巧用数形结合思想解二次函数中的问题

合集下载

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用【摘要】二次函数教学中,数形结合思想的应用是非常重要的。

通过将数学与几何相结合,可以帮助学生更深入地理解二次函数的概念和特性。

通过实例分析和图形展示,学生能够直观地看到二次函数的图像与方程之间的关系,从而加深对这一知识点的理解。

通过实践操作,学生可以更好地掌握数学知识,提升他们的实际运用能力。

数形结合思想不仅可以提升学生的学习兴趣和效果,还可以帮助他们从多角度理解数学知识,提高数学素养。

在二次函数教学中,充分利用数形结合思想是非常有益的,可以有效提升学生的学习水平和综合素质。

【关键词】二次函数、数形结合、教学、图形、特性、实例分析、数学、几何、理解、实践操作、学习兴趣、学习效果、多角度、数学素养。

1. 引言1.1 二次函数教学的重要性二次函数作为高中数学中的重要内容之一,在学生数学学习中具有重要的地位。

学会了二次函数的相关知识,可以帮助学生理解和掌握高中数学中的很多概念和方法,为以后的学习打下坚实的基础。

二次函数的教学内容丰富多样,不仅可以帮助学生提高数学的解题能力,还可以培养学生的数学思维和创新能力。

二次函数具有许多独特的特性和规律,通过学习二次函数,可以让学生在数学上有更深入的认识和了解。

二次函数也广泛应用于生活和科学领域,学会了二次函数相关知识可以帮助学生更好地理解和解决实际问题。

二次函数教学的重要性不言而喻。

只有深入理解和掌握二次函数的相关知识,才能在数学学习中取得更好的成绩,为将来的发展打下坚实的基础。

二次函数的教学不仅具有重要的理论意义,更具有重要的实践意义。

通过深入的学习和实践,可以帮助学生更好地理解和应用二次函数相关知识,提高数学素养和解决实际问题的能力。

1.2 数形结合思想的意义数形结合思想在二次函数教学中扮演着至关重要的角色。

通过将数学与几何相结合,可以帮助学生更直观地理解抽象的数学概念,提高他们的学习兴趣与学习效果。

在二次函数这一抽象概念中,数形结合思想可以将函数的数学性质与图形的几何特征相联系,使学生更全面地理解二次函数的本质。

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用数形结合思想在二次函数教学中的应用是非常重要的。

二次函数是高中数学中的重要内容,它在解决实际问题时,往往需要将数学知识与几何图形相结合,才能更好地进行分析和解决。

在讲解二次函数的基本概念时,可以借助几何图形进行解释。

通过绘制抛物线的图像,让学生直观地感受到二次函数的特点和性质。

可以引导学生观察图像的特点,如顶点、对称轴、开口方向等。

通过观察图像,学生可以更深入地理解二次函数的定义和性质。

数形结合思想在解决二次函数的最值问题时也能起到很大的帮助。

当需要求一个二次函数在一定区间内的最大值或最小值时,可以通过分析几何图像的形状来确定最值的位置。

如果是一个开口向上的抛物线,最小值即为顶点的纵坐标;如果是一个开口向下的抛物线,则最大值为顶点的纵坐标。

通过这种数形结合的思想,学生不仅可以快速找到最值的位置,还能够对最值的意义有更深入的理解。

数形结合思想在解决二次函数方程的根的个数和位置问题时也很有用。

通过绘制抛物线的图像,可以让学生观察到抛物线与x轴交点的个数和位置与方程的根的个数和位置是一致的。

如果抛物线与x轴只有一个交点,那么方程也只有一个实根;如果抛物线与x轴有两个交点,那么方程有两个实根;如果抛物线与x轴没有交点,那么方程没有实根。

通过这种数形结合的思想,学生可以更好地理解二次函数方程根的个数与位置的关系。

数形结合思想在解决二次函数的图像变换问题时也能起到很大的帮助。

在讲解平移变换时,可以通过移动抛物线的顶点,让学生理解平移变换对函数图像的影响;在讲解伸缩变换时,可以通过改变抛物线的开口程度,让学生理解伸缩变换对函数图像的影响。

通过这种数形结合的思想,学生可以更直观地理解各种函数变换的效果和特点。

巧用数形结合思想求函数最值

巧用数形结合思想求函数最值

巧用数形结合思想求函数最值六招破解函数最值及巧用数形结合求参数问题一、六招破解函数最值问题函数最值问题一直是高考的一个重要的热点问题,在高考中占有极其重要的地位.为了让大家能够更加系统、全面地掌握函数最值问题的解决方法,下面就其问题的常用解法,分类浅析如下:1.配方法配方法是求二次函数最值的基本方法,如函数F(x)=6z/(x)2+/7/(x)+c(qHO)的最值问题,可以考虑用配方法.[例 1]已知函数 =(eA—a)2+(e A—tz)2(tzeR, aHO),求函数 y 的最小值.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和-:角换元,我们可以根据具体问题及题目形式灵活选择换元的方法,以便将复杂的函数最值问题转化为简单的函数最值问题.如可用三角换元解决形如/+/=1及部分根式函数形式的最值问题.3・不等式法利用不等式法求解函数最值,主要是指运用基本不等式及其变形公式來解决函数最值问题的一-种方法.常常使用的基本不等式有以下几种:aIb#a|b。

er2ab(a, b 为实数),° ^y[ab(a0, b20), abW。

J 些艺(a, b为实数).14[例3]函数fix) =-+t^(O<x< 1)的最小值为・兀1X4.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种方法在高考屮是必考的,多在解答题中的某一问出现.[例4]已知函数»=xln x,则函数心)在也r+2](r>0)上的最小值为.5.导数法设函数兀Q在区间[a, b]上连续,在区间(a, b)内可导,则的在[a, b]上的最大值和最小值应为兀0在(d, b)内的各极值与», fib) 中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.[例5]函数»=x3-3x+l在闭区间[—3,0]上的最大值,最小值分别是,•6.数形结合法数形结合法是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的…种常用的方法.这种方法借助儿何意义,以形助数,不仅可以简捷地解决问题,还可以避免诸多失误,是我们开阔思路、正确解题、提高能力的-种重要途径.[a,[例 6]对 a, bWR,记 max|d, b\=\i1 函数=max||x+l|, |x—2||(x£R)的最小值是.二、巧用数形结合妙解3类求参数问题通过以下三个方面体会数形结合思想的运用.1.通过基本函数模型及变式的图象求参数的取值范围或值|lg x|, OvxWlO,若a,b,c互不相等,[例1]已知函数fix)=<1—2^+6,兀>10,_!»=»=»,则abc的取值范围是(2•通过函数的零点与方程的解的相互关系求函数零点和方程的解及参数的范围[例2]已知mGR,函数/(x)=x2+2(m2+l)x+7,g(x)=-(2m2—m+2)x+m.(1)设函数p(x)=/U)+g(x)・如果p(x)=0在区间(1,5)内有解但无重根,求实数加的取值范围;d,总存在唯一非零实数b(bHa),使得/2(d)=/z(b)成立?若存在,求加的值;若不存在,请说明理由.3.通过圆或圆锥曲线的部分图形与函数图象的关系来求参数的范围[例3]如果函数y=l+p4—F(|x|W2)的图象与函数2)。

浅析数形结合在初中数学二次函数教学中的应用

浅析数形结合在初中数学二次函数教学中的应用

浅析数形结合在初中数学二次函数教学中的应用对于九年级的孩子来说,数学学习的难度加大,二次函数作为一个需要动用学生综合思考能力的难题,一直是数学教学的重点。

实际上,进行函数学习,不仅是日后更深层次的数学学习基础,也对于学生数学思维的培养,具有程度的影响。

数与形是数学中的两个基本概念,不同的图形蕴含着不同的数值,而不同的数量关系,又能够通过数学图形展现出来,通过数形结合图像与竖直进行对照,能够更加简单的进行数学问题的解决,这也是二次函数教学过程当中的主要思想。

本文也是基于数形结合的思想,对初中数学二次函数教学的具体应用进行举例说明,希望能够提高函数教学的质量和学生学习的效率。

关键词:数形结合二次函数初中数学在数学学习的过程当中,数形结合的思想是教师教学的重点,它直接影响着学生思维能力的养成,也影响着学生的数学实际能力。

数形结合的题目大多是以二次函数相关知识来呈现的。

因此,在进行二次函数教学的过程当中,我们应该以数形结合思想为核心,将图像与数据有机结合起来,化抽象为具象,化繁为简,提高学生的解题能力。

数形结合的具体体现就是,在教学过程当中,由数据绘制图形,完成对数据的解题,由图形推断,数据完成对数据的具体计算,而在中考时,我们也要通过数形结合的思想,用数形相互对照完成高难度的函数题目解答。

1.由数定形,确定坐标由数定形的教学思想是通过数据的明确来对二次函数图像进行推断性落实,用代数的方法来解决关于二次函数图形的问题。

它是通过对未知二次函数的推断性数据代入,来完成对二次函数图像性质的描述。

在进行教学时,我们需要让学生意识到由数定形的思想可以运用在哪些方面。

在解决二次函数相关习题时,碰到系数未定的二次函数,我们首先需要抓住题目中给出的数据,将其对应图像在坐标系中进行展示,之后完成对整个函数图像的大致推断。

对于这类问题,我们首先需要确定的是题目中所给出的具体条件,并与坐标系上展示出来,观察分析他是否与已经学过的一些二次函数图像相似,作出二次函数系数正负值的推断,再去完成题目的解答。

巧用“数形结合”思想进行二次函数教学

巧用“数形结合”思想进行二次函数教学

巧用“数形结合”思想进行二次函数教学发布时间:2022-03-30T15:26:34.416Z 来源:《中国教师》2022年4月下作者:刘浩东[导读] 在初中的数学中二次函数的知识内容占据主要的地位,,并且也是学生学习的重难点。

教师在讲解二次函数知识时,要灵活的运用数形结合的方法,这样会帮助学生理解二次函数的概念,并通过直观图像的形式让学生掌握二次函数的性质。

数形结合的思想方法可以将复杂的问题简单化,抽象的问题直观化,而且利于学生养成抽象的思维意识,给学生学习数学知识提供了更好的思想方法。

刘浩东安徽省合肥市第三十八中安徽合肥 230000【摘要】在初中的数学中二次函数的知识内容占据主要的地位,,并且也是学生学习的重难点。

教师在讲解二次函数知识时,要灵活的运用数形结合的方法,这样会帮助学生理解二次函数的概念,并通过直观图像的形式让学生掌握二次函数的性质。

数形结合的思想方法可以将复杂的问题简单化,抽象的问题直观化,而且利于学生养成抽象的思维意识,给学生学习数学知识提供了更好的思想方法。

【关键词】数形结合、二次函数、教学中图分类号:G688.2 文献标识码:A 文章编号:ISSN1672-2051(2022)4-152-01前言:在初中数学中函数属于重点学习内容,初中涉及到的函数学习分为三种:一次函数、反比例函数以及二次函数。

二次函数相对于另外两种函数而言,更具有复杂性和抽象性,增加了学习难度。

学生在学习中最大的阻碍就是对函数的概念缺乏认知和深度理解,不能简单的将函数间的关系进行转换。

因此,教师必须在进行二次函数教学中运用数形结合的思想方法,才能帮助学生解决这一障碍。

一、数形结合思想的内涵“数”和“形”的有效结合是以两者之间相互转换的形式来解决数学问题,它可以从两个方面来分析,一是“以形论数”,二是“以数论形”。

通过两者之间的互相转化和对应,将复杂转为简单,抽象转为具体,它将严谨的数和直观的长融合到一起,将复杂的解题过程变得简单化,是一种经常用到的数学思想方法。

运用数形结合思想探讨二次函数在初中数学中的相关应用

运用数形结合思想探讨二次函数在初中数学中的相关应用

运用数形结合思想探讨二次函数在初中数学中的相关应用发布时间:2022-08-11T18:15:02.792Z 来源:《中小学教育》2022年7月4期作者:鲍炜[导读]鲍炜安徽省芜湖市第二十九中学中图分类号:G652.2 文献标识码:A 文章编号:ISSN1001-2982 (2022)7-179-021引言数学是一种既古老又年轻的文化,也是自然科学的基础学科。

人类从远古时代的结绳计数,到如今可以宇宙航行,无时无刻不受到数学思想的影响。

最近几年,我国数学课程中关于数学学习的理念发生了深刻地变化,数学教学的主要目的和任务早已不是简单的知识和方法的传授,而是通过数学学习培养学生的数学能力。

二次函数是初高中教材中一个重要的内容。

二次函数是中考命题的重点,同时也是省示范高中自主招生考试的重要考点。

如何让学生对二次函数了解更加的深刻透彻,本论文运用数形结合思想对初中二次函数做了更深一步的研究。

我们通过以下几个方面的阐述让学生更加深入理解二次函数的知识,更加体会到数形结合思想的运用:利用二次函数图象讨论一元二不等式的解(自主招生考试考点)、利用二次函数图象讨论二次方程根的分布问题(中考难点)、巧用二次函数图象讨论含绝对值的二次函数问题自主招生考试考点)、巧用二次函数图象讨论二次函数与一次函数的交汇问题(中考重点)。

2 国内外研究现状查阅相关文献,众多数学教育者从不同角度和侧面探讨了数形结合在教学、解题及函数中的应用,也给出了自己独特的见解。

在所查阅到的国内外参考文献中,教育者们对数形结合在二次函数中只针对二次函数中的某一问题作了相应的介绍,并未给出较为深入系统的研究。

数形结合思想在初高中二次函数中的应用非常广泛,对数形结合在初高中二次函数中的综合应用进行深入研究,使之形成完整的体系,对今后利用数形结合思想在二次函数教学、解题及其在中考以及自主招生考试中的应用具有重要的意义。

3 提出问题数形结合不仅是一种重要的解题方法,而且是一种基本的数学思想,同时二次函数也是初高中比较重要的一个内容,为了促进学生对这种思想方法的掌握,我们初中老师在依据教材对标课程标准的前提下,要适当提高二次函数的教学难度,这样学生到了高中才能较好的掌握二次函数内容,能起到承上启下的作用。

数形结合论文二次函数论文:通过几个典型例题解析二次函数中的“数形结合”思想方法

数形结合论文二次函数论文:通过几个典型例题解析二次函数中的“数形结合”思想方法

数形结合论文二次函数论文:通过几个典型例题解析二次函数中的“数形结合”思想方法【摘要】数形结合的数学思想方法在初中数学中具有相当的重要性。

本文通过对几个典型的例子剖析来展示数形结合的思想在二次函数中对判断参数的正负、解决方程组的问题、比较函数值大小的问题、推导二次函数平移后的方程等中的应用。

【关键词】数形结合二次函数前言函数向来离不开图像。

通过函数图像,我们可以很直观地理解函数,从而更好地应用函数。

二次函数是初中生接触解析几何的开端,它不仅在中考中占着很重要的地位,还对学生数学思维的培养具有很重要的意义。

学生在解决二次函数的问题时往往遇到很多问题,于是本文将介绍对于解决二次函数问题很有启发意义同时也是中考中经常要考的考点——数形结合。

1.由图像判断a、b、c的正负例1:(如图1所示)抛物线方程为y=ax2+bx+c(a≠0),则可以得出以下结论: a <0 ;b>0;c>0解析:∵抛物线开口向下,∴a <0∵抛物线顶点在第一象限,∴->0 即<0,∴ b>0∵抛物线与y轴交于y轴的正半轴,∴ c > 0借由抛物线的图,我们可以清晰地知道:抛物线的开口方向由a决定,a >0 则开口向上,a <0则开口向下;在判断出了a的情况下,再借助顶点的位置(即顶点横坐标x=-的正负),才可判断出b的大小。

最后,在抛物线y=ax2+bx+c(a≠0)中,与y轴交点坐标为(0,c),c的值由交点纵坐标决定,因此可以判断c的大小。

2.数形结合可以将求解方程的问题转化为交点问题,比较函数值大小的问题例1:关于x的一元二次方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在()a.第一象限b.第二象限c.第三象限d.第四象限解析:本题的实质问题在于讨论抛物线与x轴的交点问题。

譬如求方程y=ax2+bx+x (a≠0)y=kx+b的时候,数形结合的思想就可以把问题转化为y=x2-x-ny=0通过图象求两条曲线交点的问题。

巧用“数形结合”求解二次函数问题

巧用“数形结合”求解二次函数问题

巧用“数形结合”求解二次函数问题作者:徐超凡来源:《中小学教学研究》2010年第06期摘要:二次函数是初中数学知识的重中之重,它与其他知识紧密相关,中考命题者钟爱有加。

如何把脉二次函数,让学生学而不厌,知难而进呢?可以把数形结合作为解决二次函数问题的武器,逐一破解“残缺型抛物线”、灵活解决“四点”“五距”,化解二次函数的探究应用问题中难点。

关键词:数形结合;残缺型抛物线;探究应用数形结合的思想,它是指把代数的精确刻划与几何的直观形象相统一,将抽象思维与直观形象水乳交融的一种思想方法。

数形结合是学好数学的一个魔法棒:它可将一些看似复杂的问题简单化,一些难于入手的问题迎刃而解。

二次函数是初中数学知识的重中之重,它与其他知识紧密相关,中考命题者钟爱有加。

如何把脉二次函数,让学生学而不厌,知难而进呢?巧妙运用数形结合可以达到四量拨千斤的效果,让学不得法的学生忘了烦恼忘了忧。

一、巧用数形结合求残缺型抛物线问题何谓“残缺型抛物线”,顾名思义,就是不完整的抛物线。

虽然抛物线不完整,但是利用已知条件及抛物线的轴对称性,可以达到既可意会,也可言传的功效,从而轻而易举解决相关问题。

例1(2007南充).如图1是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1。

给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a②其中正确结论是().A ②④B ①④C ②③D ①③解析:图象开口向下,顶点在第二象限想象到抛物线一定与x轴有两个交点,所以①正确;对称轴为x=-■=-1 得2a-b=0,所以②错误;顶点在第二象限,当x=-1,a-b+c>0,所以③错误;抛物线开口向下,a例2(2009德城).如图2是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3 ,0),则由图象可知,不等式ax2+bx+c>0的解集是_________解析:根据图象可知抛物线开口向上,与x轴有两个公共点,对称轴右边的交点B与对称轴相距2个单位长度。

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用二次函数教学中的“数形结合”思想的应用二次函数作为高中数学中的重要内容之一,其教学一直备受学生和教师的关注。

在二次函数教学中,要求学生不仅要能够掌握相关的概念和定理,还要能够应用所学的知识解决实际问题。

“数形结合”思想在二次函数教学中的应用显得尤为重要。

本文将针对二次函数教学中的“数形结合”思想进行分析和探讨,以期能够更好地引导学生理解和掌握二次函数的相关知识。

一、探究二次函数图像的特点在二次函数教学中,学生首先需要了解二次函数的图像特点。

一般来说,二次函数的图像是一个抛物线,其开口方向由二次项系数的正负性决定,开口向上的抛物线代表二次项系数大于0,开口向下的抛物线代表二次项系数小于0。

二次函数的顶点坐标、对称轴方程、零点坐标等也是学生需要掌握的内容。

通过学习这些内容,学生可以初步认识二次函数图像的特点,从而为后续的学习打下基础。

在教学中,可以通过让学生观察二次函数图像的变化,来引导他们探究二次函数图像的特点。

可以让学生改变二次函数的系数,观察对图像的影响,从而深入理解二次函数的图像特点。

老师还可以通过实例演示的方式,引导学生进一步理解二次函数图像的特点,激发学生的学习兴趣,提高他们对二次函数图像特点的理解能力。

二、数形结合的实际应用在学生掌握了二次函数的图像特点后,就可以引入“数形结合”思想,让学生将数学知识与实际问题相结合,进行实际应用。

可以通过实际问题来引导学生分析和解决问题,从而培养学生的数学建模能力和解决问题的能力。

通过实际问题的应用,还可以让学生更加直观地理解二次函数的意义和应用价值,提高他们对数学知识的兴趣和学习积极性。

在教学中,老师可以鼓励学生提出问题、进行实验和观察,从而引导他们进行自主探究。

通过这样的方式,学生可以更加深入地理解二次函数的相关知识,同时也可以培养其独立思考和问题解决的能力。

在探究性学习的过程中,老师要给予适当的指导和帮助,促进学生的学习成果,从而提高他们的学习效果。

“数形结合”在解题中的应用——二次函数与平行四边形

“数形结合”在解题中的应用——二次函数与平行四边形

“数形结合”在解题中的应用——二次函数与平行四边形摘要:二次函数是初中数学教材中非常重要的内容之一,是中考的必考内容。

在中考考卷往往结合种数学容,将二次函数与四边形结合,提升思维综合度,使学生整个答卷在此出现分水岭,此题只要抓住解题要领对学生的解题能力起到了一定的锻炼作用。

数形结合思想是数学函数解题中的法宝,利用数形结合来实现学生对数学题的直观认知,提高解题效率。

本文首先阐述了数形结合在解题中的重要性,然后分析数形结合在解题中的应用,将二次函数与四边形进行有效结合,并进行解题思路的强调,点播学生进行解题,最后总结解题规律。

旨在能够利用数形结合的思维进行题目的分析,从而实现数学题的分析,达到解题的目的,同时也可以加强学生数学思维能力的提升。

关键词:数形结合;二次函数;平行四边形引言:数学家华罗庚说过:“数缺形时少直觉,形缺数时难入微”,数形结合是数学学习中解决函数问题常用方法。

解题中经常会出现二次函数与四边形同时出现的题型。

陕西中考中截止2020年前近10年考查了6次二次函数与特殊平行四边行,涉及平行四边形4次。

让学生在解题中摸不到头绪,通过数形结合方法可以有效解决此难题。

那么如何在初中数学解题中进行数形结合的应用呢,下面通过具体例题来进行分析和研究。

一、数形结合在解题中的重要性数形结合指的是数字与图形进行有效结合,能够实现数形之间的转化,通过图形的展示让学生在解题中更加具有直观性,可以直接看到解题要点,有效提高解题效率。

与此同时,通过数形结合思想还可以帮助学生打开数学解题思路,能够通过多种方法进行数学题目的运用,促进学习质量的提升[1]。

二、数形结合在解题中的应用分析陕西省中考对二次函数与平行四边形的考察非常重视,教师在教学的过程中可以通过对中考题目进行分析,在例题分析中对学生进行解题思维点拨,从而能够促进学生进行数学问题的思考,进而不断培养学生在处理二次函数与平行四边形的解题思路。

在最后的过程中还需要对类型的问题解决方法进行大总结,这样能够让学生在遇到类似的问题可以随机应变,提高学生的解题能力。

数形结合思想在二次函数问题中的应用探析

数形结合思想在二次函数问题中的应用探析

2020年36期208数形结合思想在二次函数问题中的应用探析李佳彬(福建省南安国光中学,福建 南安 362321)二次函数是我国中考必考的常见知识点,而且二次函数的考察方式也是十分灵活的,二次函数既可以以现实生活中实际的问题作为载体进行考察,又能出现在一些综合题中。

在对学生进行二次函数考察的过程中,能够很好地检验出学生对于二次函数知识掌握的情况,并巩固学生所学。

初中数学教师在教学的过程中需要结合数形结合的思想,让学生可以更加深入地理解二次函数的深刻含义。

一、数形结合思想的概述数形结合的思想主要包括两个方面,主要为“以数论性”和“以形论数”。

在年代比较久远的《中国数学杂志》中,就曾经提到过“形”与“数”之间比较密切的关系。

有关数形结合这一概念正式出现的地方是在我国著名数学家华罗庚的《谈谈与蜂房结构有关的数学问题》一书中。

华罗庚在书中这样说道:“数无形而少直观,形无数而难入微”,通过数和形的相互转化能够简化一些比较复杂的难以理解的数学问题,体现了数学中精简的思想。

数形结合这种思想将直观的图像和数学语言相结合,将形象的思维和抽象的思维相结合,可以通过直观的图形发挥出抽象概念的支柱作用。

通过这种相互转化、相互补充,使得数形结合成为了解决数学问题的重要思想[1]。

二、数形结合思想在二次函数教学中的应用探析(一)从数到形,“以形论数”学过二次函数的我们都知道,y=ax2+bx+c的形式称之为二次函数,其中a、b、c是常数,a≠0,其中x是自变量,y是因变量,a、b、c是常 量,a是二次项系数,b是一次项系数,c是常数项。

首先,数学教师要先让学生理解这个一元二次函数的内涵,让学生理解常数a不仅仅是二次函数中二次项的系数,也决定了二次函数图像的开口方向和开口的大小,常数a和b决定了二次函数对称轴的位置,常数c决定了二次函数y=ax2+bx+c与y轴交点的位置,在学生确定了常数a、b、c之后,就能确定二次函数的图像以及表达式。

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用二次函数是初中高中数学中的重要内容,其教学既涉及到运算规律的讲解,也涉及到数学思维的培养。

在二次函数教学中,运用“数形结合”思想是非常有效的教学方法之一。

下面从二次函数教学中“数形结合”思想的应用方面进行探讨。

首先,二次函数图像与根的关系是教学中重要的内容。

二次函数的解析式为y=ax²+bx+c(a≠0),可以通过推导,得到二次函数的判别式△=b²-4ac,若△>0,则函数有两个不同的实根,若△=0,则函数有两个相同的实根,若△<0,则函数无实根。

在教学中,可以通过绘制二次函数的图像,让学生看得更直观。

通过图像观察,可以判断二次函数是否有根,若有,还可以计算出根的大致范围。

同时,也可以通过根的公式计算出根的精确值,并用数轴来表示。

这样,通过“数形结合”的方式,可以深化学生对二次函数图像和根的理解,加深记忆,提高学生的学习效果。

其次,二次函数图像的性质也是二次函数教学中的重点内容。

通过图像,可以发现,二次函数是一个开口朝上或朝下的抛物线。

当a>0时,抛物线开口朝上,二次函数的最小值为顶点坐标,当a<0时,抛物线开口朝下,二次函数的最大值为顶点坐标。

同时,二次函数的对称轴为y=-b/2a。

在教学中,可以通过绘制多组图像,让学生观察抛物线的开口方向、顶点坐标、对称轴等图像性质,并找出它们之间的联系。

通过这种“数形结合”的方式,可以帮助学生更加深入地理解二次函数图像的性质,从而提高学生的学习兴趣和学习积极性。

最后,二次函数的应用也是教学中不可忽视的内容。

二次函数常常在物理、工程等领域中得到应用。

例如,通过绘制二次函数图像,可以解决物理问题中的抛物线运动。

在教学中,可以通过引导学生分析实际问题,并建立相应的数学模型,进一步加深学生对二次函数的应用理解。

同时,通过数学软件的辅助,还可以帮助学生更加直观地观察二次函数图像,提高学生学习的趣味性和实用性。

数形结合思想在二次函数问题中的应用解析

数形结合思想在二次函数问题中的应用解析

5
例4、如图,抛物线经过A(-1,0),B(5,0),C(0,三点,
2
)
(1)、求抛物线的解析式
(2)、在抛物线的对称轴上有一点P,使PA+PC的值最小,
求点P的坐标。
(3)、点M为x轴上一动点,在抛物线上是否存在一点N,
使以A,C,M,N四点构成的四边形为平行四边形?若存在,求
点yN的坐标;若不存在,请说明理由。
下列结论列结中论:中:①①aabbcc>>0;0②;b=2a;②b=2a;
③a+b+c③是<a+(0b+;c<④)0;a④+ab+b--cc>>0;0⑤; a⑤-b+ac>-b0正+c确>的个0正数 确的个数
是 ( A、)2个 B、3个
A、2个 C、4B个、D3、个5个
y
C、4个 D、5个
y
-1 0o 1 x x
①有两个不相等的实数根;②有两个相等的实数根;③无
实数根?
b2 4ac 0 有2个交点
y
4
b
2
4ac
0
有1个交点
b2 4ac 0 没有交点
方程问题 转化 函数问题
-3 -1 o 1
x
(数)
(形)
y (x 1)2 4
本题先由数到形,后图由1形到数,用运动变化的观点去进行观察分 析和化归,巧妙地运用了图形特征来观察图形的变化规律,解答 十分巧妙,充分体现了“数”、“形”结合的解题思想。
两数
者缺
结形
合时
万少
般直
好观
,,
隔形
y
离缺 分数
——
家时
o
x
万难

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用1. 引言1.1 引言二次函数是数学教学中一个重要的内容,学生在学习过程中常常会面临着一些挑战。

如何让学生更好地理解和掌握二次函数,是每个教师都面临的问题。

在教学中,数形结合的思想被广泛应用,通过将数学概念与几何形态相结合,帮助学生更好地理解抽象的数学概念。

本文将介绍在二次函数教学中如何运用数形结合的思想,提高学生的理解能力和激发学生的兴趣。

通过具体的案例分析和教学实践,展示数形结合在二次函数教学中的重要性和实际应用。

通过本文的阐述,希望能够帮助教师更好地引导学生学习二次函数,同时也激发学生对数学的兴趣,提高他们的学习效果和学习动力。

2. 正文2.1 二次函数教学中的挑战在二次函数教学中,教师常常面临着一些挑战。

学生可能会对二次函数的概念和性质感到困惑,特别是对于开口方向、顶点坐标、零点、轴对称等概念可能存在误解。

二次函数的图像比较抽象,学生很难直观地理解二次函数的变化规律,导致他们缺乏对二次函数的直观感受和认识。

二次函数的解题方法比较复杂,涉及到方程的解法、图像的绘制等多个方面,容易让学生感到困惑和压力。

针对这些挑战,教师可以通过数形结合的教学方法来帮助学生更好地理解和掌握二次函数的相关知识。

通过将数学公式和图形结合起来,可以使学生更直观地理解二次函数的性质和规律。

可以通过绘制二次函数的图像来帮助学生理解二次函数的开口方向、顶点位置等特点,从而加深他们对二次函数的认识。

通过数学计算和几何推理相结合的方式,可以让学生从不同角度去理解和掌握二次函数的相关知识,提高他们的数学思维能力和解题能力。

数形结合在二次函数教学中具有重要的意义,可以帮助学生克服困难,提高学习效果,激发学生对数学的兴趣和热情。

通过巧妙地将数学概念与几何图形相结合,教师可以让学生在实践中更好地理解和掌握二次函数的相关知识,培养他们的数学思维能力和创造力。

【2000字】2.2 数形结合的重要性数形结合在二次函数教学中扮演着至关重要的角色。

案例 “数形结合思想”在二次函数中的应用。宿羊山初中沙作鹏

案例 “数形结合思想”在二次函数中的应用。宿羊山初中沙作鹏

案例“数形结合思想”在二次函数中的应用一、教学分析1、教材地位、作用《二次函数的应用》是苏科版教材九年级下册的教学内容是在学生已学过二次函数的图象和性质基础上,进一步研究应用二次函数性质解决生活、生产实问题,掌握本节内容不仅有利于培养学生数学建模能力,以及应用模型去解决实际问题的能力,更有利于增强学生“用数学”的意识。

教学目标:掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.教学重点:本节的重点是数形结合思想解决二次函数中有关最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型.在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题.教学难点:由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式.二、学情分析1、初三学生在新课的学习中已掌握二次函数的定义,图像及性质等基本知识.2、学生的分析,理解能力较学习新课时有明显提高.3、学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力.4、学生能力差异较大,两极分化明显.三、教学方法:1、师生互动探究式教学,遵循教师为主导,学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动,师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高,思维的训练.同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高.2、运用多媒体进行辅助教学,既直观,生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点,分散难点,更好地提高课堂效率.3、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力.一、创设情境导入新课。

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用二次函数是高中数学中的重点内容之一,也是考试中经常出现的考点,掌握二次函数的知识对于学生而言非常重要。

在二次函数的教学过程中,采用“数形结合”的教学方法可以提高学生的学习兴趣和掌握程度。

下面将从以下两个方面介绍二次函数教学中“数形结合”思想的应用。

在二次函数的例题教学中,通过“数形结合”的教学方法可以加强学生对知识点的理解和记忆。

例如,当讲解二次函数的基本形式y=ax²+bx+c时,通过画出y=x²、y=2x²、y=0.5x²等曲线示意图,让学生能够直观地感受到参数a的正负、大小对图像的影响,帮助学生更好地理解二次函数的概念和性质。

在讲解二次函数图像和性质时,可以使用多组例题来巩固学生的掌握程度。

例如,可以让学生用手绘图法,画出y=x²-1和y=-x²+3的图像,并分析它们的性质。

通过手绘图的方式,不仅可以帮助学生更好地理解二次函数图像的基本特征,还可以加深对二次函数对称轴、顶点、开口方向等基本特征的理解。

在二次函数的应用题教学中,通过“数形结合”的教学方法可以帮助学生更好地理解和应用二次函数知识。

例如,在讲解极值问题时,可以引导学生通过手绘图形的方式,搭建一个简单的桥梁模型,让学生可以清晰地看到桥梁两端的高低和中间点的最低位置,从而引导学生理解和应用极值概念和解决问题的方法。

在讲解最值问题时,可以引导学生通过手动计算和手绘图像的方式,来理解问题所在,并进行分析综合。

例如,可以让学生计算二次函数y=x²-6x+8在区间[1,5]内的最大值和最小值,并通过手绘图的方式,将函数图像和区间范围清晰呈现出来,以便更好地理解和应用最值问题求解方法。

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用二次函数是高中数学中的重要内容之一,它的教学涉及到数学概念、数学方法和数学技巧的培养。

在教学过程中,如何引导学生掌握二次函数的数学知识,培养数学思维,实现数学与现实生活的结合是教学的关键。

数形结合是数学教学中的一种重要教学思想,它通过将抽象的数学概念与具体的图形形象相结合,帮助学生更加直观地理解和掌握数学知识。

本文将以二次函数教学为例,谈谈数形结合在二次函数教学中的应用,并探讨如何有效地开展数形结合教学,使学生更好地掌握二次函数的知识。

一、数形结合的意义与作用二、数形结合在二次函数教学中的应用1. 通过图形展示二次函数的基本性质二次函数是平面解析几何中的一个重要内容,它的图象——抛物线是解析几何中的一个重要曲线。

在二次函数的教学中,可以通过绘制二次函数的图象来展示二次函数的基本性质,如顶点、对称轴、开口方向等,使学生直观地感受二次函数的特点,从而对二次函数有一个清晰的认识。

二次函数的图象是一个抛物线,它的形状随着参数a、b、c的变化而发生变化。

在二次函数的教学中,可以通过改变参数a、b、c的值,绘制不同的二次函数图象,并让学生观察图象的变化规律,探讨参数对二次函数图象的影响,帮助学生深入理解二次函数的变化规律。

3. 通过实际问题引导学生建立二次函数模型二次函数是描述抛射、运动、变化规律等问题的数学模型,它在实际生活中有着广泛的应用。

在二次函数的教学中,可以通过实际问题引导学生建立二次函数模型,并通过绘制二次函数图象来解决实际问题,使学生理论联系实际,培养学生的数学建模能力。

三、如何有效地开展数形结合教学1. 合理选择教学内容在开展数形结合教学时,需要根据学生的实际情况和教学要求,合理选择教学内容。

可以根据二次函数的特点,选择一些具有代表性的例题和实际问题,通过图形展示和解释,帮助学生理解和掌握二次函数的相关知识。

2. 创设丰富多彩的教学情境在开展数形结合教学时,可以通过举一反三、对比分析等教学方法,创设丰富多彩的教学情境,激发学生的学习兴趣,提高学生的学习积极性。

数形结合思想在二次函数中的应用

数形结合思想在二次函数中的应用

数形结合思想在二次函数中的应用
当我们谈论二次函数时,可以把它看做一个有参数形状的函数,它可以帮助我们研究特定
物理现象中某种参数形状下的变化规律。

参数形状可以用弧型、抛物线或曲线等表示。

例如,当我们想要描述一个物体在自由落体中的位置变化时,就可以使用二次函数来描述这
种变化。

例如,我们可以使用一个二次函数来表示该物体的运动路径,比如s = 1/2at^2 + v_0t + s_0,其中a为加速度,V_0为初始速度,s_0为初始位置。

同样的,当我们讨论气体的物理性质时,也可以利用参数形状来从中获取函数公式。

比如,通过压力-体积图,我们可以建立一个二次函数来表示该图形,比如p=aV + bV^2,其中a,b为常数,V为体积。

这个公式能够描述不同体积下压力的变化规律,从而使我们更好
地理解气体的性质。

此外,参数形状的应用还可以用在函数外,例如在横坐标和纵坐标变化规律上,我们也可
以把它们表示成一幅参数形状图。

这个图形能够提供我们函数变化规律的大致轮廓,也可
以帮助我们推断函数的最高点、最低点以及函数上两个不同点的坐标等信息。

总之,二次函数可以说是物理现象中参数形状的最佳表现者,它能够有效地总结我们所要
研究的变化规律,从而为科学研究带来福音。

因此,借助参数形状的思想,我们能够更好
地利用函数来研究物理现象,为学术发展搭建良好的基础。

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用1. 引言1.1 引言概述二次函数在数学教学中扮演着重要的角色,而数形结合思想则是二次函数教学中的一种重要方法。

数形结合思想是指将数学概念与几何图形相结合,通过观察和分析图形,深入理解数学概念。

在二次函数教学中,运用数形结合思想可以帮助学生更直观地理解函数的性质和特点,提高他们的学习兴趣和学习效果。

本文将围绕数形结合思想在二次函数教学中的应用展开讨论。

我们将探讨数形结合的重要性,说明其对学生学习的益处。

接着,我们将分析如何在二次函数教学中应用数形结合思想,介绍具体的教学方法和技巧。

然后,我们将讨论数形结合在二次函数图像的解析中的应用,以及在实际问题中的具体运用。

我们将总结数形结合思想在二次函数教学中的启示,展望其在其他数学教学中的潜在应用价值。

通过本文的讨论,希望能够为教师和学生提供有益的启示,促进数学教学的创新与发展。

2. 正文2.1 数形结合的重要性数形结合是数学教学中一种重要的思维方式,它通过将数学概念与几何形状相结合,帮助学生更深入地理解抽象的数学概念。

在二次函数教学中,数形结合的重要性体现在以下几个方面:数形结合能够帮助学生从直观的角度理解二次函数的性质。

通过观察二次函数图像的形状、拐点位置等特征,学生可以更加直观地感受到二次函数的凹凸性、极值点等数学概念,从而加深对二次函数性质的理解。

数形结合可以提高学生的解题能力和应用能力。

在解决与二次函数相关的实际问题时,通过将数学模型与几何图形相结合,学生可以更快地找到问题的解决方法,并更好地理解问题的本质,从而提高解题效率。

数形结合还能够激发学生对数学的兴趣和热情。

通过观察二次函数图像的变化规律、探讨数形结合在实际问题中的应用等,可以帮助学生发现数学的美感和实用性,从而增强对数学学习的动力和积极性。

数形结合在二次函数教学中的重要性不言而喻,它能够帮助学生更好地理解数学概念,提高解题能力,培养数学兴趣,促进学生全面发展。

浅谈数形结合思想在二次函数学习中的应用

浅谈数形结合思想在二次函数学习中的应用

浅谈数形结合思想在二次函数学习中的应用作者:朱忠发
来源:《科学导报·学术》2019年第35期
摘 ;要:二次函数是初中数学里的重难点内容,涉及的知识点较多,相关题目灵活性较大,可延伸性强,数形结合可以将抽象的数字信息与具体的图像模型联系起来,将其应用到二次函数上,可以使学生对二次函数具有更“立体”的认识,理解更加深刻,能提高学生解决实际问题的能力。

关键词:二次函数,二次方程,数形结合;
数形结合思想在二次函数教学中具有广泛应用,主要体现在以下几个方面:
1.从数到形
说到二次函数,通常都会将一元二次方程与其联系起来讲解,我们都知道,一元二次方程ax2+bx+c=0(a,b,c是常数,且a≠0)是否有实数根取决于Δ=b2-4ac是否大于0,当Δ>0时,方程有两个不同的实数根,此时,我们可以引导学生联想到:当b2-4ac>0时,与此对应的二次函数y=ax2+bx+c的图像与x轴具有两个交点;而当Δ=0时,方程ax2+bx+c=0有且仅有一个实数根,对应的二次函数图像与x轴也只有一个交点即,且该点为抛物线的顶点;当Δ
2.从形到数
如下表1中三种不同类型的二次函數图像,根据图像分别可以直接得出参数a、b、c的相关信息。

参考文献
[1] ;杨艳雯. 初中二次函数教学新思路之研究[J]. 中国校外教育,2018,641(21):82.
[2] ;张谦慧. 数形结合在二次函数中的应用[J]. 贵州教育,2002(7).
作者简介:朱忠发(1964-),男,湖北省咸宁市人,中教一级职称,本科学历,主要从事中学数学教学和相关研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧用数形结合思想解二次函数中的问题摘要:数形结合就是把抽象的数学语言与直观的图形结合起来。

通过数与形之间的对应和转化来解决数学问题,数形结合思想通过“以形助数,以数解形”两个方面,已经成为当今数学的特色之一,它使复杂问题简单化,抽象问题具体化,变抽象思维为形象思维,有助于把握数学问题的本质。

它兼有数的严谨与形的直观,是优化解题过程的重要途径之一,是一种基本的数学方法。

本文通过例题分析了解“数形结合思想”来解决二次函数中的问题,因为此类问题的特点是若仅进行代数推理,亦能解决, 但运算繁、技巧强、难度大若以形助数, 则运算简、技巧弱、难度小。

关键词:数形结合思想二次方程和不等式二次函数由于初中的“二次函数”的问题,历年来都是中考的热点,因此,我从用“数形结合”思维思想来谈一谈这些问题。

一、数形结合思想概述法国著名的自然辨证哲学家恩格斯曾经说过“数学是研究现实生活中数量关系和空间形式的数学”。

数学中两大研究对象“数”与“形”的矛盾统一是数学发展的内在因素,数形结合是贯穿于数学发展历史长河中的一条主线,并且使数学在实践中的应用更加广泛和深入。

一方面。

借助于图形的性质可以将许多抽象的数学概念和数量关系形象化、简单化,给人以直觉的启示。

另一方面,将图形问题转化为代数问题,以获得精确的结论。

这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简洁明快,而且可以大大开拓我们的解题思路,为研究和探求数学问题开辟一条重要的途径.因此,数形结合不应仅仅作为一种解题方法.而应作为一种重要的数学思想,它是将知识转化为能力的“桥”。

而课堂教学中多媒体的应用更有利于体现数形结合的数学思想方法。

有利于突破教学难点,有利于动态地显示给定的几何关系,营造愉快的课堂教学气氛,激发学生的学习兴趣,使学生喜欢数学,爱学数学.“数”与“形”作为数学中最古老最重要的两个方面.一直就是一对矛盾体。

正如矛和盾总是同时存在一样.有“数”必有“形”,有“形”必有“数”。

华罗庚先生曾说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微.数形结合百般好,隔离分家万事休。

切莫忘,几何代数统一体。

永远联系.切莫分离!”寥寥数语,把数形之妙说得淋漓尽致.“数形结合”作为数学中的一种重要思想,它在初、高中都是解决许多问题得重要思想,特别是在高中数学中占有极其重要的地位,关于这一点,我们只要翻阅近年高考试卷就可以一目了然。

在多年来的高考题中,数形结合应用广泛.大多是“以形助数”,比较常见的是在解方程和不等式、求函数的最值问题、求复数和三角函数等问题中,与此同时“数形结合”思想在二次函数中的应用在中、高考命题中解决问题也成了必不可少的部分,也是平时学习二次函数解决应用问题的一个重点。

巧妙运用“数形结合”思想解题.可以化抽象为具体,达到事半功倍的效果。

二、二次函数与系数之间的关系(1)二次函数的一般式是:y=ax+bx+c,其中a≠0,此函数的对称轴是 22a ,顶点坐标是2a4a 。

(2)函数式中的参数a的正负决定开口方向,当a>0时,开口向上,在对称轴右边的随函数图象y随x的增大而增大,左边的图象y随x 的增大而减小;当a<0时,开口向下,在对称轴右边的函数图象y 值随x的增大而减小,左边的图象y随x的增大而增大,整个图形是对称的。

然而a的大小决定了二次函数的开口度的大小,a越大开口度越小,a越小开口度越大。

(3)与x轴交点的情况。

当y=0时,是二次方程,当△>0时,则此二次函数都与x轴有两个交点;当△=0时,二次函数与x轴有且只有一个交点;当△<0时,二次函数与x轴没有交点。

(4)二次函数的表达式还有以下几种:-b(-b,4ac-b2) 交点式:y=a(x-x1)(x-x2),其中a≠0,x1、x2是该函数y=0是的两个根;顶点式:y=a(x-k)+h,其中a≠0,而(k,h)是二次函数的顶点坐标。

x三、从方程的“数”到函数的“形”,以形象定性抽象的内容例1:已知方程|x2 -4x+3|= m 有4个根,则实数m的取值范围。

【分析】此题并不涉及方程根的具体值,只求根的个数,而求方程的根的个数问题可以转化为求两条曲线的交点的个数问题来解决。

解:方程|x2 -4x+3|= m 根的个数问题就是函数y= |x2 -4x+3|与y= m 函数图像的交点的个数。

如图所示:作出抛物线y= x2 -4x+3的图像,将x轴下方的图像沿x轴翻折上去,2 得到y= |x-4x+3|图像,再作直线y = m ,如图所示。

由图像可以看出,抛物线y= x2-4x+3的顶点坐标是(2,-1),经由x轴翻折后变成(2,1),所以当0<m<l时,两函数图像有4个交点,故m的取值范围是(0,1)。

例2:确定函数y=x|x|一2|x|的单调区间。

0,作出<0x≥2xx+-x⎩2⎨=x|x|-2|x|=x2-2x解:y⎧函数的图像如左图所示:由图像可知,函数的单调递增区间为);∞,0]和『1,+∞(-函数的单调递减区间为[0,1]。

评注:数形结合可用于解决二次函数方程的解的问题,准确合理地作出满足题意的图像是解决这类问题的关键。

例3:若关于x的方程x2+2kx+3k=0的两根都在-1和3之间, 求k的取值范围。

分析 :令f (x )= x2 +2kx+3k, 其图象与x轴交点的横坐标就是方程f(x)=0的解。

由y=f(x) 的图象可知,要使二根都在(-1,3)之间, 只需f(-1)= k+1> 0,f(3)= 9k+9>0,又因为-b/2a=-k介于-1与3之间,即-1<-k<3,且f (-k) =-k2+3k<0同时成立, 解得-1<k<0,故k ∈ (-1,0)。

例4:已知b,c为整数,方程5x2+bx+c=0的两根都大于-1且小于0,求b和c的值。

(99年初中联赛)解:设f(x)=5x2+bx+c,则由题可知,此抛物线与x轴的交点设为(x1,0)和(x2,0),其中-1<x1<0,-1<x2<0,并且开口向上,画出的大致图像(如图所示),则有:⎨⎨0即≥0b-20c≥∆⎪2⎪2a10⎪⎪0<-<-1<-<0-1⎧⎧bb0>f(-1)⎪0>c+5-b⎪,⎩,⎩0>0c>f(0)⎪⎪10<b<0⎧⎨20c所以≥b⎪2⎪c+5<b⎪0>c⎩⎪2①②③④。

由①、②、④得20c≤b≤100,0<c<5,所以当c=1时,有②、③得:0<b<6且b2≥20,得b=5;2当c=2时,0<b<7且b≥40,此时b无整数解;当c=3时,0<b<8且b2≥60,此时b无整数解;当c=4时,0<b<9且b2≥80,此时b无整数解;所以b=5,c=10。

四、数形结合可以求得平移后的抛物线解析式,比较函数值的大小。

例1:如图2,把此抛物线线绕顶点旋转180°,则该抛物线对应的解析式为:。

若把新的抛物线再向右平移2个单位,向下平移3个单位,则此时抛物线对应的函数解析式为:。

解:1、由于是绕顶点旋转180°,所以顶点的坐标不变,对称轴不变,所以设原抛物线的解析式为:Y=a(x+1)2+4,又因为过了A点(1,0),带入解析式得到:a=-1,所以原函数的解析式为:Y=-(x+1)2+4,故绕顶点旋转180°后,只有开口变了,所以新函数的解析式为:Y=(x+1)2+4。

2、因为抛物线图象的平移本质上是把握点的平移。

只要把握好规律,结合图形的变换,做到做“+”右“-”,上“-”下“+”这样就很容易得到此时的函2数解析式:Y=(x-1)-1。

例2:若A(-1,y1),B(-2,y2)是抛物线上y=a(x-1)2+c(a>0)上的两点,则y1<y2(填<,>或=)。

变式1:若A(-1,y1),B(4,y2)是抛物线上y=a(x-1)2+c(a>0)上的两点,则y1<y2(填<,>或=)。

变式2:若A(m,y1),B(m+2,y2)是抛物线上2y=a(x-1)+c(a>0)上的两点,当m取何值时,y1=y2?y1>y2?解:因为a>0,开口向上,又从图中看到x=1是函数的对称轴,又因为函数图象与y轴的交点在y轴的负方向,所以c<0,所以得出:当x≥1时,y随x的增大而增大;当x<0时,y随x的增大而减小。

因此:(1)因为-2<-1<0,所以y1<y2;(2)因为-1<0<4,所以y1<y2;(3)要使y1=y2,则|x1-x2|=1,即是x1、x2关于x=1对称,所以就有:m-(m-2)=1,解得:m∈R,所以无论m取何值,y1=y2;很明显m<m+2,要得到y1>y2,从图像可知:在对称轴的右侧,则只要m≥1就行。

五、从函数的“形”到方程的“数”,使推理判断更准确例1.如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图像的一部分,如果他的出手处A距地面的距离OA为1m,球路的最高点B(8,9),则这个二次函数的表达式为,小孩将球抛出了约米(精确到0.1m)。

解:由题意和图像可可知,设二次函数的解析式为:y=a(x-8)2 +9,将点A(0,1)代入,得a=-1/8。

所以该二次函数的解析式为:y=-1/8(x-8)2+9=-1/8x2+2x+1,令y=0,则有-1/8x2+2x+1=0,解得:62,+62,所以C(8±8=A 0), x16.5(米)O≈62+8=OC注:从“形”到“数”的问题时,应注意观察函数图像的形状特征,充分挖掘图像的已知条件,确定函数的解析式,从而利用函数的性质来解。

六、“数形结合”在二次函数中的综合应用例1:市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量v(千克)与销售单价x(元)(x≥30)存在如下图所示的一次函数关系式。

(1)试求出v与x的函数关系式;(2)设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?(3)根据市场调查,该绿色食品每天可获利润不超过4480元.现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围。

解:(1)设y=kx+b,由图像可知,1000=b⎩⎩200=b+40k⎨⎨-20,解得=k⎧400=b+30k⎧所以一次函数的表达式为:y=-20x+1000,(30≤x≤50)。

(2)p=(x-20)y=(x-20)(-20x+lO00) =-20x2+1400x-20000又因为a=一20<0,所以P有最大值。

相关文档
最新文档