根轨迹法校正设计

合集下载

根轨迹校正法

根轨迹校正法

在根轨迹校正法中,当系统的动态性能不足时,通常选择什么形式的串联校正网络?网络参数取值与校正效果之间有什么关系?工程应用时应该注意什么问题?
(1)可以采用的校正装置的形式为
单零点校正:)()(c c c z s k s G +=,零点c z -在s 平面的负实轴上;
零极点校正:)()()
()(c c c c c c z p p s z s K s G >++=,零极点均在负实轴上,零点比极点靠近原
点(即:超前校正)。

(2)零点越靠近原点、极点越远离原点校正作用越强。

(3)在工程应用时,应考虑校正装置的可实施性,零极点分布最好在左半平面的中部,因为零点太靠近原点,微分作用太强,可能使执行机构进入饱和状态而达不到预期的效果。

在根轨迹校正法中,当系统的静态性能不足时,通常选择什么形式的串联校正网络?网络参数取值与校正效果之间有什么关系?工程应用时应该注意什么问题? (1)校正装置的形式为)()
()()(c c c c c c p z p s z s K s G >++=,即滞后校正装置。

零极点均在负实轴上,零极点非常靠近虚轴,且与受控对象的其他零极点相比可以构成一对偶极子。

由于增加一对偶极子基本不改变系统的动态性能,但可以增大系统的开环增益,从而达到减小系统静态误差的目的。

(2)零极点之比c c p z 的取值越大,系统开环增益增加幅度越大,因为校正后的开环增益是校正前开环增益的c c p z 倍。

(3)在工程实施时,考虑到系统的稳定性,极点不能太靠近原点。

根轨迹法校正

根轨迹法校正

1 j1.73
按例1,先确定超前网络
c 60 超前角
取 zc 1 ,
得 pc 4
s 1 Gc2 s s4
s1处, 23.8 k* 在
k* k 4 4 1.49
取希望的
k' 5
k' 5 1 3.3 k 1.49
留余量 4 则 0.25
2. 由给定性能指标,确定希望主导 极点(动态性能满足时,希望主导极点 在轨迹上或附近)
* 3. 计算主导极点处增益 k 或需增 大 k 的倍数
4. 计算网络的

值,且留余量
5. 计算zc
s zc G ,构成网络, c s s p c
6. 检验,不满足时,改变余量,重新
设计。
k* 例2:设开环传递函数 Gc s ss 1s 4
s 4.95
s1 处增益 k1* =30.4 在
6. 检验,画根轨迹
1.2 kk 1.84 4 4.95
* 1
k * s 1.2 Gc s Gs ss 1s 4s 4.95
可见:在轨迹 s1, 2 附近。
注意:未校正系统具有距虚轴较近、 开环复数极点时,或系统开环极点 虽均为实数,但过分接近原点,以 及系统具右半平面开环极点时,均 不宜采用串联超前校正。 利用超前校正,其最大超前角 一般取 20 ~ 60
0.5 要求:经校正 t s 10
k 5 1
s
解:1. 画出根轨迹
2. 0.5 ,t s 10 有 n 0.66 s1,2 0.33 0.57 j
可见: s1 在轨迹上或附近,满足动态性能 3. 但在 s1 处的 k * 0.66 0.9 2.66 1.58

控制系统的根轨迹分析与校正

控制系统的根轨迹分析与校正
极点到根轨迹上某一点的向量相角之和。
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8.
在线交流,有问必答
13.1 控制系统的根轨迹法分析
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8.
在线交流,有问必答
13.1.1 根轨迹及根轨迹法概述
以绘制根轨迹的基本规则为基础的图解 法是获得系统根轨迹是很实用的工程方 法。通过根轨迹可以清楚地反映如下的 信息:
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8.
zi )
G(s)H (s)
i 1 n
(s p j )
j 1
系统的闭环传递函数为
(s)
G(s)
1 G(s)H (s)
系统的闭环特征方程为1 G(s)H (s) 0
在线交流,有问必答
13.1.2 MATLAB根轨迹分析的相关函数
MATLAB中提供了 rlocus()函数, 可以直接用于系统的根轨迹绘制。 还允许用户交互式地选取根轨迹上 的值。其用法见表13.1。更详细的 用法可见帮助文档
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8.
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8.
在线交流,有问必答
临界稳定时的开环增益;闭环特征
根进入复平面时的临界增益;选定
开环增益后,系统闭环特征根在根
平面上的分布情况;参数变化时,
系统闭环特征根在根平面上的变化 趋势等。
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8.
在线交流,有问必答
例2:若单位反馈控制系统的开环传递函 数为,绘制系统的根轨迹,并据根轨迹 判定系统的稳定性。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。

以下是对自动控制原理中一些关键知识点的总结。

一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。

控制的目的是使系统的输出按照期望的方式变化。

开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。

二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。

微分方程是最直接的描述方式,但求解较为复杂。

传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。

状态空间表达式则能更全面地反映系统内部状态的变化。

三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。

重要的性能指标包括上升时间、峰值时间、调节时间和超调量。

一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。

二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。

四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。

通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。

根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。

根据根轨迹,可以确定使系统稳定的开环增益范围。

五、频域分析频域分析使用频率特性来描述系统的性能。

波特图是常用的工具,包括幅频特性和相频特性。

通过波特图,可以评估系统的稳定性、带宽和相位裕度等。

奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。

六、控制系统的校正为了改善系统的性能,需要进行校正。

校正装置可以是串联校正、反馈校正或前馈校正。

常见的校正方法有超前校正、滞后校正和滞后超前校正。

校正装置的设计需要根据系统的性能要求和原系统的特性来确定。

七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。

根轨迹法校正

根轨迹法校正

西安石油大学课程设计学院:电子工程学院专业:自动化班级:自动化0901学号:题目根轨迹法校正学生指导老师霍爱清二零一零年十二月目录1任务书 (3)2课程设计的题目 (4)3设计思想 (4)4编制的程序及仿真图 (5)(1)求校正装置的放大系数Kc (5)(2)检验原系统的阶跃响应是否满足要求 (5)(3)检验校正装置是否满足要求 (7)5设计结论 (8)6设计总结 (9)7参考文献 (9)1.《自动控制理论I 》课程设计任务书题目根轨迹法校正学生姓名学号专业班级自动化0901设计内容与要求设计内容:4. 已知单位负反馈系统被控对象的开环传递函数为:)12(4)(0+=sssG设计校正环节。

要求使其校正后系统单位斜坡响应稳态误差025.0vess≤;阶跃响应的超调量%15≤σ;相角稳定裕度︒≥45γ;阶跃响应的调节时间sts20≤。

设计要求:(1)编程绘制原系统节约响应曲线,并计算出原系统的动态性能指标;(2)利用SISOTOOL设计校正方案(得到相应的控制其参数);(3)绘制校正后系统阶跃响应曲线,并计算出校正后系统的动态性能指标;(4)整理设计结果,提交设计报告。

起止时间2011 年12 月19 日至2010 年12 月30 日指导教师签名年月日系(教研室)主任签名年月日学生签名年月日2.课程设计的题目:已知单位负反馈系统被控对象的开环传递函数为:)12(4)(0+=s s s G 设计校正环节。

要求使其校正后系统单位斜坡响应稳态误差0025.0v e ss ≤;阶跃响应的超调量%15≤σ;相角稳定裕度︒≥45γ;阶跃响应的调节时间s t s 20≤。

3设计思想:当根轨迹的性能指标给定为时域指标(如超调量、阻尼系数、自然频率等)时,用根轨迹法对系统进行校正比较方便。

这是因为系统的动态性能取决于它的闭环零、极点在S 平面上的分布。

因此,根轨迹法校正的特点就是:如何选择控制的零﹑极点,去促使系统的根轨迹朝有利于提高系统性能的方向变化,从而满足设计要求。

基于根轨迹法的串联超前校正器的设计

基于根轨迹法的串联超前校正器的设计

图 1 有源超前 校正器
此校正器的传递 函数为 : G

,其 中, =
>l ,T=RC . 2

l ) 瓜 G f c =

【 收稿 日期】 0 1 1 1 2 1—1- 2
【 作者简介】 白莉 (97 ) 张 17 - ,女 ,山西原 平人 ,忻 州师 范学院物理 电子 系讲师 ,硕 士 ,从事 电子技术应用研究。
来 决定 . 系统 要 求实 现 的动 态性 能指 标计 算 出 系统 的期 望 闭环 极 点 ,如 果 系统 的根 轨 迹 没有 通过 期 望 的 根据
闭环极点 ,说 明性能指标不符合要求 ,这时可以通过引人新的开环零点和极点来改变根轨迹的走 向,如果
引 入 的开环 零 极点 合适 ,就可 以使 根 轨迹经 过 期望 的 闭环极 点 ] . 3 串联 超前 校 正参数 计 算
i =1 =l
当 S满 足相 角方 程 时 ,必然 可 以找到 一个 K, 的值 ,使 其 同 时满 足幅 值方 程 . 如果 系统 实 现预 期性 能 指标 对应 的两个 主 导极 点 - : 满 足相 角 方程 ,就 必须 引入 校 正装 置 增 加新 的 ,不 S
开环零点和开环极点来改变根轨迹的走 向. 如果采用 的是串联超前校正 ,其传递 函数为 G () +  ̄ s c :l cT
KH 一 , z )
系统 的开 环传 递 函数 的一般 表 达式 为 G () 。 :
, =lBiblioteka 兀 一 , P) ,=l
其根 轨 迹 的幅 值方 程为


其 轨 相 方 为 ∑ 一t ∑Zs P) + k 18 (=,,) 根 迹的 角 程 Z一 ( j= ( +)0 02 . ) — 2 1。 1… ,

根轨迹法

根轨迹法

根軌跡法根軌跡法概述在時域分析中已經看到,控制系統的性能取決於系統的閉環傳遞函數,因此,可以根據系統閉環傳遞函數的零、極點研究控制系統性能。

但對於高階系統,採用解析法求取系統的閉環特征方程根(閉環極點)通常是比較困難的,且當系統某一參數(如開環增益)發生變化時,又需要重新計算,這就給系統分析帶來很大的不便。

1948年,伊万思根据反馈系统中开、死循环传递函数间的内在联系,提出了求解死循环特征方程根的比较简易的图解方法,这种方法称为根轨迹法。

因为根轨迹法直观形象,所以在控制工程中获得了广泛应用。

根轨迹法的基本概念根轨迹是当开环系统某一参数(如根轨迹增益)从零变化到无穷时,闭环特征方程的根在S平面上移动的轨迹。

根轨迹增益K * 是首1形式开环传递函数对应的系数。

在介绍图解法之前,先用直接求根的方法来说明根轨迹的含义。

控制系统如上图所示。

其开环传递函数为:根轨迹增益。

闭环传递函数为:闭环特征方程为:特征根为:当系统参数K * (或K)从零变化到无穷大时,闭环极点的变化情况见下表:利用计算结果在S平面上描点并用平滑曲线将其连接,便得到K * (或K)从零变化到无穷大时闭环极点在S平面上移动的轨迹,即根轨迹,如下图所示。

图中,根轨迹用粗实线表示,箭头表示K * (或K)增大时两条根轨迹移动的方向。

根轨迹与系统性能依据根轨迹图(见系统根轨迹图),就能分析系统性能随参数(如K * )变化的规律。

1.稳定性开环增益从零变到无穷大时,如系统根轨迹图所示的根轨迹全部落在左半s平面,因此,当K>0时,如图控制系统根所示系统是稳定的;如果系统根轨迹越过虚轴进入右半s平面,则在相应K值下系统是不稳定的;根轨迹与虚轴交点处的K值,就是临界开环增益。

2.稳态性能由系统根轨迹图可见,开环系统在坐标原点有一个极点,系统属于Ⅰ型系统,因而根轨迹上的K值就等于静态误差系数K v。

当r(t)=1(t)时,e ss = 0;当r(t)=t时,3.动态性能由系统根轨迹图可见,当0 <K< 0.5时,闭环特征根为实根,系统呈现过阻尼状态,阶跃响应为单调上升过程;当K=0.5时,闭环特征根为二重实根,系统呈现临界阻尼状态,阶跃响应仍为单调过程,但响应速度较0 <K< 0.5时为快;当K>0.5时,闭环特征根为一对共轭复根,系统呈现欠阻尼状态,阶跃响应为振荡衰减过程,且随K增加,阻尼比减小,超调量增大,但t s基本不变。

基于根轨迹的相位滞后校正

基于根轨迹的相位滞后校正

基于根轨迹的相位滞后校正概述:控制系统的根轨迹是当开环系统的某一参数(一般为系统的开环增益)从负无穷到正无穷变化时,闭环系统特征方程的根在复平面上留下的轨迹。

根轨迹分析方法就是利用绘制出的根轨迹来分析闭环系统稳定性和其他性能指标的方法。

基于根轨迹的控制系统的设计:当系统的性能指标以时域指标提出时,可以借助根轨迹曲线获取校正装置的结构和参数。

因为系统期望的闭环主导极点往往不在被控对象的根轨迹曲线上,所以需要添加一对零极点,来改变系统的根轨迹曲线。

若期望主导极点在原根轨迹的左侧,则采用相位超前校正;若期望主导极点在原根轨迹上,则通过调整K 值,以满足静态性能要求;若期望主导极点在原根轨迹的右侧,则采用相位之后校正。

具体步骤如下:第一步:对被控对象(即未校正系统)进行性能分析,确定使用何种校正装置。

第二步:根据性能指标的要求,确定期望的闭环主导极点。

第三步:确定校正系统的参数c Z 和c P ,写出其传递函数c G =KcPc s Zc s ++。

第四步:绘制根轨迹图,确定Kc 。

第五步:对校正后的系统进行性能校验。

基于根轨迹的相位滞后校正:1、基于根轨迹的相位滞后校正基本原理:设未校正系统的开环传递函数为0G (S),校正系统的传递函数为c G =11++Ts Ts ββ>1),则校正系统的开环传递函数为G (s )=G0(s )c G (s );设S1为期望的闭环主导极点,因此S1应满足系统的特征方程1+0G (s )c G (s )=0;由于是滞后校正,校正装置的零极点相对于S1来说应是一对偶极子,而且离虚轴越近越好。

因此,当S=S1时,校正装置的零极点可以看作是一对偶极子,所以有ββββ111111)(11111≈++=++=T s T s Ts Ts s Gc (1-1) 记)(100s G M =,)(1s G M c c =,则 1100==βM M M c (1-2)2、基于根轨迹的相位滞后校正步骤:第一步:由稳态指标确定未校正系统的开环增益,对未校正系统进行性能分析。

第23讲根轨迹法串联校正

第23讲根轨迹法串联校正

L(ω)
认为 0.1c1 1 0.01c1 1 50
GG c
G
在穿越频率处 ,有
20 0
Magnitude (dB)
100 1 c1 (0.1 c1 )
-20
Gc
-50
a) 0
-45 φ(ω)
Gc
-90
G
Phase (deg)
解得 c1 31.6
-135
GG c
-180
校正前的相位裕度为
-225 -270
1)
采用串联滞后校正,使校正后的 k v ≥100,≥45
解: 选择的有源滞后网络应具有如下形式的传递函数
G
c
(s)
K c(T2s 1) (T1s 1)
K c(T2s 1) (hT2s 1)
h T1 2 1 T2 1
取 K c 5 ,则提高增益后的开环传递函数为
G(s)
K
cG
1(s)
s(0.1s
99.5
校正后系统的相位裕度为
180 arctan( 46.3) 90 arctan(0.1 46.3) arctan(46.3) 52.2
21.6
99.5
满足要求。
自动控制原理 5
第六章 自动控制系统的校正
二、串联滞后校正
例6-2
已知开环传递函数为
G1(s)
s(0.1s
20 1)(0.01s
a)
b b)
自动控制原理 2
第六章 自动控制系统的校正
例6-1 已知某控制系统的固有开环传递函数为
G
1(s)
20 s(0.1s
1)
要求校正后满足,k v ≥100 ≥50 试确定校正网络的传递 函数。

三阶系统的分析与校正

三阶系统的分析与校正

三阶系统的分析与校正引言:在控制系统中,三阶系统是一种常见且重要的系统。

它具有更高的阶数,因此对于控制系统的性能和稳定性有着更高的要求。

因此,对于三阶系统的分析和校正具有一定的复杂性。

本文将围绕三阶系统的分析和校正展开讨论,并介绍常见的校正方法。

一、三阶系统的基本特点和模型表示三阶系统是一个具有三个自由度的系统,可以用如下的传递函数表示:G(s)=K/(s^3+a*s^2+b*s+c)其中,K为传递函数的增益,a、b、c分别为系统的阻尼、震荡频率和系统自然频率。

二、三阶系统的稳定性分析稳定性是控制系统设计和校正的基本要求。

对于三阶系统的稳定性分析可以采用Bode图和Nyquist图等方法。

1. Bode图分析通过绘制传递函数的幅频响应和相频响应曲线,可以得到系统的幅度余弦曲线和相位余弦曲线。

根据Bode图的特点,可以确定系统的稳定性。

2. Nyquist图分析Nyquist图是对传递函数的极坐标表示。

通过绘制传递函数的Nyquist图,可以分析系统的稳定性。

以上两种方法都可以用来评估系统的稳定性。

如果系统的Bode图和Nyquist图图像均在单位圆内,则系统是稳定的。

三、三阶系统的校正方法校正是为了使控制系统具有所需的性能指标,通过调整系统中的参数和控制器等手段实现。

1.PID控制器的设计PID控制器是最常用的控制器之一,具有简单、稳定、易于实现等特点。

PID控制器由比例控制、积分控制和微分控制三部分组成。

通过调整PID控制器中的三个参数,可以实现对三阶系统的控制。

2.根轨迹法根轨迹法是一种经典的校正方法,通过分析系统的根轨迹来设计合适的校正器。

根轨迹是描述系统根位置随参数变化而变化的曲线。

通过调整参数,可以使根轨迹满足设计要求,进而实现对系统的校正。

3.频率响应方法频率响应方法基于传递函数的幅频响应和相频响应特性进行校正。

根据系统的特性,通过调整增益和相位等参数,可以实现对系统的校正。

以上是常见的三阶系统的校正方法,可以根据实际需求选择合适的方法进行校正。

4第四章__根轨迹法(2)

4第四章__根轨迹法(2)
3
2
1
Imag Axis
0
-1
-2
-3 -2
-1.5
-1
-0.5 Real Axis
0
0.5
1
第四章 线性系统的根轨迹分析
2)确定内环的闭环极点 要求内环的反馈系数 内环的特征方程 3.2<Kf<3.5
( s 0.6)(s2 2s 4) K f 0
在实轴上选取试验点进行试探,P1=-1.6时,Kf =3.36 可求得内环的另外两个闭环极点为 p2 0.5 j1.83 p3 0.5 j1.83 3)绘制外环的根轨迹图 外环的开环传递函数
(2)根轨迹的起点 (3)实轴上的根轨迹
0,-1,-3
终点 均为∞
[0 , ] [3 , 1]
第四章 线性系统的根轨迹分析
(4)根轨迹的渐近线
a
n
2k 180 0 ,120 nm
m j i 1 i
k 0、 1
a=
( p ) ( z )
i 1 j与虚轴的交点 (相同) (9)闭环极点的和 (相同)
第四章 线性系统的根轨迹分析
例:控制系统方框图如下所示
R(s )


Kc s2


K0 s( s 1)
C (s )
1 s3
系统的内环为正反馈,绘制内环根轨迹图。 解: (1)内环的开环传递函数
G1 ( s ) H1 ( s ) K0 s( s 1)(s 3)
第四章 线性系统的根轨迹分析
4-3
广义根轨迹
其它种类的根轨迹: 1.参数根轨迹
2.多回路系统的根轨迹 3.正反馈回路和零度根轨迹

自动控制原理6 第五节根轨迹法设计校正网络

自动控制原理6 第五节根轨迹法设计校正网络

-6
5
4.画出校正以后系统根轨迹,求出 A1 点根轨迹增益
Kr
A1 A1 2 A1 9.6 A1 4
50.4
速度误差系数
Kv
K
Kr
2
4 9.6
10.51(
1
s
)
校正系统的开环传函为:
KcGc
(s)G(s)
50.4(s 4) s(s 2)(s 9.6)
6
用根轨迹法设计相位滞后校正网路
b
、b 0.2

(5)选 Zc和
Pc

1 bT
2.5,及
1 T
0.5
,zC
Pc
5
1 b
s+2.5 1 0.4s
Gc (s) 0.2 s+0.5 1 2s
校正后系统的开环传函
Gc G
2500k 0.2 (s 2.5) s(s 25)(s 0.5)
13
(6)画出校正后系统的根迹,除原点外,形状与原系统相似;
用根轨迹法设计相位超前校正网络 当品质指标以时域指标提出时,用根轨迹设计系统较方便。当
期望闭环主导极点位于未校正系统根轨迹的左边时,就可使用超前 校正。
在不考虑稳态指标时设计步骤如下:
1.根据所需要的动态品质指标要求,确定闭环主导极点A的位置;
2.画出未校正系统的根轨迹,求出使根轨迹通过A点所需要的补偿
(8)校验指标;
(9)求出网络参数 R,C ;
10
例:有一单位反馈控制系统的开环传函为 G(s) 2500k ,要求满
s(s 25)
足下列性能指标;
(1)当输入是一个1rad s的单位速度函数时,输出的速度函数
与输入速度函数的最终稳态误差不大于0.01rad; (2)单位阶跃响应的最大超调量 p 12% ,试设计一个相位滞

根轨迹法和频率响应法校正

根轨迹法和频率响应法校正

根轨迹法和频率响应法校正根轨迹法和频率响应法是两种常用的控制系统校正方法。

这篇文章将围绕这两种方法进行阐述。

首先,我们来介绍根轨迹法。

根轨迹法是一种基于根轨迹的控制系统校正方法。

它通过绘制开环传递函数的根轨迹图来设计合适的控制器。

开环传递函数是未加上控制器后的传递函数,根轨迹图则反映了系统闭环极点的变化情况。

根据根轨迹图,我们可以确定控制器的增益和相位来实现系统的稳定和响应速度的要求。

接下来,让我们介绍频率响应法。

频率响应法是一种基于系统的频率响应特性来设计控制器的方法。

它通常使用幅频特性曲线和相频特性曲线来描述系统的频率响应特性。

在幅频特性曲线上,我们可以看到系统对不同频率输入的响应幅值,从而可以根据需求来设计合适的增益。

而在相频特性曲线上,我们可以看到系统对不同频率输入的相位差,从而可以根据需求来设计合适的相位。

以上是根轨迹法和频率响应法的简要介绍。

接下来,让我们来分析它们的优缺点和适用场景。

首先,根轨迹法适用于线性系统和单输入单输出变量的情况。

这种方法可以提供极点位置信息,而且具有直观性和易于理解的特点。

缺点是需要在整个频率范围内进行分析并找到关键频率点,需要较高的数学功底和计算能力。

其次,频率响应法适用于多变量系统和非线性系统的情况。

这种方法可以提供系统的幅度和相位特性,而且可以在局部频率范围内进行分析。

缺点是对系统的稳态误差和非线性特性无法进行考虑,需要对系统进行模型化。

在实际应用中,我们可以根据系统的特性来选择合适的方法。

如果系统较为简单且线性,可以选择根轨迹法;如果系统较为复杂或存在非线性特性,可以选择频率响应法。

当然,也可以将两种方法结合使用,以获取更好的校正效果。

总之,根轨迹法和频率响应法是两种常用的控制系统校正方法。

了解它们的优缺点和适用场景有助于我们在实际应用中做出合适的决策。

根轨迹校正法的原理

根轨迹校正法的原理

根轨迹校正法的原理
根轨迹校正法是一种用于控制系统稳定性分析和设计的方法。

其基本原理是在复平面中绘制系统的根轨迹,并通过调整反馈增益或者其他参数,使得根轨迹能够满足所需的稳定性要求。

具体来说,根轨迹可以通过以下步骤进行绘制:
1. 将系统的传递函数表示为一个分子多项式和一个分母多项式的比值形式。

2. 将分母多项式因式分解,得到系统的极点位置。

3. 在复平面上标出所有极点的位置,并将它们连成一条曲线,这就是系统的初始根轨迹。

4. 根据反馈方式不同,选择相应的根轨迹变换公式进行计算,得到经过反馈后的新根轨迹。

5. 根据所需稳定性要求,在新根轨迹上选择合适的点作为闭环系统极点位置,并计算对应的反馈增益或参数值。

6. 重复以上步骤,直至满足所有稳定性要求为止。

通过这种方法,可以有效地设计出符合要求的控制系统,并且对于已有系统也可以进行优化和改进。

同时,在实际应用中,还可以结合其他控制方法进行综合设计,以达到更好的控制效果。

总之,根轨迹校正法是一种简单而有效的控制系统设计方法,其原理基于对系统根轨迹的分析和调整,能够满足不同稳定性要求,并在工程实践中得到广泛应用。

根轨迹法特点和方法介绍

根轨迹法特点和方法介绍
根 轨 迹 法特点和方法介绍
根轨迹法: 三大分析校正方法之一
特点:
(1)图解方法,直观、形象。 (2)适用于研究当系统中某一参数变化时,系统
性能的变化趋势。 (3)近似方法,不十分精确。
§4.1 根轨迹法的基本概念
系统的动态性能主要取决于闭环系统特征方程的 根—闭环极点,所以控制系统的动态设计,关键就 是合理地配置闭环极点。调整开环增益是改变闭环 极点的常用办法。 1948年W.R.Evans提出了根轨迹法,它不直接求解 特征方程,而用图解法来确定系统的闭环特征根。
D (s)s22sK*0
l1,2 1 1K*
§4.1.2 闭环零点与开环零、极点之前向通道零点+反馈通道极点 闭环极点与开环零点、开环极点及 K* 均有关
§4.1.3 绘制根轨迹方程—绘制根轨迹的两个条件
根轨迹方程及其含义
K* G(s)
(s) G(s)
(s) G(s) 1G(s)H(s)
1G(s)H(s)0
G (s)H (s)=K *(s-z1)L(s-zm ) =1— 根轨迹方程 (s-p1)(s-p2)L(s-pn)
G (s)H (s) K *(sz1) (szm ) 1
(sp 1)s(p 2) (sp n)
m
G(s)H(s) K*sz1szm sp1 sp2spn
n
m
pi zi
G (s)H (s)= K * (s-z 1 )(s-z 2 )....(s-z m ) K *> 0 (s-p 1 )(s-p 2)....(s-p n )
系统的闭环特征方程可以表示为:
1+K *(s-z1)(s-z2)....(s-zm)=0 (s-p1)(s-p2)....(s-pn)

基于根轨迹法的串联超前校正器的设计

基于根轨迹法的串联超前校正器的设计

基于根轨迹法的串联超前校正器的设计
张白莉
【期刊名称】《长春师范学院学报(自然科学版)》
【年(卷),期】2012(031)003
【摘要】本文提出了用几何法与根轨迹法结合起来设计串联超前校正装置的计算方法。

利用该方法直接可以得到比较精确的校正装置参数,而不需要经过多次凑试,简便有效。

在MATLAB环境下进行实例仿真,验证了该方法的准确性。

%In this paper, a calculation method of series leading corrector that combine geometric method with root locus is proposed. Precise parameters could be obtained by the method without repeated trying. The simulation result in MATLAB showed that the method was effective and utility.
【总页数】4页(P63-66)
【作者】张白莉
【作者单位】忻州师范学院物理电子系,山西忻州034000
【正文语种】中文
【中图分类】TN713
【相关文献】
1.基于根轨迹法的滞后-超前补偿器的计算机辅助设计 [J], 李钟慎
2.基于根轨迹法与串联PID法的激光操作控制系统设计 [J], 吴剑威;唐立新
3.基于MATLAB的串联超前校正器设计 [J], 刘姜涛
4.超前校正器的根轨迹法设计及其MATLAB实现 [J], 李钟慎
5.基于根轨迹法的串联超前校正器的设计 [J], 张白莉;
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 根轨迹法校正设计
如果设计指标是时域特征量,应采用时域校正方法,即将设计指标转换为对闭环主导极点位置的设计,常称为根轨迹法。

设计过程中,不必绘制根轨迹图。

根轨迹法同频率分析法一样也可以有串联超前校正、串联滞后校正和串联滞后-超前校正,因“超前”和“滞后”是频域中的概念,在根轨迹法中不使用。

基本概念: ⑴ 动态性能校正
使开环增益满足设计要求。

例:)2)(5()(0++=s s s k s G ;111)(p s z s s G c ++=;222)(p s z s s G c ++=; ⑴ 动态性能校正 配置。

配置)(1s G c 的零极点应
使需要的闭环极点在校正后的系统根轨迹上,同时还要满足“闭
环主导极点”条件。

⑵ 增益校正 配置)(2s G c 零极点,使校正后的开环增益满足要求v c c s K s G s G s sG =→)()()(lim 0120。

说明:以根轨迹的相角条件,图解1z 和1p 的选取;图解2z 和2p 选取原系统的闭环极点位置基本不
变,并使开环可以取较大的数值。

典型设计指标:开环增益K ,超调量σ,和调节时间s t 。

无论是典型设计指标还是其它形式的设计指标,都需要转换成满足指标要求的闭环主导极点位置。

设计步骤:
1.1 根据动态性能指标,计算闭环主导极点1s 和2s ;
1.2 按闭环主导极点条件,选取动态特性校正环节结构)(1s G c ;依据校正后系统特征多项式与期
望特征多项式相等,计算出校正环节的参数;
1.3 根据开环增益K ,计算增益校正环节)(2s G c 参数;
为使根轨迹(起始段除外)形状基本不变,即闭环主导极点基本不变,又要有较高的开环增益,校正环节的零点和极点必须相互接近,且接近原点。

p s z s s G c --=)(2,需满足0)()()(2≈-∠--∠=∠p s z s s G i i i c 和α==∞→p
z s G c s )(lim 2; 零点和极点选取方法,1.0)Re(/1<s z ,α/z p =。

1.4 检验设计结果;主要检验是否满足闭环主导极点条件。

例6-7 )102.0)(112.0()(0++=s s s k s G , 改写为)
50)(3333.8()(0++=s s s K s G ,k K 67.416=; 设计校正环节,性能指标为:170-≥s K v ,%40≤σ,s t s 1≤。

解:(1) 4.0)]1/(exp[2=--=ζζπσ,28.03.0>=ζ;1)/(4==n s t ζω(留余地),33.13=n ω;
闭环主导极点72.1242,1j s ±-=,相应的多项式为 17882++s s ;
(2) 为使校正后系统的阶次不升高,选取a
s s s G c ++=)3333.8()(1,闭环特征多项式满足: ))(1788()50)((2b s s s K s a s s +++=+++;解得238.12=a ,238.54=b ,381.9654=K ;
(3) 7777.15=v K ,必须进行开环增益校正。

437.4/==v v K K α。

222.0-=z ,05.0-=p ;05
.0222.0)(2++=s s s G c (4) 检验:校正后开环和闭环传递函数为
)50)(238.12)(05.0()222.0(381.9654)(++++=s s s s s s G ,)
102.0)(10817.0)(120()1505.4(05.70)(++++=s s s s s s G ; )176837.7)(227.54)(244.0()222.0(381.9654)(2+++++=Φs s s s s s ;244
.0227.546791.129185.3432,1-=-=±-=s s j s ;141222.0z s z ≈-=;
则可近似为:176837.7162)(2++=
Φs s s ;2954
.0266.13==ζωn ,s t n s 893.05.3==ζω,05.70379.0==v K σ。

结论:17.23=k ,)238.12)(05.0()3333.8)(222.0()(++++=s s s s s G c ;设计满足要求。

例6-6 (P246) )
1005.0)(101.0)(102.0)(11.0()(0++++=s s s s s k s G ,设计校正环节,性能指标为: (1) 误差系数00=c ,200/11=c ;(2) 超调量%30≤σ;(3) 调节时间s t s 7.0≤。

解:要求200=v K ;改写)
200)(100)(50)(10()(0++++=s s s s s K s G ,k K ⨯=710 (1) 3.0)]1/(exp[2=--=ζζπσ,358.0=ζ;7.0)/(4==n s t ζω(留余地),96.1516>=c ω;
闭环主导极点94.14728.52,1j s ±-=,相应的多项式为 256456.112++s s ;
(2) 为使校正后系统的阶次不升高,选取a s s s G c ++=)10()(1;系统阶次较高且数值较大,按特征多项 式相等求解很烦琐,容易因计算精度而出现计算错误。

先按根轨迹的相角条件计算a 值:
180)200()100()50()(11111-=+∠-+∠-+∠-+∠-∠-s s s a s s
96.3640.401.965.1802.69)(1=---=+∠a s ;583.25=a ;
再按特征多项式相等求出K 值和相应的特征多项式
))(256456.11()200)(100)(50)((232d cs bs s s s K s s s a s s +++++=+++++
631.13493716.345439137456.1125635000100000061109.39526256456.1125635035000127
.364456.112561000000456.11350==++=+==++=+=+=+=+d K d c b a c d K c b a b d c a b a 345439000=K ,特征多项式分解为)65.200)(98.6724476.163)(256456.11(22+++++s s s s s , 显然满足具有闭环主导极点的条件,且精度较高。

(3) 5027.13=v K ,要达到200=v K ,必须进行开环增益校正。

812.14==v v K K α,02.0296.0==p z ;02.0296.0)(2++=s s s G c ;)
583.25)(02.0()10)(296.0()(++++=s s s s s G c ;5439.34=k 。

(4) 验算: 93.0)94.14708.5()94.14432.5()(12=+-∠-+-∠=∠j j s G c ,对增益校正前的闭环极点影响很小,设计满足性能指标。

相关文档
最新文档