网络计划技术
网络计划技术(单代号网络计划、双代号网络计划)
该时间应按下式计算:
TFi-j=LSi-j-ESi-j
或
TFi-j=LFi-j-EFi-j
02 0
0 A2 12 2
24 1
35
B 2
3
44 1
55
45 4 89
C 1
ES EF TF LS LF FF
25 0 25
D 3
55 0 58 0 88 1 89 1
55
4
58
5
E 3
99
6
9 10
F 71
4 6 2 8 10
4 6
12 8 10
➢ 绘制网络图时,箭线不宜交叉,当交叉不可避免时,不能 直接相交画出,可选用过桥法或指向法。
4
7
2
5
5
20 5
20
3
8
➢在网络图中,应只有一个起点节点;在不分期完成任务的网 络图中,应只有一个终点节点;而其它所有节点均应是中间节 点。
2
2
2
1
3
51
3
51
5
紧前 工作
C I.H G、F K、J L L M、N
时间 (天)
3 2 1 3 1.5 2 2
电梯井支外模板 H E、F
2
C6
I
2A 4 B8
D 10
12 E 18 H 22 J 24 L 26 M 30 P 32
14 F 16
G
20
K
N 28
➢练习题:A、B完成后,E可开始; B、C完成后,F可开始; C、D完成后,G可开始。
2 1
3
4
2
61
5
3
4 6
5
网络计划技术
网络计划技术什么是网络计划技术网络计划技术,也称作项目管理技术,是一种用来帮助规划和管理项目进度的工具。
它使用网络图来表示项目中各个任务之间的先后顺序关系,并根据这些关系确定整个项目的进度。
网络计划技术通常被应用于工程建设、软件开发、活动策划等众多领域。
为什么使用网络计划技术网络计划技术的主要优势在于它能够帮助项目经理和团队成员:•确定项目中的关键路径,即影响整个项目最长时间和最紧迫的任务序列。
•识别项目中的风险和关键问题,并做出相应的调整和应对策略。
•追踪和控制项目进度,及时发现和解决潜在的延误问题。
•对项目资源进行优化分配,以提高效率和降低成本。
•及时沟通和共享项目进展情况,以便团队成员和相关利益相关者了解项目状态。
常用的网络计划技术方法关键路径方法(CPM)关键路径方法(CPM)是最常见和广泛应用的网络计划技术方法之一。
其基本思想是通过绘制网络图,确定项目中各个任务的先后顺序关系,并计算出整个项目的最早开始时间、最早完成时间、最晚开始时间、最晚完成时间等关键参数。
通过对这些参数的计算和分析,可以找出项目中的关键路径,从而确定项目的最长时间和最紧迫的任务序列。
程序评审技术(PERT)程序评审技术(PERT)是另一种常用的网络计划技术方法。
与关键路径方法不同,PERT方法考虑到了任务完成时间的不确定性,因此可以更好地应对实际项目中的风险和不确定性。
PERT方法通过使用三个时间估计值(最快、最慢、最可能)来计算每个任务的期望完成时间,并通过这些期望时间来计算整个项目的期望完成时间。
PERT方法还可以帮助项目团队制定风险管理和资源分配策略。
网络挣值技术(Earned Value Technique)网络挣值技术(Earned Value Technique)是一种结合了网络计划技术和成本控制技术的方法,用于评估项目进度和成本的绩效。
网络挣值技术通过对已完成工作的挣值和实际成本进行测量和分析,来预测项目的进展和成本偏差。
试简述网络计划技术的基本原理和组成要素
试简述网络计划技术的基本原理和组成要素网络计划技术,听起来就像是一个高大上的概念,让人望而生畏。
但是,其实它就像是我们生活中的导航系统,帮助我们规划好时间和任务,让我们的生活更加有序、高效。
那么,网络计划技术究竟是什么呢?它有哪些基本原理和组成要素呢?接下来,就让我来给大家揭开这个神秘的面纱吧!我们来说说网络计划技术的基本原理。
简单来说,网络计划技术就是通过对任务进行分解、排序和优化,来确定任务的先后顺序和完成时间的一种方法。
它的核心思想就是“先易后难、先急后缓”,也就是说,我们应该先完成那些容易完成的任务,再去做那些困难的任务;我们也应该优先处理那些紧急的任务,因为它们可能会对我们的时间产生更大的影响。
那么,网络计划技术的组成要素又是什么呢?主要包括以下几个方面:1. 任务分解:将一个大的任务拆分成若干个小的任务,这样可以让我们更好地把握任务的进度和难度。
2. 任务排序:根据任务的重要性和紧急程度,对任务进行排序。
一般来说,重要性高且紧急的任务应该排在前面,而重要性低但不紧急的任务则可以放在后面。
3. 资源分配:根据任务的需求和可用资源,合理地分配人力、物力等资源,以确保任务能够按时完成。
4. 进度控制:通过监控任务的进度,及时发现问题并采取相应措施,以确保项目能够按照计划顺利进行。
现在,我们已经了解了网络计划技术的基本原理和组成要素。
那么,接下来就让我们来看一些实际的例子,看看这些理论是如何应用到实际生活中的吧!假设你是一个即将毕业的学生,你需要完成一篇论文。
那么,你可以按照以下步骤来进行网络计划:将论文分为若干个部分,如引言、文献综述、研究方法、实验结果等;然后,根据各个部分的重要性和紧急程度,对它们进行排序;接着,根据你的时间安排和可用资源(如时间、精力等),制定出一个详细的计划;在执行过程中不断监控进度,及时调整计划。
通过这样的方式,相信你一定能够顺利完成论文,顺利毕业!网络计划技术不仅仅适用于学生或者职场人士。
网络计划技术基础知识
最早 开始 时间 (E S)
指某项活动必须完成的 最晚时间。
最早 结束 时间 (E F)
指某项活动能够开始的 最早时间。
最晚 开始 时间 (L S)
指某项活动必须开始的 最晚时间。
最晚 结束 时间 (L F)
关键路径
定义
关键路径是从起点到终点的最长路径,它决定了项目 的总持续时间。
关键路径上的活动
工期优化
计算工期延误
通过比较实际工期和计划工期,确定是否存在工 期延误。
调整关键路径
在关键路径上增加或减少工作,以缩短或延长总 工期。
优化非关键路径
通过调整非关键路径上的工作,使资源得到更合 理的利用,从而缩短总工期。
费用优化
计算费用偏差
比较实际费用和计划费用,确定是否存在费用 偏差。
调整资源投入
这些活动不能延迟,否则整个项目的完成时间将被推 迟。
关键路径的长度
关键路径的总长度(以时间为单位)表示项目的总持 续时间。
时差与自由时差
时差
某项活动的最早结束时间与最晚结束 时间之间的差值,表示该活动时间的 灵活性。
自由时差
某项活动的最晚开始时间与最早开始 时间之间的差值,表示在不延误后续 活动的前提下,该活动可以推迟的时 间长度。
根据开发计划,合理配置开发人员、设备和资金等资源,确保 软件开发顺利进行。
在开发过程中,对进度进行实时监测和控制,及时发现和解决 进度偏差问题,确保软件按时交付。
生产制造流程的网络计划
确定生产制造流程
制定生产计划
根据生产需求和产品特点,确定各个生产 制造环节及其先后顺序。
根据环节顺序和工期要求,制定生产计划 ,包括各个生产环节的开始和结束时间。
网络计划技术介绍
网络计划技术介绍网络计划技术是一种有效的管理和优化项目进度的方法,它可以帮助项目团队在有限的资源条件下合理规划和安排项目工作,以实现项目的成功。
网络计划技术主要包括关键路径法(CPM)和程序评审和评估技术(PERT)两种方法。
下面将详细介绍这两种技术以及它们的优势和应用。
程序评审和评估技术(PERT)是一种基于概率和统计方法的项目管理技术,主要用于分析和优化不确定的项目进度。
PERT通过将每个活动的持续时间估计为一个概率分布,而不是一个确定的值,来考虑活动持续时间中的不确定性。
PERT的关键是对项目活动持续时间估计的定义和计算,它通过计算活动的最早开始时间(EST)和最晚完成时间(LFT)来确定项目的关键路径和总体项目进度。
PERT能够帮助项目团队更准确地预测项目的完成时间,并识别出可能引起项目延误的风险因素。
同时,通过对不确定性进行分析和评估,可以优化项目的资源分配和进度安排,以提高项目的成功率。
1.有效的工作规划和资源分配:网络计划技术可以将项目工作分解为一系列有序的活动,并确定它们之间的依赖关系。
通过分析活动的持续时间和资源需求,可以合理规划和安排项目工作,减少资源浪费和冲突,提高工作效率。
2.提前识别风险和问题:通过网络计划技术,可以快速识别项目中的关键路径和风险活动。
项目团队可以集中资源和注意力,及时处理关键路径上的问题,防止项目延误,并制定相应的应对策略来降低风险。
3.灵活调整项目进度:网络计划技术可以将项目工作和资源需求以图形化形式呈现,更直观地展示项目的进度和关系。
这使得项目团队能够更好地理解项目的整体情况,并做出相应的调整和优化,以适应项目变化和需求。
网络计划技术的应用范围非常广泛,几乎适用于各种类型的项目和领域。
它在建筑、工程、IT、制造、新产品开发、市场推广等众多行业和领域中得到了广泛应用。
通过网络计划技术,可以帮助项目团队合理规划项目工作,优化资源分配,调整工作进度,并提前识别和防止潜在风险,从而最大程度地提高项目的成功率。
系统工程与运筹学 第10章 网络计划技术
步骤 (1)确定网络计划目标 (2)调查研究 (3)工作方案设计 (1)项目分解 (2)逻辑关系分析 (3)绘制网络图 (1)计算工作持续时间 (2)计算其他时间参数 (3)确定关键线路 (1)检查与调整 (2)编制可行的网络计划 (1)优化 (2)编制正式网络计划 (1)网络计划的贯彻 (2)检查和数据采集 (3)调整、控制
TIANJIN CHENGJIAN UNIVERSITY 重德重能 善学善建
10.1.2 网络计划技术的分类
2.按网络计划代号的不同分类
根据代号的不同,网络计划技术分为双代号网络 计划和单代号网络计划。
双代号网络图示例
单代号网络图示例
3.按网络计划目标的多少分类
4.按网络计划目标的表达方式分类
TIANJIN CHENGJIAN UNIVERSITY 重德重能 善学善建
TIANJIN CHENGJIAN UNIVERSITY 重德重能 善学善建
10.1 网络计划技术概述
10.1.1 网络计划技术 10.1.2 网络计划技术的分类 10.1.3 网络计划技术的特点 10.1.4 网络计划技术应用的程序
TIANJIN CHENGJIAN UNIVERSITY 重德重能 善学善建
10.1.3 网络计划技术的特点
网络计划技术四大优点:
1
2
3
4
网络计划技术利用 网络图模型,能够 清楚地表达各工作 之间的逻辑关系, 使人们可以用来对 复杂项目及难度大 的项目系统的制造 与管理作出有序而 可行的安排,从而 产生良好的管理效 果和经济效益。
通过网络图的时间 参数计算,可以找 出网络计划的关键 工作和关键线路。 计算出网络图的时 间参数,可以知道 各项工作的起止时 间和完成时间;找 出整个工作的关键 工作和关键线路。
网络计划技术3篇
网络计划技术第一篇:网络计划技术概述网络计划技术是一种基于项目管理的技术,它是在整个项目中按照时间顺序分析和安排所有活动,以便计算最短时间的总成本、找出关键路径和控制进度。
它适用于复杂的工程项目和重要的商业计划,通过合理地分析和安排活动的关系和时间,实现高效率、高质量和高经济效益的目的。
网络计划技术主要包括两种方法:PERT和CPM。
PERT (Program Evaluation and Review Technique)是1958年由美国海军在极其复杂的项目优化计划中开发出来的,是一种基于概率的技术,它通过对各个活动时间的估计来计算最短时间和最长时间,以及进行进度控制和风险管理。
CPM(Critical Path Method)是美国对联合机械公司开发的一种基于确定性的技术,它通过确定活动的时序关系来计算关键路径和最短时间,以及进行进度控制和成本管理。
网络计划技术的应用非常广泛,特别是对于大型的、复杂的、有序的、相互关联的项目和活动,如建筑、通信、能源、运输、信息系统、金融、医疗和教育等领域。
在这些领域,网络计划技术能够为项目管理提供科学化、规范化、可控化、连续化的方法和工具,有效地解决进度滞后、成本超支、质量低下、风险增加等问题,提高项目成功率和商业利润率。
网络计划技术的基本原理包括:活动的分解与排序、活动的时间估计和校准、网络图的绘制和分析、关键路径的确定和优化、进度计划的编制和更新。
在实际应用中,网络计划技术需要考虑复杂度、精度、可行性和灵活性等因素,需要有专门的软件和专业的人员来支持和实施。
网络计划技术的优点是:能够全面分析和把控项目的时间、进度、成本、质量和风险等方面;能够提高项目的计划效率、执行效果和评价效益;能够促进项目管理的科学化、标准化和信息化水平;能够提高企业的竞争力、创新力和利润率。
但是网络计划技术也存在一些局限性和挑战,包括:活动时间估计存在主观性、不确定性和随机性;网络图的绘制和分析存在复杂度、限制性和死板性;关键路径的优化存在局部最优、缺乏灵活性和动态性;进度计划的更新存在误差、滞后和重复性。
网络计划技术
网络计划技术一、网络计划技术的基本知识网络计划技术是20世纪50年代在国外陆续出现的一些计划管理的方法。
由于这些方法将计划的工作关系建立在网络模型上,把计划的编制、协调、优化和控制有机地结合起来,而称之为网络计划技术。
网络计划技术的发展从1956年关键线路法(CPM),到1958年的计划评审技术(PERT),再到1960年以后的搭接网络技术(DLN)、图形评审技(GERT)、决策网络技术(DN)、风险评审技术(VERT)等。
20世纪60年代,我国著名数学家华罗庚教授在吸收外国网络计划技术理论的基础上,结合我国实际情况,将网络计划技术将引入国内,并将CPM、PERT 等方法统称为统筹法。
目前,网络计划技术已经在我国,特别是在工程项目管理中广泛应用,并取得了巨大的经济效益。
根据国内的资料统计,工程项目应用网络计划技术进行计划管理,可平均缩短工期20%左右,节约费用10%左右。
可以预见,随着计算机技术的发展,网络计划技术应用将更加普及,由此带来的经济和社会效益将日益显著。
1.网络计划技术概念网络图是由箭头和节点组成的,用来表示工作流程的有向、有序的网状图形。
常见的网络图分为单代号网络图和双代号网络图两种。
在网络图上加注工作的时间参数而编成的进度计划,称为网络计划。
有网络计划对任务的工作进度进行安排和控制,以保证实现目标的计划管理技术,称为网络计划技术。
2.网络计划的特点(1)网络图把施工过程中的各有关工作组成了一个有机的整体,能全面明确地表达出各项工作开展的先后顺序和反映出各项工作之间相互制约和相互依赖的关系。
(2)能通过各种时间参数的计算,在名目繁多、错综复杂的工作中找出决定工程进度的关键工作,并以此决定关键线路,便于计划管理者集中力量抓主要矛盾,确保工期,避免盲目施工。
(3)能够利用网络计划中反映出的各项工作的时间储备,可以更好地调配人力、物力,以达到降低成本的目的,并通过网络技术优化,从许多可行方案中,选出最优方案。
网络计划技术
考虑资源约束
成本优化
要点三
降低成本
通过合理安排任务顺序、选择合适的资源和技术,以降低项目成本。
要点一
要点二
考虑全生命周期成本
不仅考虑项目开发阶段的成本,还要考虑项目整个生命周期内的成本。
优化成本效益
在优化过程中,不仅要考虑直接成本,还要考虑间接效益和长期效益。
资源利用
合理安排各工作资源需求,避免资源供不应求或供过于求。
资源均衡
考虑资源约束条件下,关键路径的确定和时间调整。
资源关键路径
包括人工费、材料费、机械使用费等直接用于工程项目的费用。
直接成本
指无法直接计入工程项目的费用,如管理费、规费等。
间接成本
通过成本分析,评估网络计划的效益性。
成本分析
成本评价
在医疗保健领域,网络计划技术可以用于制定医疗资源的调度和分配计划,提高医疗服务的效率和质量。
服务领域的应用
医疗保健
在教育和培训领域,网络计划技术可以用于制定培训计划和课程安排,提高培训效果和学习体验。
教育培训
在金融和保险领域,网络计划技术可以用于制定风险控制和投资计划,提高金融机构的收益和风险管理能力。
要点三
04
网络计划技术的应用
交通工程
在交通工程中,网络计划技术可以用于制定道路施工、维修和养护的计划,提高道路网的运行效率。
建筑工程
在建筑工程中,网络计划技术可以用于制定施工计划、合理安排施工进度,确保项目按期完成。
水利工程
在水利工程中,网络计划技术可以用于合理安排水资源调度、发电和防洪等任务,提高工程效益。
综合评价方法
权重法
施工组织设计第四章-网络计划技术
第三节 网络计划时间参数的计算
(3)工作的时间参数 ①持续时间Di-j:指工作i-j从开始到完成的时间。 ②最早开始时间ESi-j:指各紧前工作全部完成后本工作有 可能开始的最早时刻。 ③最早完成时间EFi-j:指各紧前工作全部完成后本工作有 可能完成的最早时刻。 ④最迟开始时间LSi-j:指不影响整个任务按期完成的前提 下,工作必须开始的最迟时刻。 ⑤最迟完成时间LFi-j:指不影响整个任务按期完成的前提 下,工作必须完成的最迟时刻。 ⑥工作总时差TFi-j:不影响总工期的前提下,本工作可以 利用的机动时间。 ⑦工作自由时差FFi-j:不影响其紧后工作最早开始时间的 前提下,本工作可以利用的机动时间。
关键线路:关键工作(总时差最小的工作)首尾相连
构成的通路。
第三节 网络计划时间参数的计算
例4:
5 83
10 13 1
5
5
11 13 2
11 13 0
00 0
5 50
55 0
11 11 0
1
5
3
6
4
0 11
23 1
2 30 451
2
22
29 7
4 11 7 2
11 13 2 14 16 2
3
11 11 16 16
2
3
I
7
8
2
C
F
4
3
4
H 5
2
第四节 双代号时标网络计划
用间接绘制法: 第一步先计算参数ET或ES
第二步绘图
第四节 双代号时标网络计划
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3
6
网络计划技术
网络计划技术网络计划技术是指利用计算机网络和信息技术,对项目进行规划、组织、控制和实施的一种管理方法。
它通过网络图、甘特图等方式,对项目的时间、资源和成本进行全面的管理和控制,以确保项目能够按时、按质、按量完成。
网络计划技术在工程建设、信息技术、市场营销等领域都有广泛的应用,成为项目管理中不可或缺的重要工具。
首先,网络计划技术的核心是网络图。
网络图是将项目中的各个活动以节点和箭头的形式表示出来,通过节点之间的连接关系和活动的持续时间,形成一个完整的项目执行路径。
这种图形化的表示方式,能够直观地展现项目的执行流程和关键路径,帮助项目管理者清晰地了解项目的进度和风险,从而及时做出调整和决策。
其次,网络计划技术的另一个重要工具是甘特图。
甘特图是以时间为横轴,将项目中的各项活动以条形图的形式表示出来,直观地展现出每项活动的开始时间、结束时间和持续时间。
通过甘特图,项目管理者可以清晰地了解项目的时间安排和资源分配情况,及时发现并解决可能出现的问题,保障项目的顺利进行。
此外,网络计划技术还包括了关键路径法和资源平衡法等方法。
关键路径法是通过对项目中各项活动的持续时间进行分析,找出影响整个项目完成时间的关键路径,以便项目管理者有针对性地进行资源调配和进度控制。
而资源平衡法则是在考虑资源限制的情况下,对项目进行资源分配和时间安排,以最大程度地提高资源利用率,确保项目按时完成。
总的来说,网络计划技术在项目管理中起着至关重要的作用。
它能够帮助项目管理者全面、系统地了解项目的进度、资源和成本情况,及时发现和解决问题,提高项目的执行效率和成功率。
因此,掌握网络计划技术,对于项目管理人员来说是非常必要的。
希望大家能够深入学习和应用网络计划技术,为项目管理工作的顺利进行贡献自己的力量。
网络计划技术
生产计划管理
优化生产流程
通过分析生产流程中的瓶颈和浪费,网 络计划技术可优化生产流程,提高生产
效率和降低成本。
A 生产排程
网络计划技术可用于生产排程,根 据订单需求和产品规格,制定合理
的生产计划。
B
C
D
预测与调整
网络计划技术可结合数据分析进行预测 ,并根据实际生产情况进行调整,以确 保生产计划的准确性和可行性。
活动与事件
活动
在项目中,需要进行的具体工作称为活动。活动之间存在先后关系,后继活 动必须在先活动完成后才能开始。
事件
在项目中,某项活动完成的瞬间称为事件。事件是活动之间连接的关键点, 标志着活动的结束和下一个活动的开始。
网络图
网络图
用于描述项目活动之间的先后 关系和时间关系的一种图形表 示法。常见的网络图有单代号
置,提高生产效率。
降低成本
网络计划技术可以有效地缩短 产品的生产周期,加快生产进 度,从而降低生产成本,提高
企业的经济效益。
提高产品质量
网络计划技术通过对生产过程 的精细规划和控制,可以减少 生产过程中的错误和缺陷,提 高产品质量和客户满意度。
网络计划技术的局限与挑战
技术复杂性
网络计划技术需要针对每个特定的生产过程和资源进行 定制和配置,这需要大量的技术知识和经验,增加了使 用难度。
调整关键路径
在项目实施过程中,根据实际情况 调整关键路径,以优化项目进度。
风险管理
制定风险应对措施,及时处理项目 中出现的风险和问题,确保项目顺 利进行。
ቤተ መጻሕፍቲ ባይዱ4
网络计划技术的应用场景
工程项目管理
制定项目计划 在工程项目管理中,网络计划技 术可用于制定详细的项目计划, 包括任务分配、时间表和资源需 求等。
第三章 网络计划技术
第三章网络计划技术【双代号网络计划的组成】由两个代号及唯一的一条箭线所组成一项唯一的工作;【单代号网络计划的组成】由一个节点表示一个工作,以箭线表示工作间的逻辑关系;【逻辑关系】工艺关系不可被改变,组织关系视实际情况可以改变;【工作类型】紧前和紧后工作、先行和后续工作、平行工作。
【绘图规则】①网络图必须按照已定的逻辑关系绘制。
②网络图中严禁出现循环回路。
④网络图中严禁出现双向箭头和无箭头的连线。
⑤严禁出现没有箭尾节点的箭线和没有箭头节点的箭线。
⑥严禁在箭线上引入或引出箭线(母线法除外)。
⑦尽量避免工作交叉,不可避免,可采用过桥法或指向法。
⑧网络图中应只有一个起点节点和一个终点节点。
【最早时间】正算加法取大值最早开始时间和最早完成时间;【最迟时间】逆算减法取小值最迟开始时间和最迟完成时间;【工作时差】工作自由时差:紧后工作最早开始-本工作最早完成时间工作的总时差:本工作最迟完成-本工作最早完成【节点标号法】【单代号网络计划时间参数计算】知识名称双代号时标网络计划考点层级核心考点命题形式概念计算考察内容1.时标网络计划编制方法※2.时标网络计划时间参数※※※3.时标网络计划坐标体系※4.时标网络的进度计划表※【前提条件】①计划工期等于计算工期,工作匀速进展;②宜按各项工作的最早开始时间编制;【特殊线型】①虚箭线在时标刻度上的投影为零,故应垂直绘制;②波形线表示相邻两项工作之间的时间间隔或自由时差;【关键线路】逆向寻找,自始至终不出现波形线的线路为关键线路;【时标网络计划的计算】【时间秒定法】知识名称单代号搭接网络计划考点层级一般考点命题形式概念计算考察内容1.搭接关系种类及表达方式※2.搭接网络计划的时间参数※【计算步骤】①最早开始时间、最早完成时间(应进行三次检查)②时间间隔(存在混合时距时,应分别计算取最小值)③总时差、自由时差计算④最迟完成时间、最迟开始时间【计算原则1】其他工作的最早开始时间和最早完成时间(1)时距为STS,ES j=ES i+STS(2)时距为STF,ES j=ES i+STF–D j【速记口诀】前者开始加时距,如遇完成减持续(3)时距为FTF,ES j = ES i + D i + FTF - D j = EF i + FTF - D j(4)时距为FTS,ES j = ES i + D i + FTS = EF i+FTS【速记口诀】前者完成加时距,如遇完成减持续【计算原则2】时间间隔的计算方式①时距为STS,LAG = ES j - ES i - STS;②时距为FTS,LAG = ES j - EF i–FTS;【速记口诀】后者开始减时距,遇开减开,遇完减完③时距为STF,LAG = ES j - ES i - STF + D j = EF j - ES i - STF④时距为FTF,LAG = ES j - EF i - FTF + D j = EF j - EF i–FTF【速记口诀】后者完成减时距,遇开减开,遇完减完【相关概念的判定】【正确】关键工作两端的节点必为关键节点;【错误】由关键节点组成的工作必为关键工作;【正确】关键线路上的节点一定是关键节点;【错误】由关键节点组成的线路必为关键线路;【正确】以关键节点为完成节点的工作,总时差和自由时差必然相等;【错误】自由时差最小的工作就是关键工作;【错误】该工作与其紧后工作时间间隔为零的工作为关键工作;【错误】持续时间最长的工作为关键工作;【错误】总时差为零的工作为关键工作;【正确】总时差最小的工作为关键工作;【正确】工作的自由时差一定小于或等于总时差;【错误】双代号网络计划中没有虚箭线的线路是关键线路;【正确】单代号网络计划中相邻两项工作之间时间间隔均为零的线路是关键线路;【错误】单代号计划中至始至终都由关键工作组成的线路是关键线路;【正确】双代号计划中至始至终都由关键工作组成的线路是关键线路。
第六章网络计划技术
第一节 网络计划的基本概念 一、网络计划的发展 1.网络计划技术的产生和发展 网络计划技术是20世纪50年代在美国创 造和发展起来的一项新型计划技术,当初 最有代表性的是关键线路法(CPM)和计 划评审技术法(PERT),我国于60年代由 著名数学家华罗庚教授,将此技术介绍到 中国,并把它称为“统筹法”。80年代开 始逐渐在建筑业推广网络计划技术。
3
8 5 2
A
2
D
1
B
3
E
4
F
5
C
二、单代号网络图的绘制 (一)单代号网络图的绘制规则 (1)必须正确表述已定的逻辑关系。
B A C B D A B C D
A
A完成B、C开始
C
A C B
A、B完成C开始
A在B前,C在D 前,A、C在B前
A、B完成C 、D开始
A B
A B
A、B同时开始ABCA、B同时结束
(2)按施工段排列: 施工过程水平排列,施工段垂直排列
(3)按楼层排列(实际就是按施工段排列) 施工过程水平排列,楼层垂直排列
补:绘制双代号网络图应注意的问题 1)网络图布局要合理,重点要突出。 2)正确应用虚箭线进行网络图的断路。 3)力求减少不必要的箭线和节点。
例1:已知网络图资料如下表所示,试绘制双代 号网络图。
二、网络的基本表达方式 1、双代号网络图 以箭线及其两端节点的编号表示工 作的网络图
工作名称 n i Dij 持续时间 j
2、单代号网络图 以节点及其编号表示工作,以箭线表示工作 之间的逻辑关系
i n
D
节点编号 工作名称 持续时间
三、网络计划的组成 (一)双代号网络 1、工作 (1)实工作(消耗时间和资源或消耗时间) (2)虚工作(不消耗时间和资源,仅表示 逻辑关系)
第四章 网络计划技术
关键线路的性质: (1)关键线路的线路时间代表整个网络计划的计划总工期; (2)关键线路上的工作都称为关键工作;
(3)关键线路没有时间储备,关键工作也没有时间储备;
(4)在网络图中关键线路至少有一条;
(5)当管理人员采取某些技术组织措施,缩短关键工作的持续 时间时,就可能使关键线路变为非关键线路。
三、网络计划的分类
按照不同的分类原则,可以将网络计划分为不同的类型: (1)按性质分为非肯定型网络计划和肯定型网络计划; (2)按绘制符号的不同分为双代号网络计划和单代号网络计 划; (3)按有无时间坐标分为时标网络计划和非时标网络计划; (4)按网络图最终目标的多少分为单目标网络计划和多目标 网络计划; (5)按网络图的应用对象不同分为局部网络计划、单位工程 网络计划和综合网络计划; (6)按工作搭接特点分为流水网络计划、搭接网络计划和普 通网络计划。
(1)紧前工作:在完成本工作之前必须完成的工作; (2)紧后工作:本工作完成之后才能开始的工作; (3)平行工作:可以和本工作同时开始、同时结束的工作; (4)先行工作:自起点节点至本工作开始节点之前各条线 路上的所有工作;
(5)后继工作:本工作结束节点之后至终点节点之前各条 线路上的所有工作; (6)起始工作:没有紧前工作的工作;
已知各工作之间的逻辑关系,见表4-4,试绘制其双代号网络 图。
【案例解析】
(1)绘制工作箭线A、B和C,如图4-19(a)所示。 (2)按前述绘图方法(2)中的情况 ③ 绘制工作箭线D,如图 4-19(b)所示。
(3)按前述绘图方法(2)中的情况 ① 绘制工作箭线E,如图 4-19(c)所示。
(4)按前述绘图方法(2)中的情况 ② 绘制工作箭线F。当确 认给定的逻辑关系表达正确后,再进行节点编号。表4-4所示 逻辑关系所对应的双代号网络图如图4-19(d)所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、 网络图
由箭线和节点组成的,用来表示工作的开展顺序及其相互依 赖、相互制约关系的有向、有序的网状图形。
单代号网络图表示法:
编号 名称 时间
双代号网络图表示法:
i 工作名称 持续时间
j
三、 网络计划技术的基本原理
1.利用网络图的形式表达一项工程中各项工作的先后顺序及逻辑 关系;
2.通过对网络图时间参数的计算,找出关键工作、关键线路;
②形成条件: ESij ETi
h
i
FF i j
D i j
ESjk ETj
j
k
③计算公式:
FF i j
FFij ETj ETi Dij ETj (ETi Dij ) ETj EFij
五、 关键工作和关键线路的确定 在网络计划中,总时差最小的工作称为关键工作。
【示例】计算下图各项时间参数。
55 0 13 13 0
ESij ETi
Ei F j Ei SjD ij
ET i
()
i
工作名称
D i j
j
3.工作最迟开始时间( LS)和工作最迟完成时间(LF):
LFij LTj Li Sj Li F jD ij
()
i
工作名称
D i j
LT j
j
4.工作总时差( TF)和工作自由时差(FF)的计算:
⑴工作总时差:
①概念:它是指在不影响后续工作按照最迟必须开始时间开工的 前提下,允许该工作推迟其最早可能开始时间或延长其 持续时间的幅度。
②形成条件:
ESij ETi
LTj LFij
h
i
TF i j
D i j
j
k
③计算公式:
TFij LTj ETi Dij
TF i j
LTj EFij LFij EFij
(LFij Dij )(EFij Dij )
LSij ESij
⑵工作自由时差:
①概念:它是指在不影响后续工作按照最早可能开始时间开工的 前提下,允许该工作推迟其最早可能开始时间或延长其 持续时间的幅度。
作和关键线路,便于管理者抓住主要矛盾,集中精力确保工 期,避免盲目施工;
4.能够从许多可行方案中,选出最优方案;
5.保证自始至终对计划进行有效的控制与监督; 6.利用网络计划中反映出的各项工作的时间储备,可以更好的调
配人力、物力,以达到降低成本的目的;
7.可以利用计算机进行计算、优化、调整和管理。 缺点:在计算劳动力、资源消耗量时,与横道图相比较为困难。
第四节 双代号网络图时间参数的计算
一、 概述 1.网络图时间参数计算的目的:
目的在于确定网络图上各项工作和节点的时间参数,为网络 计划的优化、调整和执行提供明确的时间概念。
2.时间参数计算的内容:
工作持续时间、节点时间参数、工作时间参数
3.计算方法:
图上计算法、分析计算法、表上计算法、矩阵计算法、
⑵非关键线路性质: ①非关键线路的线路时间只代表该条线路的计划工期;
②非关键线路上的工作,除了关键工作之外,都称为非关键 工作;
③非关键线路有时间储备,非关键工作也有时间储备; ④在网络图中,除了关键线路之外,其余的都是非关键线路; ⑤当管理人员由于工作疏忽,拖长了某些非关键工作的持续
时间,就可能使非关键线路转变为关键线路。
2.特点: ⑴它不消耗时间和资源; ⑵它标志着工作的结束或开始的瞬间; ⑶两个节点编号表示一项工作。
3.节点种类:
i
i-j工作的 结束节点
j
i-j工作的 开始节点
4.节点与工作的关系:
j-k工作的 开始节点
j-k工作的 结束节点
k
i
前导工作 (紧前工作)
后续工作 (紧后工作)
5.节点编号: ⑴目的:①便于网络图时间参数的计算; ②便于检查或识别各项工作。
网络计划技术
第三章 网络计划技术
➢第一节 网络图的基本概念 ➢第二节 双代号网络图的组成 ➢第三节 双代号网络图的绘制 ➢第四节 双代号网络图时间参数的计算 ➢第五节 单代号网络计划 ➢第六节 双代号时标网络计划
第一节 网络图的基本概念
一、 网络计划技术
它是一种以网络图形来表达计划中各项工作之间相互依赖、 相互制约的关系;分析其内在规律,寻求其最优方案的计划管理 技术。
3.利用优化原理,改善网络计划的初始方案,以选择最优方案;
4.在网络计划的执行过程中进行有效的控制和监督,保证合理地 利用资源,力求以最少的消耗获取最佳的经济效益和社会效益.
四、 网络计划技术的优缺点 1.能全面而明确地反映出各项工作之间开展的先后顺序和它们之
间的相互制约、相互依赖的关系; 2.可以进行各种时间参数的计算; 3.能在工作繁多、错综复杂的计划中找出影响工程进度的关键工
工作 A
B
C
D
E
紧前工作 —
—
A
A、B
B
A
C
B
E
A2 C
1
4
D5
B3 E
【示例】某工程各项工作间的逻辑关系如下表所示,试绘 制双代号网络图。
工作名称 A B C D E F G H I J
前导工作 —— —— A A B D、E B F F C、H
后续工作 C、D E、G J F F H、I —— J —— ——
C
说明 A制约B的开始,B 依赖A的结束
A、B、C三项工作 为平行施工方式
A、B、C三项工作 为平行施工方式
A制约B、C的开始, B、C依赖A的结束, B、C为平行施工
序号 工作之间的逻辑关系
5
A、B、C三项工作,A、B 结束后,C才能开始
6
A、B、C、D四项工作,A、 B结束后,C、D才能开始
A、B、C、D四项工作,A 7 完成后,C才能开始,A、
E j T m E a i D T x i j
3.节点最迟时间—— LT
它表示该节点所有前导工作最迟必须结束的时间,它也限制 其后续工作的开始。
L i T m L i j n T D i j
【示例】计算下图节点时间参数。
13 13
23 25
B
E
8
3
6
7
G 5
1
A 5
00
2 5 5 13 13 5
⑵只消耗时间而不消耗资源的工作;
⑶不需要消耗时间和资源、不占有空间的工作。
3.工作的表示方法: ⑴实工作:它是由两个带有编号的圆圈和一个箭杆组成。
i 工作名称 持续时间
j
⑵虚工作:
i0
j
i0
j
二、 节点
1.概念: 指网络图的箭杆进入或引出处带有编号的圆圈。它表示 其前面若干项工作的结束或表示其后面若干项工作的开 始。
浇Ⅲ
13
14
1 支Ⅰ 2
支Ⅱ
3
支Ⅲ
绑Ⅰ 4
5 绑Ⅱ 6
浇Ⅰ
8
绑Ⅲ 7
浇Ⅱ
浇Ⅲ
9
10
②纵向断路法:
5 支Ⅲ 9
绑Ⅲ
13
浇Ⅲ
14
3 支Ⅱ 4
Δ Δ
7 绑Ⅱ 8
浇Ⅱ
11
12
1
支Ⅰ
绑Ⅰ
浇Ⅰ
2
6
10
4.尽量减少不必要的节点和虚箭杆
5.网络图的分解 6.网络图的排列方法:
按工种排列法、按施工段排列法、按施工层排列法。
B完成后,D才能开始
A、B、C、D、E五项工作,
8
A、B、C完成后, D才能 开始,B、C完成后, E才
能开始
A、B、C、D、E五项工作, 9 A、B完成后, C才能开始,
B、D完成后, E才能开始
网络图中的表示方法
A C
B
A
C
j
B
D
A
C
i
B jD
A
D
i
B jE
C
A
C
i
Bj
D
E
说明
A、B为平行施工, A、B制约C的开始, C依赖A、B的结束
2.三种工期的关系:
Tc ≤ Tp≤ Tr
电算法。 二、 工作持续时间计算 1.单一时间计算法:
Dij
Qij SijRijNij
Pij RijNij
2.三时估算法:
Dij
a4mb 6
三、 节点时间参数计算 1.节点时间参数在网络图上的表示方法:
ET i LT i
i 工作名称
D i j
ET j LT j j
2.节点最早时间—— ET
它表示该节点所有后续工作最早可能开始的时刻,它限制其 前导工作最早可能结束的时间。
持续时间 2 3 5 3 2 4 2 1 3 4
A 2
2
C 5
6
D3
H1
1
4
F
5
4
E2
B 3
3
G 2
J 4
I
7
3
三、 单位(土建)工程网络计划的编制步骤 1.熟悉施工图纸,研究原始资料,分析施工条件; 2.分解施工过程,明确施工顺序,确定工作名称和内容; 3.拟定施工方案,划分施工段; 4.确定工作持续时间; 5.绘制网络图; 6.网络图各项时间参数计算; 7.网络计划的优化; 8.网络计划的修改与调整
引出节点 j 正确地
表达了ABCD之间 的关系
引出虚工作 i j
正确的表达它们之 间的逻辑关系
引出虚工作 i j
正确的表达它们之 间的逻辑关系
2.网络图中,严禁出现循环回路;
2
2
2
4
6
7
1
1