圆幂定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆幂定理

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。

定理

圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)

几何语言:若弦AB、CD交于点P则PA·PB=PC·PD(相交弦定理)

概述

相交弦定理为圆幂定理之一,其他两条定理为:

切割线定理

割线定理

2证明

证明:连结AC,BD

由圆周角定理的推论,得∠A=∠D,∠C=∠B。(圆周角推论2: 同(等)弧所对圆周角相等.)∴△PAC∽△PDB

∴PA∶PD=PC∶PB,PA·PB=PC·PD

注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。其逆定理也可用于证明四点共圆。

P 不是圆心

3比较

相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求线段长度。

4相交弦定理推论

定理

如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。

说明几何语言:若AB是直径,CD垂直

AB于点P,则

=PA·PB(相交弦定理推论)

切割线定理

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。

切割线定理示意图

几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT²=PA·PB(切割线定理)

推论:

从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

几何语言:

∵PT是⊙O切线,PBA,PDC是⊙O的割线

∴PD·PC=PA·PB(切割线定理推论)(割线定理)

由上可知:PT²=PA·PB=PC·PD

2证明

切割线定理证明:

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB

证明:连接AT, BT

∵∠PTB=∠PAT(弦切角定理 )

切割线定理的证明

∠APT=∠APT(公共角)

∴△PBT∽△PTA(两角对应相等,两三角形相似)

则PB:PT=PT:AP

即:PT²=PB·PA

3比较

相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求直线段长度。

割线定理:指的是从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等,

1定义

文字表达:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

数学语言:从圆外一点L引两条割线与圆分别交于A.B.C.D 则有LA·LB=LC·LD=LT^2。如下图所示。(LT为切线)

割线定理

2证明一

已知:如图直线ABP和CDP是自点P引的⊙O的两条割线

求证:PA·PB=PC·PD

证明:连接AD、BC

∵∠A和∠C都对弧BD

∴由圆周角定理,得∠A=∠C

又∵∠P=∠P

∴△ADP∽△CBP (A,A)

∴A P:CP=DP:BP

即AP·BP=CP·DP

3证明二

既然圆内接四边形定理可以从割线定理而得,那么或许割线定理就可以从圆内接四边形定理而得。

如图所示。

已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D

求证:AP·BP=CP·DP

证明

连接AC、BD

由圆内接四边形定理得

∠ABD+∠DCA=∠CAB+∠BDC=180°

又∵∠ACP+∠DCA=∠DCP=180°,∠CAP+∠CAB=∠BAP=180°(平角的定义)

∴∠ABD=∠ACP,∠BDC=∠CAP(同角的补角相等)

∴△ACP∽△DBP(两角对应相等的三角形相似)

∴AP/DP=CP/BP(相似三角形对应边成比例)

∴AP·BP=CP·DP(比例基本性质)[1]

4证明三

根据切割线定理求证。

已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D

求证:AP·BP=CP·DP

过点P作圆O的切线,记切点为T

由切割线定理可知:AP·BP=PT^2,CP·DP=PT^2

所以AP·BP=CP·DP

5比较

相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求线段长度。

垂径定理

垂径定理内容:垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。数学表达为:如右图,DC 为圆O的直径,直径DC垂直于弦AB,则AE=EB,劣弧AC等于劣弧BC

定义

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

2证明

如图,在⊙O中,DC为直径, AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD

垂径定理证明图

证明:连OA、OB分别交于点A、点B.

∵OA、OB是⊙O的半径

∴OA=OB

∴△OAB是等腰三角形

∵AB⊥DC

∴AE=BE,∠AOE=∠BOE(等腰三角形的三线合一性质)

∴弧AD=弧BD,∠AOC=∠BOC

∴弧AC=弧BC

3推论

推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧

推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧

推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧

推论四:在同圆或者等圆中,两条平行弦所夹的弧相等

(证明时的理论依据就是上面的五条定理)

但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:

一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论

1.平分弦所对的优弧

2.平分弦所对的劣弧

(前两条合起来就是:平分弦所对的两条弧)

相关文档
最新文档