中考常考的旋转、折叠、翻转等几种经典类型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考常考题型
(一)正三角形类型
在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC 重合。经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.
(二)正方形类型
在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向
旋转900,使得BA与BC重合。经过旋转变化,将图(2-1-a)中的PA、PB、PC 三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、
B、C的距离分别为PA=1,PB=2,PC=3。求此正方形ABCD面积。
(三)等腰直角三角形类型
在等腰直角三角形ΔABC中,∠C=Rt∠, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。求∠BPC的度数。
平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系.这类实体的特点是:结论开放,
注重考查学生的猜想、探索能力;便于与其它知识相联系,解题灵活多
变,能够考察学生分析问题和解决问题的能力.在这一理念的引导下,
近几年中考加大了这方面的考察力度,特别是2006年中考,这一部分
的分值比前两年大幅度提高。
为帮助广大考生把握好平移,旋转和翻折的特征,巧妙利用平移,旋转和翻折的知识来解决相关的问题,下面以近几年中考题为例说明其解法,供大家参考。
一.平移、旋转
平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的
图形运动称为平移.“一定的方向”称为平移方向,“一定的距离”称为平移距离。
平移特征:图形平移时,图形中的每一点的平移方向都相同,平移
距离都相等。
旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度
成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫
做旋转中心,图形转动的角叫做旋转角.
旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于
图形的旋转角。
例1.(2006年绵阳市中考试题)如图,将ΔABC绕顶点A顺时针旋转60o后得到ΔAB′C′,且C′为BC的中点,则C′D:DB′=()
A.1:2 B.1: C.1: D.1:3
分析:由于ΔAB′C′是ΔABC绕顶点A顺时针旋转60o
后得到的,
所以,旋转角∠CAC′=60o,ΔAB′C′≌ΔABC,
∴AC′=AC,∠CAC′=60o,∴ΔAC′C是等边三角形,
∴AC′=AC′.又C′为BC的中点,
∴BC′=CC′,
易得ΔAB′C、ΔABC是含30o角的直角三角形,
从而ΔAC′D也是含30o角的直角三角形
点评:本例考查灵活运用旋转前后两个图形是全等的性质、等边三角形的判断和含30 o角的直角三角形的性质的能力,解题的关键是发现
ΔAC′C是等边三角形.
二、翻折
翻折:翻折是指把一个图形按某一直线翻折180o后所形成的新的图形的变化。
翻折特征:平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,
这条直线就是对称轴。
解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。
翻折在三大图形运动中是比较重要的,考查得较多.另外,从运动
变化得图形得特殊位置探索出一般的结论或者从中获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。
例2.(2006年江苏省宿迁市)如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于()
A.30°B.45°
C.60°D.75°
分析:由已知条件∠BAD′=30°,易得∠DAD′=60o,又∵D、D′关于AE 对称,
∴∠EAD=∠EAD′=30o,
∴∠AED=∠AED′=60o.
故选C
点评:本例考查灵活运用翻折前后两个图形是全等的性质的能力,解题的关键是发现∠EAD=∠EAD′,∠AED=∠AED′
点评:图形沿某条线折叠,这条线就是对称轴,利用轴对称的性质
并借助方程的的知识就能较快得到计算结果。
由此看出,近几年中考,重点突出,试题贴近考生,贴近初中数
学教学,图形运动的思想(图形的旋转、翻折、平移三大运动)都一一考查到了.因此在平时抓住这三种运动的特征和基本解题思路来指导我们
的复习,将是一种事半功倍的好方法。
平移与旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。题型多以填空题、计算题呈现。在解答此类问题时,我们通常将其转换成全等求解。根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
例1:如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心,逆时针旋转90°至ED,连结AE、CE,则△ADE的面积是()