立,且服从[0,1]上的均匀分布,求 X+Y 的概率密度. 解: 因 X,Y 都服从[0,1]上的均匀分布,且相互独立 故fX x fY y 1, f x, y fX x fY y
设 Z=X+Y
当0 z 1时
Z ZX
FZ
f x, y dydx
Z ZX
1dydx
Z
z xdx
;
P X 1, Y 0 P X 1 P Y 0
;
P X 1, Y 1 P X 1 P Y 1
;
(X,Y)的分布律与边缘分布律为
Y
X
0
1

16
4
20
0
25 25 25
4
1
1
1
25 25
5

20 25
1 5
(2) 不放回抽样的情况:
P X 0, Y 0 P X 0 P Y 0
;
P X 0, Y 1 P X 0 P Y 1
0, 其他.
0, 其他.
关于 Y 的边缘密度为
fY y
1
√2 24xydx , 0 y
0, 其他.
1 , 6x, 0 √3 =
y
1,
√3
0, 其他.
注意积分限为 Y 的值域,后面却 要写 X 的值域哦~

概率论与数理统计03-第三章作业及答案

概率论与数理统计03-第三章作业及答案

概率论与数理统计03-第三章作业及答案习题3-1⽽且12{0}1P X X ==. 求1和2的联合分布律.解由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律(2) 注意到12{0,0}0P X X ===, ⽽121{0}{0}04P X P X =?==≠, 所以X 1和X 2不独⽴.2. 设随机变量(X ,Y )的概率密度为(,)(6),02,24,0,.f x y k x y x y =--<<<其它求: (1) 常数k ; (2) {1,3}P X Y <<; (3) { 1.5}P X <; (4) {4}P X Y +≤.解 (1) 由(,)d d 1f x y x y +∞+∞-∞, 得2424222204211d (6)d (6)d (10)82y k x y x k y x x y k y y k =--=--=-= , 所以 18k =. (2) 31201,31{1,3}d (6)d 8(,)d d x y P X Y y x y x f x y x y <<<<==--??1322011(6)d 82y x x y =--321113()d 828y y =-=?. (3) 1.51.5 { 1.5}d (,)d ()d X P X x f x y y f x x +∞-∞-∞-∞<==??4 1.521d (6)d 8y x y x --=22011(6)d 82y x x y =--?421633()d 882y y =-? 2732=. (4) 作直线4x y +=, 并记此直线下⽅区域与(,)0f x y ≠的矩形区域(0,2)(0,4)?的交集为G . 即:02,0G x y <<<≤4x -.见图3-8. 因此{P X Y +≤4}{(,)}P X Y G =∈(,)d d Gf x y x y =??44201d (6)d 8x y x y x -=--??4422011(6)d 82xy x x y -=--?42211[(6)(4)(4)]d 82y y y y =----? 42211[2(4)(4)]d 82y y y =-+-? 423211(4)(4)86y y =----?23=. 图3-8 第4题积分区域3. ⼆维随机变量(,)X Y 的概率密度为2(,),1,01,0,f x y kxy x y x =≤≤≤≤其它.试确定k , 并求2{(,)},:,01P X Y G G x y x x ∈≤≤≤≤. 解由2111401(,)d d d (1)d 26xk k f x y xdy x kxy y x x x +∞+∞-∞-∞====-??,解得6=k .因⽽ 2112401{(,)}d 6d 3()d 4x xP X Y G x xy y x x x x ∈==-=. 4. 设⼆维随机变量(X , Y )概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -=??≤≤≤≤其它求关于X 和Y 边缘概率密度.解 (,)X Y 的概率密度(,)f x y 在区域:0G ≤x ≤1,0≤y ≤x 外取零值.因⽽, 有24.8(2)d ,01,()(,)d 0,2.4(2),01,0,x X y x y x f x f x y y x x x +∞-∞-<<==-<<=其它.其它. 124.8(2)d ,01,()(,)d 0,2.4(34),01,0,yY y x x y f y f x y x y y y y +∞-∞-<<==-+<<=其它.其它.5. 假设随机变量U 在区间[-2, 2]上服从均匀分布, 随机变量 1,1,1,1,U X U --=>-??若≤若 1,1,1, 1.U Y U -=>??若≤若试求:(1) X 和Y 的联合概率分布;(2){P X Y +≤1}.解 (1) 见本章第三节三(4).(2){P X Y +≤1}1{1}P X Y =-+>1{1,1}P X Y =-==13144=-=. 习题3-21. 设(X , Y )的分布律为求: (1) 在条件X =2下Y 的条件分布律;(2) {22}P X Y ≥≤.解 (1) 由于6.02.01.003.0}2{=+++==X P ,所以在条件X =2下Y 的条件分布律为216.03.0}2{}1,2{}2|1{========X P Y X P X Y P ,06.00}2{}2,2{}2|2{========X P Y X P X Y P ,616.01.0}2{}3,2{}2|3{========X P Y X P X Y P ,316.02.0}2{}4,2{}2|4{========X P Y X P X Y P ,{P Y ≤2}{1}{2}P Y P Y ==+==0.10.3000.20.6++++=. ⽽{2,2}{2,1}{2,2}{3,1}{3,2}P X Y P X Y P X Y P X Y P X Y ===+==+==+==≥≤0.3000.20.5=+++=.因此{2,2}{22}{2}P X Y P X Y P Y =≥≤≤≥≤0.550.66==. 2. 设⼆维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<其它求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}.22P Y X ≤≤ 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===?;当x ≤0时或x ≥1时, ()0X f x =.故 2,01,()0,其它.X x x f x <<=??当02()(,)d d 12y Y y f y f x y x x +∞-∞===-;当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=其它 (2) 当z ≤0时,()0Z F z =; 当z ≥2时,1)(=z F Z ;当0z f x y x y -=≤2x12202-2d 1d d 1d zxz x zx y x y =?+24z z =-.故 1,02,()20,.()其它Z zzz f z F z -<<'== (3) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===. 3. 设G 是由直线y =x , y =3,x =1所围成的三⾓形区域, ⼆维随机变量(,)X Y 在G 上服从⼆维均匀分布.求: (1) (X , Y )的联合概率密度;(2) {1}P Y X -≤;(3) 关于X 的边缘概率密度.解 (1)由于三⾓形区域G 的⾯积等于2, 所以(,)X Y 的概率密度为∈=.),(,0,),(,21),(G y x G y x y x f (2)记区域x y y x D -=|),{(≤}1与G 的交集为0G ,则{1}P Y X -≤0011113d d (2)22224G G x y S ===-=??. 其中0G S 为G 0的⾯积.(3) X 的边缘概率密度()(,)d X f x f x y y +∞-∞=?. 所以,当]3,1[∈x 时, 311()d (3)22X xf x y x ==-?. 当1x 时, 0)(=x f X .因此∈-=.,0],3,1[),1(21)(其它x x x f X习题3-31. 设X 与Y 相互独⽴, 且分布律分别为下表:求⼆维随机变量(,)X Y 的分布律.解由于X 与Y 相互独⽴, 所以有}{}{},{j i j i y Y P x X P y Y x X P =?====,6,5,2,0;0,21,1=--=j i .因此可得⼆维随机变量(,)X Y 的联合分布律2. 设(X , Y )的分布律如下表:问,αβ为何值时X 与Y 相互独⽴? 解由于边缘分布满⾜23111,1i j i j p p ??====∑∑, ⼜X , Y 相互独⽴的等价条件为p ij = p i . p .j (i =1,2; j =1,2,3).故可得⽅程组 21,3111().939αβα++==?+解得29α=,19β=.经检验, 当29α=,19β=时, 对于所有的i =1,2; j =1,2,3均有p ij = p i .p .j 成⽴. 因此当29α=,19β=时, X 与Y 相互独⽴..3. 设随机变量X 与Y 的概率密度为()e (,)0,.,01,0,x y b f x y x y -+=?<<>?其它 (1) 试确定常数b .(2) 求边缘概率密度()X f x , ()Y f y . (3) 问X 与Y 是否相互独⽴?解 (1) 由11()101(,)d d e d d e d e d (1e )x y y x f x y x y b y x b y x b +∞+∞+∞+∞-+----∞-∞====-?,得 111e b -=-.(2) ()(,)d X f x f x y y ∞-∞=?1e ,01,1e 0,xx --<<=-??其它.()(,)d Y f y f x y x ∞-∞=?e ,0,0,y y ->=其它.(3) 由于(,)()()X Y f x y f x f y =?,所以X 与Y 相互独⽴.4. 设X 和Y 是两个相互独⽴的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为21e ,0,()20Y yy f y y ->=,≤0.(1) 求X 和Y 的联合概率密度.(2) 设关于a 的⼆次⽅程为220a Xa Y ++=, 试求a 有实根的概率.解 (1) 由题设知X 和Y 的概率密度分别为1,01,()0,X x f x <<=??其它, 21e ,0,()20,.yY y f y ->=其它因X 和Y 相互独⽴, 故(X , Y )的联合概率密度为21e ,01,(,)()()20,.yX Y x y f x y f x f y -<<>==其它 (2) ⽅程有实根的充要条件是判别式⼤于等于零. 即244X Y ?=-≥20X ?≥Y .因此事件{⽅程有实根}2{X =≥}Y .下⾯计算2211221(,)d d e d (1e)d 2yxx Df x y xdy x y x --===-2121ed 12[(1)(0)]0.1445xx πΦΦ-=-=--≈?.图3-3 第6题积分区域习题3-41. 设⼆维随机变量(X ,Y )的概率分布为YX 0 10 0.4 a 1 b 0.1若随机事件{X =0}与{X +Y =1}相互独⽴, 求常数a , b .解⾸先, 由题设知0.40.11a b +++=. 由此得0.5a b +=. 此外,{0}0.4P X a ==+,{1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=, {0,1}{0,1}P X X Y P X Y a =+=====. 根据题意有{0,1}{0}{1}P X X Y P X P X Y =+===+=,即(0.4)0.5a a =+?. 解得0.4,0.1a b ==.2. 设两个相互独⽴的随机变量X ,Y 的分布律分别为求随机变量Z = X + Y 的分布律.解随机变量Z = X + Y 的可能取值为7,5,3.Z 的分布律为18.06.0.03}2,1{}3{=?=====Y X P Z P , {5}{1,4}{3,2}0.30.4070.60.54P Z P X Y P X Y ====+===?+?=,28.04.07.0}4,3{}7{=?=====Y X P Z P ,或写为3. 设X 和Y 是两个相互独⽴的随机变量, 且X 服从正态分布N (µ, σ2 ), Y 服从均匀分布U (-a , a )( a >0), 试求随机变量和Z =X +Y 的概率密度.解已知X 和Y 的概率密度分别为22()2()x X f x µσ--=,),(+∞-∞∈x ;-?-∈=).,(,0),,(,21)(a a y a a y ay f Y .由于X 和Y 相互独⽴, 所以22()21()()()d d 2z y a Z X Y f z f z y f y y y a µσ---+∞=1[()()]2z µa z µa ΦΦa σσ-+---. 4. 设随机变量X 和Y 的联合分布是正⽅形G={(x,y )|1≤x ≤3, 1≤y ≤3}上的均匀分布, 试求随机变量U=|X -Y|的概率密度f (u ).解由题设知, X 和Y 的联合概率密度为111,3,3,(,)40,.x y f x y =≤≤≤≤其它记()F u 为U 的分布函数, 参见图3-7, 则有当u ≤0时,(){||F u P X Y =-≤u }=0; 当u ≥2时,()1F u =;当0< u <2时, 图3-7 第8题积分区域||(){}(,)d d x y uF u P U u f x y x y -==≤≤21[42(2)]412u =-?- 211(2)4u =--.故随机变量||U X Y =-的概率密度为1(2),02,()20,u u p u -<<=其它..总习题三1. 设随机变量(X , Y )的概率密度为<<<=.,0,10,||,1),(其它x x y y x f 求条件概率密度)|()|(||y x f x y f Y X X Y 和.解⾸先(,)其它X x x f x f x y dy +∞-∞<<==??1,01,()1,10,0,(,)≤其它.Y y y f y y y f x y dx +∞-∞-<<==+-图3-9第1题积分区域当01y <<时, |1,1,1(|)0,X Y y x y f x y x <<-=??取其它值.当1y -<≤0时, |1,1,1(|)0,X Y y x y f x y x -<<+=??取其它值.当10<,||,(|)20,Y X y x f y x x y <=取其它值.2. 设随机变量X 与Y 相互独⽴, 下表列出⼆维随机变量(,)X Y 的分布律及关于X 和关于Y 的边缘分布律中部分数值, 试将其余数值填⼊表中空⽩处 .解⾸先, 由于11121{}{,}{,}P Y y P X x Y y P X x Y y ====+==, 所以有24P X x Y y P Y y P X x Y y ====-===-=.在此基础上利⽤X 和Y 的独⽴性, 有11111{,}124{}1{}46P X x Y y P X x P Y y =======.于是 2113{}1{}144P X x P X x ==-==-=.再次, 利⽤X 和Y 的独⽴性, 有12211{,}18{}1{}24P X x Y y P Y y P X x =======. 于是 312111{}1{}{}1623P Y y P Y y P Y y ==-=-==--=.最后, 利⽤X 和Y 的独⽴性, 有2222313{,}{}{}428P X x Y y P X x P Y y ======?=; 2323311{,}{}{}434P X x Y y P X x P Y y ======?=; 1313111{,}{}{}43123.(34)e (,)0,.,0,0,x y k f x y x y -+=?>>??其它(1) 求常数k ;(2) 求(X ,Y )的分布函数;(3) 计算{01,02}P X Y <<≤≤; (4) 计算(),x f x ()y f y ;(5) 问随机变量X 与Y 是否相互独⽴?解 (1)由3401(,)d d e d e d 12xy kf x y x y k x y +∞+∞+∞+∞---∞-∞===,可得12=k .(2) (X ,Y )的分布函数(,)(,)d d x y F x y f u v x y -∞-∞=??.当x ≤0或y ≤0时,有 0),(=y x F ;当,0>>y x 时,34340(,)12e d e d (1e )(1e )x即 34(1e )(1e ),0,0,(,)0,.其它x y x y F x y --?-->>=??(3) {01,02}P X Y <<≤≤38(1,2)(0,0)(1e )(1e )F F --=-=--.(4) (34)012ed ,0,()(,)d 0,其它.x y X y x f x f x y y +∞-++∞-∞>==所以 33e ,0,()0,其它.x X x f x -?>=??类似地, 有44e ,0,()0,其它.y Y y f y -?>=?显然2),(),()(),(R y x y f x f y x f Y X ∈??=, 故X 与Y 相互独⽴. 4.解已知),(Y X 的分布律为注意到41260}1{}1{=++====Y P X P , ⽽0}1,1{===Y X P ,可见P{X=1, Y=1}≠P{X=1}P{Y=1}. 因此X与Y不相互独⽴.(2) Z X Y =+的可能取值为3, 4, 5, 6, 且316161}1,2{}2,1{}3{=+===+====Y X P Y X P Z P , }1,3{}2,2{}3,1{}4{==+==+====Y X P Y X P Y X P Z P 3 112161121=++=, 3(3) V =21}2,2{}1,2{}2,1{}2{===+==+====Y X P Y X P Y X P V P , 2 1}2{1}3{==-==V P V P . 即max(,)V X Y =的分布律为(4) min{U =}3,1{}2,1{}1{==+====Y X P Y X P U P}1,2{}1,3{==+==+Y X P Y X P 21=, 21}1{1}2{==-==U P U P .即min{,}U X Y =的分布律为(5) W U =+31}1,2{}2,1{}2,1{}3{===+=======Y X P Y X P V U P W P ,。

概率论与数理统计习题三及答案

概率论与数理统计习题三及答案
2
当 x 0, y 1 时, F x, y 1 dx0
0 2
2 x 1
4dy 1
(2)X 的边缘密度函数为
f X x f x, y dy

3
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案
1 x0 = 2 0, 其他 Y 的边缘密度函数为
=
0
2 x 1
4dy,
1 42 x 1, x 0 2 0, 其他
f Y y f x, y dx

=
y 1 4dx, 0 y 1
2
0
0,
其他
=
21 y , 0 y 1 0,
其他
1 1 1 1 4 1 1 1 1 (3)f , 4 , 而 f X 2, f Y , 易见 f , f X f Y , 4 3 4 3 3 4 3 4 3
或写成 X\Y 1 2 3 1 0 2 3
1 6 1 12
1 6 1 6 1 6
1 12 1 6
0
P X Y P X 1, Y 1 P X 2, Y 2 P X 3, Y 3
1
1 。 6
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案

1 x 2 x 1 x 0, y 2 x 1 时, F x, y 1 dx0 4dy 4 x 2 4 x 1 ; 2 2
y 0
当 x 0,0 y 1 时, F x, y 0 dy y 1 4dx 2 y y 2 ;

概率论与数理统计(刘建亚)习题解答——第三章

概率论与数理统计(刘建亚)习题解答——第三章

概率论与数理统计(刘建亚)习题解答——第三章3-1 解:1283)3,1()3,2()5,1()5,2()53,21(=+--=≤<≤<F F F F Y X P3-2 解:3-3 解:3-4 解:X 的取值:3,4; Y 的取值:1,2。

所以)2,1(),4(45243===-=-j C C C j Y j X P jj3-5 解: (1) 由归一性112),(04030)43(====⎰⎰⎰⎰⎰⎰+∞-+∞-+∞+∞+-+∞∞-+∞∞-Ady e dx eA dy dx Aedy dx y x f y xy x ∴ A =1(2) 当 0,0>>y x 时 )1)(1(12),(),(430)43(y x xyv u xye e dv du e dv du v uf y x F --+-∞-∞---===⎰⎰⎰⎰当 y x ,为其它时,0),(=y x F∴ ⎩⎨⎧>>--=--其它0,0)1)(1(),(43y x e e y x F y x(3) )1)(1(12)20,10(831020)43(--+---==≤<≤<⎰⎰e e dy dx e Y X P y x3-6解:由分布函数的性质)2)(2arctan ()3arctan )(2arctan (lim ),(0)3arctan )(2()3arctan )(2arctan (lim ),(1)2)(2()3arctan )(2arctan (lim ),(=++=++=∞-=+-=++=-∞=++=++=∞++∞-∞→-∞→+∞→+∞→ππππC x B A y C x B A x F yC B A y C x B A y F C B A y C x B A F y x y x三式联立解得 2,2,12πππ===C B A)9)(4(61)3(131)2(1211),(),(2222222y x y x y x y x F y x f ++⋅=+⋅+⋅=∂∂∂=ππ3-7 解:(1) 当 10<<x 时x x dy xy x dy y x f x f X 322)3(),()(222+=+==⎰⎰+∞∞- 当 10≥≤x x 或时,∵0),(=y x f ∴0)(=x f X⎪⎩⎪⎨⎧<<+=其它10322)(2x xx x f X(2) 当20<<y 时,3161)3(),()(12+=+==⎰⎰+∞∞-y dx xy x dx y x f y f Y 当y 为其它时,∵0),(=y x f ∴0)(=y f Y⎪⎩⎪⎨⎧<<+=其它0203161)(y y y f Y3-8 解:所包含的面积为 61)(112102=-=⎰⎰⎰dy x x dy dx S xxD ∴ ⎩⎨⎧∈=其它),(6),(D y x y x f(1)当10≤≤x 时,)(66),()(22x x dy dy y x f x f xxX -===⎰⎰+∞∞-当 x 为其它时,0)(=x f X∴⎩⎨⎧≤≤-=其它10)(6)(2x x x x f X(2)当10≤≤y 时,)(66),()(y y dx dx y x f y f yyY -===⎰⎰+∞∞-当y 为其它值时,0)(=y f Y∴⎪⎩⎪⎨⎧≤≤-=其它10)(6)(y y y y f Y3-9 解:(1) 当10<<x 时,x dy dy y x f x f xxX 21),()(===⎰⎰-+∞∞-当 x 为其它时,0)(=x f X∴⎩⎨⎧<<=其它102)(x xx f X(2) 当1<<x y 时,y dx dx y x f y f yY -===⎰⎰+∞∞-11),()(1当y 为其它值时,0)(=y f Y∴⎩⎨⎧<<-=其它11)(x y yy f Y(3) ⎪⎩⎪⎨⎧<<-==其它111)(),()|(|x y y y f y x f y x f Y Y X⎪⎩⎪⎨⎧<<==其它01021)(),()|(|x xx f y x f x y f X X Y3-10 解:由归一性616),(1012=∴===⎰⎰⎰⎰+∞∞-+∞∞-A Ady dx Axy dy dx y x f 当10<<x 时,x dy xy dy y x f x f X 26),()(102===⎰⎰+∞∞-当 x 为其它时,0)(=x f X∴⎩⎨⎧<<=其它102)(x xx f X同理,⎩⎨⎧<<=其它0103)(2y y y f Y⎩⎨⎧<<=⋅其它1,06)()(2y x xy y f x f Y X即 ),()()(y x f y f x f Y X =⋅,∴ X ,Y 相互独立。

《概率论与数理统计》习题及答案 第三章

《概率论与数理统计》习题及答案  第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。

解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有k r kb a C C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+, 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。

则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A AA ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,20 1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

概率论与数理统计习题解答(第3章)

概率论与数理统计习题解答(第3章)

习 题 三 (A )三、解答题1. 设口袋中有3个球,它们上面依次标有数字1,1,2,现从口袋中无放回地连续摸出两个球,以X ,Y 分别表示第一次与第二次摸出的球上标有的数字,求(X ,Y )的分布律. 解:(X ,Y )取到的所有可能值为(1,1),(1,2),(2,1)由乘法公式: P {X =1,Y =1}=P {X =1}P {Y =1|X =1}=2/3⨯1/2=/3, P {X =1,Y =2}= P {X =1}P {Y =2|X =1}=2/3⨯1/2=1/3, P {X =2,Y =1}= P {X =2}P {Y =1|X =2}=1/3⨯2/2=1/3. (X ,Y )的分布律用表格表示如下:2.设盒中装有8支圆珠笔芯,其中3支是蓝的,3支是绿的,2支是红的,现从中随机抽取2支,以X ,Y 分别表示抽取的蓝色与红色笔芯数,试求: (1) X 和Y 的联合分布律;(2) P {X ,Y } ∈ A },其中A = {(x ,y )| x + y ≤ 1}. 解:X ,Y 所有可能取到的值是0, 1, 2(1) P {X =i , Y =j }=P {X =i }P {Y =j |X =i }=282223C C C C j i j i --, i , j =0,1,2, i +j ≤2 或者用表格表示如下:(2)P{(X ,Y )∈A }=P {X +Y ≤1}=P {X =0, Y =0}+P {X =1,Y =0}+P {X =0,Y =1}=3/28+9/28+6/28=9/14.3.设事件B A 、满足,21)|(,21)|(,41)(===A B P B A P A P 记X ,Y 分别为一次试验中A ,B 发生的次数,即⎩⎨⎧=不发生,发生A A X 0,1,⎩⎨⎧=不发生,发生,B B Y 0 1,求:二维随机变量(X ,Y )的分布律.解:因为P (A )=1/4,,21)|(=A B P 由P (B |A )=2/14/1)()()(==AB P A P AB P 得P (AB )=1/8, 由P (A |B )=2/1)()(=B P AB P 得P(B)=1/4.(X ,Y )取到的所有可能数对为(0,0),(1,0),(0,1),(1,1),则 P {X =0,Y =0}=)(1)()(B A P B A P B A P -===1-P (A )-P (B )+P (AB )=5/8, P {X =0,Y =1}=)(B A P =P (B -A )=P (B )-P (AB )=1/8, P {X =1,Y =0}=)(B A P =P (A -B )=P (A )-P (AB )=1/8, P {X =1,Y =1}=P (AB )=1/8.4.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=.,0,10,10 ,),(其它y x Axy y x f 试求: (1) 常数A (2) P {X = Y } (3) P {X < Y }(4) (X ,Y )的分布函数. 解:(1)由归一性知:1=, 故A=4(2) P {X =Y }=0, (3) P {X <Y }=.(4)F (x ,y )=即F (x ,y )=5.设二维随机变量),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<+=其它0,20,10 ,3),(2y x xyx y x f求P {X + Y ≥ 1}. 解:P{X+Y ≥1}=7265)3(),(102121=+=⎰⎰⎰⎰-≥+dydx xy x dxdy y x f xy x 6.将一枚硬币掷3次,以X 表示前2次中出现正面的次数,以Y 表示3次中出现正面的次数,求X ,Y 的联合分布律及(X ,Y )的边缘分布律.解:X 的所有可能取值为0,1,2,Y 的所有可能取值为0,1,2,3. P {X =0,Y =0}=0.53=0.125; P {X =0,Y =1}=0.53=0.125P {X =1,Y =1}=25.05.05.0212=⨯C , P {X =1,Y =2}=25.05.05.0212=⨯C P {X =2,Y =2}=0.53=0.125, P {X =2,Y =3}==0.53=0.125 X ,Y 的分布律及边缘分布律可用表格表示如下:Y X 0 1 2 3 P i . 0 0.125 0.125 0 0 0.25 1 0 0.25 0.250.52 00.125 0.125 0.25P .j0.125 0.375 0.375 0.125 1解法2:,21)21()21(}|{}{},{22⨯=======-iiiC i X j Y P i X P j Y i X P.1,0,3,2,1,0,2,1,0=-==i j j i7.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<=-其它,00,),(yx e y x f y 求边缘概率密度f X (x ),f Y (y ).解:⎩⎨⎧<<=-其它,00,),(yx e y x f y⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==-+∞-∞+∞-⎰⎰0,00,0,00,),()(x x e x x dy e dy y x f x f xxy X ⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==--∞+∞-⎰⎰0,00,0,00,),()(0y y ye y y dx e dx y x f y f y y yY 8.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤=其它,01,),(22y x y cx y x f 求:(1) 确定常数c(2) 边缘概率密度f X (x ),f Y (y ).解:⎩⎨⎧<≤≤=0,01,),(22x y x y cx y x f(1)214212),(1104211122cdx x x c ydydx cx dxdy y x f x =-===⎰⎰⎰⎰⎰-∞+∞-∞+∞-所以 c=21/4(2) ⎪⎩⎪⎨⎧<-=⎪⎩⎪⎨⎧<==⎰⎰∞+∞-其它其它,,01||,8)1(2101||,421),()(42122x x x x ydy x dy y x f x f x X⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰-∞+∞-其它其它,,010********),()(252y y y ydx x dx y x f y f y yY 9.设平面区域D 由曲线xy 1=及直线y = 0,x = 1,x = e 2围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求边缘概率密度f X (x ),f Y (y ). 解:2|ln 12211===⎰e e D x dx xS (X ,Y )在区域D 上服从均匀分布,故f (x ,y )的概率密度为⎪⎩⎪⎨⎧∈=其它,0),(,21),(Dy x y x f ⎪⎩⎪⎨⎧≤≤==⎰⎰∞+∞-其它(,01,21),()210X e x dy dy y x f x f x⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤≤-=-===--∞+∞-⎰⎰⎰其它(10,0),11(2121,2121),()221112X 2y e e y y dx e dx dx y x f x f y e 10.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f 试求条件概率密度f (y | x ).解:⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f)0)(( )(),()|(|>=x f x f y x f x y f X X X Y ⎪⎩⎪⎨⎧≤<===⎰⎰∞+∞-其它,010,233),()(20x x xdy dy y x f x f x X当0<x ≤1时,⎪⎩⎪⎨⎧<<==其它,00,233)(),()|(2|xy x x x f y x f x y f X X Y即,⎪⎩⎪⎨⎧≤<<=其它,010,2)|(|x y x x y f X Y11.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<=其它,0,10,1),(xy x y x f 求条件概率密度f (x | y ).解:⎩⎨⎧<<<=其它,0||,10,1),(xy x y x f⎪⎩⎪⎨⎧>-=≤+===⎰⎰⎰-∞+∞-0,10,1),()(11y y dx y y dx dx y x f y f y y Y当y ≤0时,⎪⎩⎪⎨⎧<<-<<+==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X当y >0时,⎪⎩⎪⎨⎧<<-<<-==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X所以,⎪⎩⎪⎨⎧<<<-==其它,01||0,||11)(),()|(|x y y x f y x f y x f Y Y X12.已知随机变量Y 的概率密度为⎩⎨⎧<<=其它,010,5)(4y y y f Y 在给定Y = y 条件下,随机变量X 的条件概率密度为⎪⎩⎪⎨⎧<<<=其它,010,3)(32y x y x y x f 求概率P {X > 0.5}. 解:由)(),()|(|x f y x f y x f Y Y X =得 ⎩⎨⎧<<<<==其它,00,10,15)()|(),(2|yx y yx y f y x f y x f Y Y X644715),(}5.0{15.0125.0===>⎰⎰⎰⎰+∞+∞∞-xdydx yx dydx y x f X P 13.设二维随机变量(X ,Y )的分布律为试分别求),max(Y X Z =和),min(Y X W =的分布律. 解:Z =max(X ,Y ),W =min(X ,Y )的所有可能取值如下表Z =max(X ,Y ),W =min(X ,Y )的分布律为14.设X 和Y 是相互独立的随机变量,且)(~),(~θθE Y E X ,如果定义随机变量Z 如下:⎩⎨⎧>≤=Y X YX Z ,0,1 求Z 的分布律.解:⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X θθ ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f yY θθ 由独立性得X ,Y 的联合概率密度为⎪⎩⎪⎨⎧>>=+-其它,00,0,1),(2y x e y x f yx θθ 则P {Z =1}=P {X ≤Y }=211),(002==⎰⎰⎰⎰∞++-≤xyx yx dydx edxdy y x f θθ P {Z =0}=1-P {Z =1}=0.5故Z 的分布律为15.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π求边缘概率密度f X (x ),f Y (y );并问X 与Y 是否独立?解:⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π⎪⎩⎪⎨⎧<-===⎰⎰---∞+∞-其它,01||,121),()(222112x x dy dy y x f x f x x X ππ 同理,⎪⎩⎪⎨⎧<-=其它,01||,12)(2y y y f Y π显然,)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立16.设随机变量X 和Y 相互独立,试在以下情况下求Y X Z +=的概率密度, (1) )1,0(~),1,0(~U Y U X ; (2) )1(~),1,0(~Exp Y U X .解:(1)⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧<<=其它,010,1)(Y y y f利用卷积公式:⎰+∞∞--=dx x z f x f z f Y X Z )()()(求f Z (z ))()(x z f x f Y X -=⎩⎨⎧+<<<<其它,01,10,1x z x x⎪⎪⎩⎪⎪⎨⎧<≤<≤-===-=⎰⎰⎰-∞+∞-其它2110,02,)()()(110z z z dx z dx dx x z f x f z f z z Y X Z(2) ⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧≤>=-0,00,)(Y y y e y f y 利用卷积公式:⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎩⎨⎧+<<>=--其它,01,0,)()(y z y y e y f y z f y Y X⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≥<≤--=≥<≤=-----⎰⎰其它其它110,0,)1(,1110,0,,10z z e e e z z dy e dy e z zzz y z y17.设)1,1(~),1,0(~N Y N X ,且X 与Y 独立,求}1{≤+Y X P . 解:由定理3.1(P75)知,X +Y ~N (1,2),故5.0)0(}21121{}1{=Φ=-≤-+=≤+Y X P Y X P 18.设随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-. ,0;0,0,)(21),()(其它y x e y x y x f y x(1) 问X 和Y 是否相互独立? (2) 求Y X Z +=的概率密度. 解:(1) )1(21)(21),()0)(X +=+==-+∞+-+∞∞-⎰⎰x e dy e y x dx y x f x f x y x ((x>0) 同理,)1(21)(+=-y e y f yY y>0 显然,)()x (),(y f f y x f Y X =,所以X 与Y 不相互独立 (2).利用公式⎰+∞∞--=dx x z x f z f Z )()(,被积函数⎪⎩⎪⎨⎧>>=⎪⎩⎪⎨⎧>->-+=---+-其它其它,0,0,21,00,0,)(21),()(xz x ze x z x e x z x x z x f z x z x所以⎰+∞∞--=dx x z x f z f Z )()(,⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≤>=≤>=--⎰0,00,210,00,2120z z e z z z dx ze z z z19. 设某系统L 由两个相互独立的系统L 1,L 2联合而成,各连接方式如图所示.已知L 1,L 2的使用寿命X 与Y 分别服从参数为α,β 的指数分布,求以下各系统L 使用寿命Z 的分布函数及概率密度.解:并联时,系统L 的使用寿命Z=max{X ,Y} 因X ~Exp (α),Y ~Exp (β),故⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X αα, ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f y Y ββ ⎪⎩⎪⎨⎧≤>-=-0,00,1)(x x e x F xX α, ⎪⎩⎪⎨⎧≤>-=-0,00,1)(y y e y F y Y β ⎪⎩⎪⎨⎧≤>--==--0,00),1)(1()()()(z z e e z F z F z F z z Y X Z βα⎪⎩⎪⎨⎧≤>+-+=⎪⎪⎭⎫⎝⎛+---0,00,)11(11)(11z z e e e z f z z z Z βαβαβαβα 串联时,系统L 的使用寿命Z =min{X ,Y }⎪⎩⎪⎨⎧≤>-=---=⎪⎪⎭⎫⎝⎛+-0,00,1)](1)][(1[1)(11z z e z F z F z F z Y X Z βα ⎪⎩⎪⎨⎧≤>⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-0,00,11)(11z z e z f zZ βαβα (B )1.设二维随机变量(X ,Y )的分布律为已知随机事件{X = 0}与{X + Y = 1}相互独立,求a ,b 的值.解:P {X =0}=a +0.4,P {X +Y =1}=P {X =1,Y =0}+P {X =0,Y =1}=a +b. P {X =0,X +Y =1}=P {X =0,Y =1}=a 由于{X =0}与{X +Y =1}相互独立,所以 P {X =0, X +Y =1}=P {X =0} P {X +Y =1}即 a =(a +0.4)(a +b ) (1) 再由归一性知:0.4+a +b +0.1=1 (2) 解(1),(2)得 a =0.4, b =0.1 2.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<--=其它 ,010,10 ,2),(y x y x y x f (1) 求P {X > 2Y }(2) 求Z = X + Y 的概率密度f Z (z ). 解: (1) 247)2(),(}2{10202=--==>⎰⎰⎰⎰>xyx dydx y x dxdy y x f Y X P (2) 利用公式dx x z x f z f Z ⎰+∞∞--=),()(计算⎩⎨⎧<-<<<-=-其它,010,10,2),(x z x z x z x f ⎪⎩⎪⎨⎧≥<≤-<<-=⎪⎪⎩⎪⎪⎨⎧≥<≤-<<-=-=⎰⎰⎰-∞+∞-2,021,)2(10),22,021,)2(10,)2(),()(2110z z z z z z z dx z z dx z dx x z x f z f z z Z (3.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其它,020,4101,21)(x x x f X令2X Y =,),(y x F 为二维随机变量(X ,Y )的分布函数,求 (1) Y 的概率密度)(y f Y ;(2) )4,21(-F .解:(1) F Y (y )=P {Y ≤y }=P {X 2≤y } 当y <0时,f Y (y )=0当y ≥0时,)()(}{)(y F y F y X y P y F X X Y --=<<-=从而,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<=⎪⎩⎪⎨⎧-+=4041,8110,83)]()([21)(y y y y y y f y f yy f X X Y ,(2) F (-1/2,4)=P {X ≤-1/2,Y ≤4}= P {X ≤-1/2,X 2≤4} =P {-2≤X ≤-1/2}=4121)(211212==⎰⎰----dx dx x f X 4.设(X ,Y )为二维离散型随机变量,X 和Y 的边缘分布律分别如下:如果1}0{==XY P ,试求 (1) (X ,Y )的分布律; (2) 问X 与Y 是否独立. 解:P {XY ≠0}=1-P {XY =0}=0 即 P {X =-1,Y =1}+P {X =1,Y =1}=0由概率的非负性知,P {X =-1,Y =1}=0,P {X =1,Y =1}=0由边缘分布律的定义,P {X =-1}= P {X =-1,Y =0}+ P {X =-1,Y =1}=1/4 得P {X =-1,Y =0}=1/4再由P {X =1}= P {X =1,Y =0}+ P {X =1,Y =1}=1/4 得P {X =1,Y =0}=1/4再由P {Y =1}=P {X =-1,Y =1}+ P {X =0,Y =1}+ P {X =1,Y =1}= P {X =0,Y =1} 知P {X =0,Y =1}=1/2最后由归一性得:P {X =0,Y =0}=0(X ,Y )的分布律用表格表示如下:(2) 显然,X 和Y 不相互独立,因为P {X =-1,Y =0}≠ P {X =-1}P {Y =0}5.设随机变量X 与Y 相互独立,且),(~),,(~2ππσμ-U Y N X ,求Z = X + Y 的概率密度(计算结果用标准正态分布分布函数)(x Φ表示).解:X 与Y 相互独立,利用卷积公式dx x z f x fz f Y XZ ⎰+∞∞--=)()()(计算,21)(222)(σμσπ--=x X ex f ⎪⎩⎪⎨⎧-∈=其它,0),(,21)(πππy y f Y ⎪⎩⎪⎨⎧<-<-=---其它,0,221)()(222)(ππππσσμx z e x z f x f x Y X⎰⎰⎰+---+---+∞∞-==-=ππσμπππσμπσππσz z x z z x Y X Z dx edx edx x z f x f z f 22222)(212)(21221)()()()]()([21}{21ππππππ--+=+<<-=z F z F z X z P ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--Φ-⎪⎭⎫ ⎝⎛-+Φσμπσμππz z 21 6.设二维随机变量(X ,Y )在矩形}10,20),{(≤≤≤≤=y x y x G 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度)(s f S . 解:(X ,Y )~U(G )⎪⎩⎪⎨⎧∈=其它,0),(,21),(Gy x y x f设F (x )和f (s )分别表示S =XY 的分布函数和密度函数 F (s )=P {XY <s} s<0时,F S (s)=0s ≥0时,⎪⎩⎪⎨⎧+≥=⎰⎰⎰⎰s s xs S dydxdydx s F 010*******,1, 所以,⎪⎪⎩⎪⎪⎨⎧≥≥+<=2,12,2ln 220,0s s s s s s F S于是,S =XY 概率密度为⎪⎩⎪⎨⎧<<=其它,020,2ln 21)(s ss f S 7.设随机变量X 与Y 相互独立,其中X 的分布律为而Y 的概率密度为f (y ),求随机变量Y X U +=的概率密度)(u g . 解:由全概率公式: F U (u )=P {U ≤u }={X +Y ≤u }=P {X =1}P {X +Y ≤u |X =1}+ P {X =2}P {X +Y ≤u |X =2} = P {X =1}P {1+Y ≤u }+ P {X =2}P {2+Y ≤u } =0.3⨯F Y (u -1)+0.7⨯F Y (u -2)所以,f U (u ) =0.3⨯f Y (u -1)+0.7⨯f Y (u -2)8.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=其它,,,020,10 ,1),(x y x y x f 求:(1) (X ,Y )的边缘概率密度f X (x ),f Y (y ); (2) Y X Z -=2的概率密度)(z f Z ; 解:(1) ⎩⎨⎧<<<<=其它,00,10,1),(x y x y x f⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,2,010,1),()(20x x x dy dy y x f x f x X ⎪⎩⎪⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,020,21,020,1),()(12y yy dx dx y x f y f y Y (2) ⎰⎰≤-=≤-=≤=zy x Z dxdy y x f z Y X P z Z P z F 2),(}2{}{)(如图所示,当z<0时,F Z (z)=0; 当z ≥2时,F Z (z)=1 当0≤z<2时:411)(212222020z z dydx dydx z F z xz x zx Z -=+=⎰⎰⎰⎰- 综上所述,⎪⎪⎩⎪⎪⎨⎧≥<≤-<=2,120,40.0)(2z z z z z z F Z 所以Z 的概率密度为:⎪⎩⎪⎨⎧<≤-=20,21,0)(z zz f Z 其它 9.设随机变量X 在区间(0,1)上服从均匀分布,在X = x (0 < x < 1)的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求: (1) 随机变量X 和Y 的联合概率密度; (2) Y 的概率密度; (3) 概率P {X + Y > 1}. 解:(1) ⎩⎨⎧<<=其它,010,1)(x x f X⎪⎩⎪⎨⎧<<<<=其它,010,0,1)|(|x x y xx y f X Y ⎪⎩⎪⎨⎧<<<==其它(,010,1)()|),(|x y xx f x y f y x f X X Y(2) ⎩⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,ln ,010,1),()(1y y y dx x dx y x f y f y Y (3) 2ln 11),(}1{P 15.011-===≥+⎰⎰⎰⎰-≥+xx y x dydx xdxdy y x f Y X10. 设随机变量X 与Y 相互独立,X 的分布律为31}{==i X P ,(i = – 1,0,1),Y 的概率密度为⎩⎨⎧<≤=其它,010,1)(y y f Y ,记Y X Z +=,求:(1) 求}021{=≤X Z P (2) 求Z 的概率密度)(z f Z .解:(1) P {Z ≤1/2|X =0}=P {X +Y ≤1/2|X =0}=P {Y ≤1/2}=1/2 (2) 由全概率公式:F Z (z )=P {Z ≤z }=P {X +Y ≤z }=P {X =1}P {X +Y ≤z |X =1} +P {X =0}P {X +Y ≤z |X =0}=P {X =-1}P {X +Y ≤z|X =-1} = P {X =1}P {1+Y ≤z }+P {X =0}P {Y ≤z }=P {X =-1}P {-1+Y ≤z } =1/3⨯[F Y (z -1)+ F Y (z )+ F Y (z +1)]从而,f Z (z ) =1/3⨯[f Y (z -1)+ f Y (z )+ f Y (z +1)]=⎪⎩⎪⎨⎧<<-其它,021,31z11.设X 与Y 的联合概率密度为⎩⎨⎧<<<<=.,0;0,10 ,3),(其它x y x x y x f 试求Y X Z -=的概率密度. 解:⎩⎨⎧<<<<=其它,00,10,3).(xy x x y x f⎰⎰-≥=-≥=≤-=≤=zx y Z dxdy y x f Z X Y P z Y X P z Z P z F ),(}{}{}{)(如图,当z<0时,F Z (z)=0; 当z ≥1时,F Z (z )=1当0≤z<1时:22333)(3100z z xdydx xdydx z F z xz x zxZ -=+=⎰⎰⎰⎰-综上得:⎪⎪⎩⎪⎪⎨⎧≥<≤-<=1,010,2230,0)(3z z z z z z F Z 12Z 的概率密度为⎪⎩⎪⎨⎧<≤-=其它,010),1(23)(2z z z f Z12.设X 与Y 独立同分布,且都服从标准正态分布N (0,1),试求22Y X Z +=的分布. 解:,21)(22x X ex f -=π,21)(22y Y ey f -=π22221)()(),(y x Y X e y f x f y x f +-==π}{}{)(22z y x P z Z P z F Z ≤+=≤=当z<0时,F Z (z)=0; 当z ≥0时,220222222222121),(}{)(z zr z y x Z erdrd edxdy y x f z Y X P z F --≤+-===≤+=⎰⎰⎰⎰πθπ所以,Z 的概率密度为⎪⎩⎪⎨⎧≥=-其它,00,)(22z ze z f z Z。

《概率论与数理统计答案》第三章

《概率论与数理统计答案》第三章
第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为


D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—

若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网

ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α

概率论与数理统计(第三版)课后答案习题3

概率论与数理统计(第三版)课后答案习题3

第三章 多维随机变量及其分布1.设二维随机变量(ξ,η)只能取下列数组中的值: (0,0),(-1,1),(-1,1/3),(2,0)。

且取这些组值的概率依次为1/6,1/3,1/12,5/12,求表示这二维随机变量的联合分布律的矩形表格。

2.再从袋中任取一球。

设每次取球时,袋中各个球被取到的可能性相同。

以ξ,η分别记第一次、第二次取得的球上标有的数字,求(ξ,η)的联合分布律。

解:(ξ,η)的可能性取值为数对(1,2)、(2,1)、(2,2),先计算取每一数对的概率: P {(ξ,η)=(1,2)}=(1/3)⨯1=1/3;P {(ξ,η)=(2,1)}=(2/3)⨯(1/2)=1/3; P {(ξ,η)=(2,2)}=(2/3)⨯(1/2)=1/3; 3.一整数n ξ=ξ(n )是能整除n 的正整数的个数,η=η (n )是能整除n 的素数的个数(注意:1不是素数),试写出ξ和η联合分布律。

解:依题意有:n :1 2 3 4 5 6 7 8 9 10 ξ(n ):1 2 2 3 2 4 2 4 3 4 η(n ):0 1 1 1 1 2 1 1 1 2因此ξ=1,2,3,44.设随机变量(⎪⎪⎩⎪⎪⎨⎧≤-===⎰⎰---∞+∞-.,0,1,121),()(21122其它x x dy dy y x f x f x x ππξ(1)确定常数k ; (2)求}3,1{<<ηξP ; (3)求}5.1{<ξP ; (4)求}4{≤+ηξP 。

解:(1) 由概率密度的性质知:⎰⎰=--20421)6(dy y x k dx ,即 8k =1 ∴ k =1/8;(2) }3,1{<<ηξP 8/38/)6(1032=--=⎰⎰dy y x dx ; (3) }5.1{<ξP 32/278/)6(5.1042=--=⎰⎰dy y x dx ;(4)dxdy y x f P G ⎰⎰=≤+),(}4{ηξ32)6(814220=--=⎰⎰-dy y x dx x。

概率论与数理统计习题及答案----第3章习题详解

概率论与数理统计习题及答案----第3章习题详解

概率论与数理统计习题及答案----第3章习题详解习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}.【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12(2) 由定义,有(,)(,)d d yx F x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3){01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e)0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰ 5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3)11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=⎰⎰⎰⎰如图 1.542127d (6)d .832x x y y =--=⎰⎰(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=⎰⎰⎰⎰如图b 240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()XY f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他.(2)5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e,0,0,(,)(,)0,x y x yF x yf x yx y-+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X,Y)的概率密度为f(x,y)= 4.8(2),01,0,0,.y x x y x-≤≤≤≤⎧⎨⎩其他求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰x24.8(2)d 2.4(2),01,=0,.0,y x y x x x⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<-.,0,,其他e yxy求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰e d e,0,=0,.0,y xxy x+∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰e d e,0,=0,.0,y yxx y y--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧≤≤.,0,1,22其他yxycx(1)试确定常数c;(2)求边缘概率密度.【解】(1)(,)d d(,)d dDf x y x y f x y x y+∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c==⎰⎰得214c=.(2) ()(,)dXf x f x y y+∞-∞=⎰212422121(1),11,d840,0,.xx x xx y y⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰5227d,01,420,0,.yyx y x y y-⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他11.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<.,0,10,,1其他xxy求条件概率密度f Y|X(y|x),f X|Y(x|y).题11图【解】()(,)dXf x f x y y+∞-∞=⎰1d2,01,0,.xxy x x-⎧=<<⎪=⎨⎪⎩⎰其他111d1,10,()(,)d1d1,01,0,.yY yx y yf y f x y x x y y-+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y XXy xf x yf y x xf x⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X YYy xyf x yf x y y xf y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表 345 {}i P X x =1 3511C 10=3522C 10= 3533C 10= 610 2 0 3511C 10=3522C 10= 310 30 02511C 10=110{}i P Y y =110310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立? 【解】(1)X 和Y 的边缘分布如下表2 5 8P {Y=y i }YX XYX Y0.4 0.15 0.30 0.350.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率. 【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他;21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩g 独立其他题14图(2) 方程220aXa Y ++=有实根的条件是 2(2)40X Y ∆=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}ZXF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0ZF z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zxy zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-=⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y xx y x y +∞≥==⎰⎰⎰⎰336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<g g g44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,…. 证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数, 所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki k i n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为0 1 2 3 4 50 1 2 30 0.01 0.03 0.05 0.07 0.090.01 0.02 0.04 0.05 0.06 0.080.01 0.03 0.05 0.05 0.05 0.060.01 0.02 0.04 0.06 0.06 0.05 (1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑X Y{3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤= 1{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑0,1,2,3,4,5i =所以V 的分布律为V =max(X ,Y ) 0 12345P 0 0.04 0.16 0.28 0.24 0.28(3){}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k i k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是 U =min(X ,Y ) 0 1 2 3 P0.28 0.30 0.25 0.17 (4)类似上述过程,有W =X +Y 0 1 2345678P0 0.00.00.10.10.20.10.10.02 63 94 9 25 20.雷达的圆形屏幕半径为R,设目标出现点(X,Y)在屏幕上服从均匀分布.(1)求P{Y>0|Y>X};(2)设M=max{X,Y},求P{M>0}.题20图【解】因(X,Y)的联合概率密度为22221,,(,)π0,.x y Rf x y R⎧+≤⎪=⎨⎪⎩其他(1){0,}{0|}{}P Y Y XP Y Y XP Y X>>>>=>(,)d(,)dyy xy xf x yf x yσσ>>>=⎰⎰⎰⎰π2π/405π42π/401d dπ1d dπRRr rRr rRθθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y>=>=-≤131{0,0}1(,)d1.44xyP X Y f x yσ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X 的边缘概率密度在x=2处的值为多少?题21图【解】区域D的面积为22e e0111d ln 2.S x xx===⎰(X,Y)的联合密度函数为211,1e,0,(,)20,.x yf x y x⎧≤≤<≤⎪=⎨⎪⎩其他(X,Y)关于X的边缘密度函数为1/211d,1e,()220,.xXy xf x x⎧=≤≤⎪=⎨⎪⎩⎰其他所以1(2).4Xf=22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X 和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处.y 1 y 2 y 3 P {X =x i }=p i x 1 x 21/8 1/8P {Y =y j }=p j 1/6 1【解】因21{}{,}jjiji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+==从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}ijiiP X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===YX又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故1y 2y 3y {}i iP X x P ==1x 124 18 112 14 2x18 38 14 34{}j jP Y y p ==161213123.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.YX【解】(1){|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2){,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!mmn mnnp p n m n n n λλ--=-≤≤=g L24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得1{max{,}1}9P X Y ≤=.26. 设二维随机变量(X ,Y )的概率分布为-1 01-1 0 1a 00.20.1 b0.20 0.1c其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值;XY(2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4.由()0.2E X =-,可得0.1a c -+=-.再由{0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===. (2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z -2 -1 01 2P 0.2 0.1 0.30.3 0.1(3)====++=++=. {}{0}0.10.20.10.10.20.4 P X Z P Y b。

概率论与数理统计习题三参考答案

概率论与数理统计习题三参考答案

概率论与数理统计习题三参考答案1. 某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件进行检验,如果发现其中的次品多于1,就去调整设备。

以X 表示一天中调整设备的次数,求。

(设诸产品是否为次品是相互独立的。

) )(X E 解:解法一 用Y 表示10件中次品的个数,则)1.0,10(~B Y 而X 表示一天中调整设备的次数,,),4(~p B X {}2≥=Y p p {}{}{}1012=−=−=≥Y P Y P Y p Q()()9110100101.011.01.011−⋅−−−=C C 264.0= 056.14)(==∴p X E解法二 设为发现次品数i X 4,3,2,1 111,0=⎩⎨⎧=i X i ,,次品数大于发现次品数小于等于 则4321X X X X X +++=)()()()()(4321X E X E X E X E X E +++={}{}{}100次品数等于次品数等于P P X P i +==∴()()9110100101.011.01.01−⋅+−=C C 743.0= {}{}264.0011==−==∴i i X P X P 056.1264.04)(=×=∴X E2. 将3只球随机地逐个放入4只编号分别为1,2,3,4 的盒子中,以X 表示至少有一只球的盒子的最小号码,是求。

)(X E 解:解法一 X 可取1、2、3、4{}6437433133323213=++==∴C C C X P {}6419422233323213=++==C C C X P{}6474133332313=++⋅==C C C X P {}6414143===X P 162564146473649264371)(=×+×+×+×=∴X E 解法二 1625162316521691)(=×+×+×=∴X E 3. 若随机变量X 的分布律为()=⎭⎫⎩⎨⎧−=+i x P ii 21121i ,i =1,2 ,……., 是否存在。

《概率论与数理统计》 韩旭里 谢永钦版 习题三及答案

《概率论与数理统计》 韩旭里 谢永钦版 习题三及答案

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,434636F F F F −−+ππππππsin sin sin sin sin 0sin sin 0sin4346361).4=−−+=i i i i题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+−.,0,0,0,)43(其他y x A y x e 求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+−∞−∞===∫∫∫∫得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v −∞−∞=∫∫(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x −+−−⎧⎧−−>>⎪==⎨⎨⎩⎪⎩∫∫其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y −+−−=<≤<≤==−−≈∫∫5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<−−.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞−∞−∞=−−==∫∫∫∫故 18R = (2) 13{1,3}(,)d d P X Y f x y y x −∞−∞<<=∫∫130213(6)d d 88k x y y x =−−=∫∫ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=∫∫∫∫如图1.542127d (6)d .832x x y y =−−=∫∫(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=∫∫∫∫如图b240212d (6)d .83xx x y y −=−−=∫∫题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>−.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y −⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y i 独立5515e 25e ,00.20,0.20,0,y y x y −−⎧⎧×<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y −≤≤=∫∫∫∫如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x−==−+≈∫∫∫7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>−−−−.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y −+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x −≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞−∞=∫x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧−−≤≤⎪=⎨⎨⎩⎪⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧−⎧−+≤≤⎪=⎨⎨⎩⎪⎩∫其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<−.,0,0,其他e y x y 求边缘概率密度. 【解】()(,)d X f x f x y y +∞−∞=∫e d e ,0,=0,.0,y x x y x +∞−−⎧⎧>⎪=⎨⎨⎩⎪⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫0e d e ,0,=0,.0,yy x x y y −−⎧⎧>⎪=⎨⎨⎩⎪⎩∫其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞−∞−∞∫∫∫∫如图2112-14=d d 1.21xx cx y y c ==∫∫得 214c =. (2) ()(,)d X f x f x y y +∞−∞=∫212422121(1),11,d 840,0,.x x x x x y y ⎧⎧−−≤≤⎪⎪==⎨⎨⎪⎪⎩⎩∫其他 ()(,)d Y f y f x y x +∞−∞=∫5227d ,01,20,0, .x y x y y ⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y 求条件概率密度f Y |X (y |x ),f X |Y(x |y ).题11图【解】()(,)d X f x f x y y +∞−∞=∫1d 2,01,0,.xxy x x −⎧=<<⎪=⎨⎪⎩∫其他 111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y −+∞−∞⎧=+−<<⎪⎪⎪===−≤<⎨⎪⎪⎪⎩∫∫∫其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪−⎪⎪==−<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===×=≠===i 故X 与Y 不独立 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?(2) 因{2}{0.4}0.20.8P X P Y ===×i 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立. 14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>−.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y −⎧>⎪==⎨⎪⎩其他. 故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y −⎧<<>⎪=⎨⎪⎩i 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y Δ=−≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=∫∫21/2001d e d 21(1)(0)]0.1445.x y x y−==Φ−Φ=∫∫15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a ) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==∫∫∫∫ 33610231010=d 2z zy yzy +∞⎛⎞−=⎜⎟⎝⎠∫题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b ) 3366222210101010()d d d d zy Z xy zF z x y y x x y x y +∞≥==∫∫∫∫336231010101=d 12y y zy z +∞⎛⎞−=−⎜⎟⎝⎠∫即 11,1,2(),01,20,.Z z z zf z z ⎧−≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202), 从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥i 之间独立34{180}{180}P X P X ≥≥i 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =−<−<−<−<i i i44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡−⎤⎛⎞=−<=−Φ⎜⎟⎢⎥⎝⎠⎣⎦=−Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=−ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====−==∪∪ ∪ 于是0{}{,},ik P Z i P X k Y i k X Y =====−∑相互独立{}{}ik P X k P Y i k ===−∑i()()ik p k q i k ==−∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====−∑00202(){}2ki ki n i k i n k ii kk n ki k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =−−−+=−=−===−⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠⎛⎞=⎜⎟⎝⎠∑∑∑i方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则 X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i −=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为V =max (X ,Y ) 0 1 2 3 4 5 P 00.04 0.16 0.28 0.24 0.28(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑ 0,1,2,3,i =于是U =min (X ,Y ) 0 1 2 3 P0.28 0.30 0.25 0.17(4)类似上述过程,有W =X +Y 0 1 2 3 4 5 6 7 8 P0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.0520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y>X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=∫∫∫∫π2π/405π42π/401d d π1d d πRR r rR r r R θθ=∫∫∫∫3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=−≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=−≤≤=−=−=∫∫21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===∫(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d 1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩∫其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和x 2 1/8P {Y =y j }=p j 1/6 1【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===−= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====i ,从而11111{}{,}.624P X x P X x Y y =×==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==−−=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====−===−=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,mmn mn P Y m X n p p m n n −===−≤≤= .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ie C (1),,0,1,2,.!mm n mnnp p n m n n n λλ−−=−≤≤=i 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎟⎟⎠⎞⎜⎜⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤−=+≤−=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤−+≤−0.3(1)0.7(2).F u F u =−+−由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u ′′′==−+−0.3(1)0.7(2).f u f u =−+−25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= −0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =−,可得0.1a c −+=−.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为−2,−1,0,1,2,{2}{1,1}0.2P Z P X Y =−==−=−=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =−==−=+==−=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===−=+==+==−=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z −2 −1 0 1 2 P0.2 0.1 0.3 0.3 0.1(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。

概率论与数理统计第三__课后习题答案

概率论与数理统计第三__课后习题答案

习题一:写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ;(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计习题及答案第3章习题详解【最新版】

概率论与数理统计习题及答案第3章习题详解【最新版】

概率论与数理统计习题及答案第3章习题详解习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.3.设二维随机变量(X,Y)的联合分布函数为ππsinxsiny,0 x ,0 yF(x,y)= 22其他. 0,求二维随机变量(X,Y)在长方形域0 x 【解】如图P{0 X πππ,y 内的概率. 463πππ,Y 公式(3.2) 463ππππππF(, F(, F(0, F(0, 434636ππππππsinsin sinsin sin0 sin sin0434636题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X,Y)的分布密度Ae (3x 4y),x 0,y 0,f(x,y)=其他. 0,求:(1) 常数A;(2) 随机变量(X,Y)的分布函数; (3) P{0≤X<2}.> f(x,y)dxdyAe-(3x 4y)dxdyA得A=12(2) 由定义,有F(x,y)yxf(u,v)dudvy0,x 0,其他yy(3u 4v) dudv (1 e 3x)(1 e 4y) 0 012e0, 0,(3) P{0 X 1,0 Y 2}P{0 X 1,0 Y 2}12e (3x 4y)dxdy (1 e 3)(1 e 8) 0.9499.5.设随机变量(X,Y)的概率密度为f(x,y)=(1) 确定常数k;(2) 求P{X<1,Y<3}; (3) 求P{X<1.5};> k(6 x y),0 x 2,2 y 4,其他. 0,f(x,y)dxdyk(6 x y)dydx 8k 1,故R18(2) P{X 1,Y 3}(3) P{X 1.5}f(x,y)dydxx1.513k(6 x y)dydx 0 288f(x,y)dxdy如图a f(x,y)dxdy D1dx(4) P{X Y 4}XY 42127 x y)dy . 2832f(x,y)dxdy如图b f(x,y)dxdy 4D2Dx12 x y)dy . 83题5图6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y 的密度函数为5e 5y,y 0,fY(y)=0,其他.求:(1) X与Y的联合分布密度;(2) P{Y≤X题6图【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为1,0 x 0.2,fX(x) 0.2其他. 0,fY(y)其他. 0,所以f(x,y)XY,独立fXx( f)Yy()15e 5y 0.2 25e 5y,0 x 0.2且y 0, 0, 0,其他.(2) P(Y X)(x,y)dxdy如图yfx25e 5ydxdyD0.2xdx 25edy 0.25)dx=e-1 0.3679.7.设二维随机变量(X,Y)的联合分布函数为x,y)=(1 e 4x)(1 e 2yF(),x0,y 0,0,其他.求(X,Y)的联合分布密度.【解】f(x,y) 2F(x,y) 8e (4x 2y),x 0,y x y 0, 0,其他.8.设二维随机变量(X,Y)的概率密度为f(x,y)= 4.8y(2 x),0 x 1,0 y x,0,其他.求边缘概率密度. 【解】fX(x)f(x,y)dy=x204.8y(2 x)dy 2.4x(2x),0 x 1,0,0,其他. fY(y)f(x,y)dx=1y4.8y(2 x)dx 2.4y(3 4y y2),0 y 1, 0,0,其他.题8图题9图9.设二维随机变量(X,Y)的概率密度为(x,y)= e yf,0 x y,0,其他.求边缘概率密度. 【解】fX(x)f(x,y)dyyx = xedy e,x 0, 0,0,其他.fY(y)f(x,y)dxyyx = 0edx ye,y 0, 0,0,其他题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)= cx2y,x2 y 1,0,其他.(1) 试确定常数c;(2) 求边缘概率密度. 【解】(1)f(x,y)dxdy如图f(x,y)dxdyD=1-1dx 14x2cx2ydy 21c1. 得 c .(2) fX(x) f(x,y)dy121x2x2ydy 21 8x2(1 x4 ), 1 x 1,40, 0,其他.fY(y)f(x,y)dx2ydx 75x y2,0 y 1, 0, 20, 其他.11.设随机变量(X,Y)的概率密度为f(x,y)=1,y x,0 x 1,0,其他.求条件概率密度fY|X(y|x),fX|Y(x|y)题11图【解】fX(x) f(x,y)dyxx1dy 2x,0 x 1,0,其他. 1 y1dx 1 y, 1 y 0, ff(x,y)dx 1Y(y)y1dx 1 y,0 y 1, 其他0, .所以fy|x) f(x,y) 1,|y| x 1,Y|X(f 2xX(x)0,其他.11y, y x 1,f(x,y) 1,y x 1, fX|Y(x|y)fY(y) 1 y0,其他.12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1) 求X与Y的联合概率分布; (2) X与Y是否相互独立? 【解】(1) X与Y 的联合分布律如下表(2) 因P{X 1} P{Y 3}6161 P{X 1,Y 3}, 101010010故X与Y不独立(1)求关于X和关于Y的边缘分布; (2) X与Y是否相互独立? 【解】(1)X和Y的边缘分布如下表(2) 因P{X 2} P{Y 0.4} 0.2 0.8 0.16 0.15 P(X 2,Y 0.4), 故X与Y不独立.14.设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y 的概率密度为1y/2 e,fY(y)= 20,y0,其他.(1)求X和Y的联合概率密度;(2) 设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.y121,0 x 1, e,y 1,【解】(1) 因fX(x) fY(y) 20,其他; 0,其他.1y/2e故f(x,y)X,Y独立fX(x) fY(y) 20,0x 1,y 0,其他题14图(2) 方程a 2Xa Y 0有实根的条件是2(2X)2 4Y 0故X2≥Y,从而方程有实根的概率为:P{X2 Y}x2 yf(x,y)dxdy1y/2edy1(1) (0)]dx1x20.1445.15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为1000 ,x 1000,f(x)= x2其他. 0,求Z=X/Y的概率密度.【解】如图,Z的分布函数FZ(z) P{Z z} P{(1) 当z≤0时,FZ(z) 0(2) 当0z<1时,(这时当x=1000时,y=< Xz} YFZ(z)yxz1000)(如图a) z6yz10106dxdy 103dy 322dx 2210xyxyz 103106 z=103 2 3 dyzy 2z y题15图(3) 当z≥1时,(这时当y=103时,x=103z)(如图b) FZ(z)yxz6zy10106dxdy 3dy 322dx 221010xyxy103106 1=3 2 3 dy 110yzy2z112z,z 1, z0z 1, 即fZ(z) ,2其他. 0,12z2,z 1, 10z 1, 故fZ(z) ,2其他. 0,16.设某种型号的电子管的寿命(以小时计)近似地服从N(160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为Xi(i=1,2,3,4),则Xi~N(160,202),从而P{min(X1,X2,X3,X4) 180}Xi之间独立P{X1 180} P{X2 180}P{X3 180} P{X4 180}X1 180 }] [P1X [1 P{2{ 1 80 }P][X1 { 3418P0}X][1 {4180}]180 160[1 P{X1 180}]4 1 20[1 (1)]4 (0.158)4 0.00063.17.设X,Y是相互独立的随机变量,其分布律分别为P{X=k}=p(k),k=0,1,2,…,P{Y=r}=q(r),r=0,1,2,…. 证明随机变量Z=X+Y的分布律为P{Z=i}=p(k)q(i k),i=0,1,2,….k0i【证明】因X和Y所有可能值都是非负整数,所以{Z i} {X Y i}{X 0,Y i} {X 1,Y i 1} {X i,Y 0} 于是P{Z i} P{X k,Y i k}X,Y相互独立k0iP{X k} P{Y i k}k0ip(k)q(i k)k0i18.设X,Y是相互独立的随机变量,它们都服从参数为n,p的二项分布.证明Z=X+Y服从参数为2n,p的二项分布.【证明】方法一:X+Y可能取值为0,1,2,…,2n.P{X Y k} P{X i,Y k i}i0kP(X i) P{Y k i}knn k in k ipiqn i pqi 0 i k iknn k2n kpqi 0 i k i 2n k2n k pq k方法二:设μ1,μ2,…,μn;μ1′,μ2′,…,μn′均服从两点分布(参数为p),则X=μ1+μ2+…+μn,Y=μ1′+μ2′+…+μn′, X+Y=μ1+μ2+…+μn+μ1′+μ2′+…+μn′,所以,X+Y服从参数为(2n,p)的二项分布.(1) 求P{X=2|Y=2},P{Y=3|X=0}; (2) 求V=max(X,Y)的分布律; (3) 求U=min(X,Y)的分布律; (4) 求W=X+Y的分布律. 【解】(1)P{X 2|Y 2} P{X 2,Y 2}P{Y 2}P{X 2,Y 2}0.051,0.252P{X i,Y 2}i05P{Y 3|X 0}P{Y 3,X 0}P{X 0}P{X 0,Y 3}0.011;0.033P{X 0,Y j}j03(2)P{V i} P{max(X,Y) i}P{X i,Y i} P{X i,Y i} P{X i,Y k} P{X k,Y i}, i 0,1,2,3, 4,k0k0所以V的分布律为(3) P{U i} P{min(X,Y) i}P{X i,Y i} P{X i,Y i}P{X i,Y k}ki3ki 15P{X k,Yi}i0,1,2, 3于是(1) 求P{Y>0|Y>X};(2) 设M=max{X,Y},求P{M>0}.题20图【解】因(X,Y)的联合概率密度为1222 2,x y R,f(x,y) πR其他. 0,(1)P{Y 0|Y X}P{Y 0,Y X}P{Y X}y0y xf(x,y)d f(x,y)dπyx1π/402rdr5πR1π4/4d 0πR2rdrdR3/83;1/24(2) P{M 0} P{max(X,Y) 0} 1 P{max(X,Y) 0}1P{X 0,Y 0} 1x0y 0f(x,y)d 113 . 4421.设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X的边缘概率密度在x=2处的值为多少?题21图【解】区域D的面积为S0 e211dx lnxx2.(X,Y)的联合密度函数为,1 x e,0 y ,f(x,y) 2x0,其他.(X,Y)关于X的边缘密度函数为11/x1dy 1 x e2, 0fX(x) 22x其他. 0,所以fX(2)1.422.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X和【解】因P{Y yj} Pj2P{X x,Y y},iji1故P{Y y1} P{X x1,Y y1} P{X x2,Y y1}, 从而P{X x1,Y y1} 111 . 6824而X与Y独立,故P{X xi} P{Y yj} P{X xi,Y yi},11 P{X x1,Y y1} . 624111即:P{X x1} / .2464从而P{X x1}又P{X x1} P{X x1,Y y1} P{X x1,Y y2} P{X x1,Y y3},111 P{X x1,Y y3}, 42481从而P{X x1,Y y3} .1213同理P{Y y2} , P{X x2,Y y2}28即又P{Y y} 1,故P{Y y} 1 . j3623j 13同理P{X x2} 从而3.4P{X x2,Y y3} P{Y y3} P{X x1,Y y3} . 312423.设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0p<1),且中途下车与否相互独立,以y表示在中途下车的人数,求:(1)在发车时有n个乘客的条件下,中途有m人下车的概率;(2)二维随机变量(x,y)的概率分布.mmnm,0 m n,n 0,1,2, .(2) P{X n,Y m} P{X n} P{Y m|X n}Cp(1 p)mnmn men,n m n,n 0,1,2, . n!21,而Y的概率密度为f(y),0.30.724.设随机变量X和Y独立,其中X的概率分布为X~求随机变量U=X+Y的概率密度g(u).【解】设F(y)是Y的分布函数,则由全概率公式,知U=X+Y的分布函数为G(u) P{X Y u} 0.3P{X Y u|X 1} 0.7P{X Y u|X 2}0.3P{Y u 1|X 1} 0.7P{Y u 2|X 2}由于X和Y独立,可见G(u) 0.3P{Y u 1} 0.7P{Y u 2}0.3F(u 1) 0.7F(u 2).由此,得U的概率密度为g(u) G (u) 0.3F (u 1) 0.7F (u 2)0.3f(u 1) 0.7f(u 2).25. 25. 设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,求P{max{X,Y}≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有11 , 0 x 3, , 0 y 3,f(x) 3 f(y) 30, x 0,x 3; 0, y 0,y 3.因为X,Y相互独立,所以1,0 x 3,0 y 3,f(x,y) 90, x 0,y 0,x 3,y 3.推得P{max{X,Y} 1}26. 设二维随机变量(X,Y)的概率分布为1. 9 其中a,b,c为常数,且X的数学期望E(X)= 0.2,P{Y≤0|X≤0}=0.5,记Z=X+Y.求:(1) a,b,c的值; (2) Z的概率分布; (3) P{X=Z}.解(1) 由概率分布的性质知,a+b+c+0.6=1 即a+b+c = 0.4. 由E(X) 0.2,可得ac 0.1.再由P{Y 0X 0}P{X 0,Y 0}a b 0.10.5,P{X 0}a b 0.5得a b 0.3.解以上关于a,b,c的三个方程得a0.2,b 0.1,c 0.1.(2) Z的可能取值为2,1,0,1,2,P{Z 2} P{X 1,Y 1} 0.2,P{Z 1} P{X 1,Y 0} P{X 0,Y 1} 0.1,P{Z 0} P{X 1,Y 1} P{X 0,Y 0} P{X 1,Y 1} 0.3,P{Z 1} P{X 1,Y 0} P{X 0,Y 1} 0.3,P{Z 2} P{X 1,Y 1} 0.1,即Z(3) P{X Z} P{Y 0} 0.1 b 0.2 0.1 0.1 0.2 0.4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》习题及答案习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222⨯⨯222⨯⨯2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 247C 3C 35= 247C 2C 35= 2247C C 6C 35=112247C C 12C 35=1247C 2C 35= 27C /C =212247C C 6C 35=2247C 3C 35=3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sinsin sin sin 0sin sin 0sin 4346361).4=--+=题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12e d d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()X Y f x y X Y f x f y 独立 5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e 求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)dY f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰5227d ,01,20,0, .x y x y y ⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y 求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立(2) X 与Y 是否相互独立?(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 21(1)(0)]0.1445.x y x y-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-< 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n kP X i P Y k i n n p q p q i k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3i = 于是(1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r rR θθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-=而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求:(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。

相关文档
最新文档