圆幂定理

合集下载

圆定理证明

圆定理证明

圆幂定理定义圆幂=PO^2-R^2 (该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P 引两条割线与圆分别交于A、B;C、D, 则有PA ·PB=PC ·PD。

统一归纳:过任意不在圆上的一点P 引两条直线L1、L2,L1 与圆交于A、B(可重合,即切线),L2 与圆交于C、D(可重合),则有PA ·PB=PC ·PD。

相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)相交弦说明几何语言:若弦AB 、CD 交于点P则PA ·PB=PC ·PD (相交弦定理)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的例中项几何语言:若AB 是直径,CD 垂直AB 于点P, 则PC^2=PA ·PB (相交弦定理推论)相交弦定理CADPo°B⊙O中,AB、CD 为弦,交于PPA ·PB=PC·PD连结AC、BD,证:△APC△DPB切割线定理定义从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

是圆幂定理的一种。

几何语言:∵PT 切⊙O于点T,PBA 是⊙O的割线∴PT 的平方=PA ·PB (切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,P BA,PDC 是⊙O的割线∴PD·PC=PA ·PB (切割线定理推论)(割线定理)由上可知:PTA2 (平方)=PA ·PB=PC ·PD证明切割线定理证明:设ABP 是⊙O的一条割线,PT 是⊙O的一条切线,切点为T, 则PT^2=PA ·PB证明:连接AT,BT∵∠PTB=∠PAT (弦切角定理)∠P=∠P(公共角)∴△PBTO△PTA (两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT^2=PB ·PA割线定理定义从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

圆幂定理

圆幂定理

圆中的比例线段根轴相交弦定理圆内的两条相交弦被交点分成的两条线段的积相等.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.上述三个定理统称为圆幂定理,它们的发现距今已有两千多年的历史,它们有下面的同一形式:圆幂定理过一定点作两条直线与圆相交,则定点到每条直线与圆的交点的两条线段的积相等,即它们的积为定值.这里切线可以看作割线的特殊情形,切点看作是两个重合的交点.若定点到圆心的距离为d,圆半径为r,则这个定值为|d2-r2|.当定点在圆内时,d2-r2<0,|d2-r2|等于过定点的最小弦的一半的平方;当定点在圆上时,d2-r2=0;当定点在圆外时,d2-r2>0,d2-r2等于从定点向圆所引切线长的平方.特别地,我们把d2-r2称为定点对于圆的幂.一般地我们有如下结论:到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线;如果此二圆相交,那么该轨迹是此二圆的公共弦所在直线.这条直线称为两圆的“根轴”.对于根轴我们有如下结论:三个圆两两的根轴如果不互相平行,那么它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.练习:1.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为________.2.如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=35°,则∠D=________.3.如图,AB是⊙O的直径,D是⊙O上一点,E为BD的中点,⊙O 的弦AD与BE的延长线相交于点C,若AB=18,BC=12,则AD=_____4.如图,过点D作圆的切线切于B点,作割线交圆于A,C两点,其中BD=3,AD=4,AB=2,则BC=________.5如图,半径为2的⊙O 中,∠AOB =90°,D 为OB 的中点,AD 的延长线交⊙O 于点E ,则线段DE 的长为________.6.如图所示,P A 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,P A =10,PB =5,∠BAC 的平分线与BC 和⊙O 分别交于点D 和E ,则AD ·AE 的值为__________.例1. 在ΔABC 中,已知CM 是∠ACB 的平分线,ΔAMC 的外接圆交BC于N ,若AC =12AB ,求证:BN =2AM .例2 ⊙O 与⊙O '外切于点P ,一条外公切线分别切两圆于点A 、B ,AC 为⊙O 的直径,从C 引⊙O '的切线CT ,切点为T .求证:CT =AB .例3. AD 是Rt △ABC 斜边BC 上的高,∠B 的平分线交AD于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .O AB C M N AP O'O B C T E A N C D BF M 1 2 3 4 5例4. 已知AB 切⊙O 于B ,M 为AB 的中点,过M 作⊙O 的割线MD 交⊙O 于C 、D 两点,连AC 并延长交⊙O 于E ,连AD 交⊙O 于F .求证:EF ∥AB .例5.(I )已知四边形PQRS 是圆内接四边形,∠PSR =90°,过点Q 作PR 、PS 的垂线,垂足分别为点H 、K .(1)求证:Q 、H 、K 、P 四点共圆;(2)求证:QT =TS .(II )如图所示,AB 是⊙O 的直径,G 为AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AB 的垂线,交AC 的延长线于点E ,交AD 的延长线于点F ,过G 作⊙O 的切线,切点为H .求证:(1)C ,D ,F ,E 四点共圆;(2)GH 2=CE ·GF .例6. 如图,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.O E F D A B C M A O QP C B G FE D例7. 如图所示,P A 、PB 是⊙O 的两条切线,PEC 是⊙O 的一条割线,D 是AB 与PC 的交点,若PE =2,CD =1,求DE 的长.例8.以O 为圆心的圆通过⊿ABC 的两个顶点A 、C ,且与AB 、BC 两边分别相交于K 、N 两点,⊿ABC 和⊿KBN 的两外接圆交于B 、M 两点.证明:∠OMB 为直角.例9 AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .P AA B D E FM 1 2 3 4 O P Q1.13 2.125° 3.14 4.325.355 6.(1)利用∠PHQ=∠PKQ=90°;(2)先证∠HKS=∠QSP,TS=TK,再证TS=QT.证明(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS. (2)证明(1)如图,连接BC.∵AB是⊙O的直径,∴∠ACB=90°.∵AG⊥FG,∴∠AGE=90°.又∠EAG=∠BAC,∴∠ABC=∠AEG.又∠FDC=∠ABC,∴∠FDC=∠AEG.∴∠FDC+∠CEF=180°.∴C,D,F,E四点共圆.(2)∵GH为⊙O的切线,GCD为割线,∴GH2=GC·GD.由C,D,F,E四点共圆,得∠GCE=∠AFE,∠GEC=∠GDF.∴△GCE∽△GFD.∴GCGF=GEGD,即GC·GD=GE·GF.∴CH2=GE·GF.。

圆幂定理

圆幂定理

圆幂定理廖述美 知识要点相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 即若弦AB 、CD 交于点P ,则PA·PB=PC·PD . 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项.即若PT 切⊙O 于点T ,PAB 是⊙O 的割线,则PT2=PA·PB割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.即若割线AB 、CD 与⊙O 分别交于A 、B 、C 、D ,则PA·PB=PC·PD .圆幂定理:相交弦定理、切割线定理、割线定理统称圆幂定理. 经典例题例1. 如图,⊙O 和⊙O ′都经过点A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q ,M ,交AB的延长线于N.求证:2PN NM NQ =∙例2.如图,两个以O 为圆心的同心圆,AB 切大圆于B ,AC 切小圆于C ,交大圆于D ,E ,AB =12,AO =20,AD =8, 求两圆的半径.例3.如图,在以O为圆心的两个同心圆中,A,B是大圆上任意两点,过A,B作小圆的割线AXY和BPQ.求证:AX·AY=BP·BQ破题分析相交弦定理练习1:如图,圆中两条弦AB,CD相交于圆内一点P,已知PA=PB=4,PC=14PD,求CD的长。

切割线定理2:两圆相交于A,B两点,P为两圆公共弦AB上任一点,从P引两圆的切线PC,PD,求证PC=PD3:E 是圆内两弦AB 和CD 的交点,直线EF//CB,交AD 的延长线于F,切圆于G 求证(1) EFA DFE (2)EF=FG基础题1.如图1,AB 是⊙O 的直径,C ,D 是半圆的三等分点,则∠C +∠E +∠D =( )A .135°B .110°C .145°D .120° 2.如图2,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A .∠BAD +∠CAD =90°B .∠BAD >∠CADC .∠BAD =∠CADD .∠BAD <∠CAD3、如图3,PAB 、PC 分别是圆O 的割线和切线(C 为切点),若3PA AB ==,则PC 的长为A .62B .6C .32D .3(如图1) (如图2) (如图3)ABC OP4、 如图4,已知⊙O 的直径5AB =,C 为圆周上一点,4=BC ,过点C 作⊙O 的切线l ,过点A 作l 的垂线AD ,垂足为D ,则CD =___________.5、如图5,已知PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C 两点,3,1PA PB ==, 则圆O 的半径为 ,C ∠=6、如图6,PC 切O 于点C ,割线PAB 经过圆心O ,弦C D A B ⊥于点E ,已知O 的半径为3,2PA =,则PC =_________,OE =_________.(如图4) (如图5) (如图6)7.如图7,AB 是⊙O 的直径,CB 切⊙O 与B ,CD 切⊙O 与D ,交BA 的延长线于E .若AB =3,ED =2,则BC 的长为______.8. 如图8,AB 是O ⊙的直径,弦CD AB ⊥,垂足为E ,P 是BA 延长线上的点,连结PC交O ⊙于F ,如果713P F F C ==,,且::2:4:P A A E E B =,那么CD 的长是 .9. 如图9,BC 是半圆O ⊙的直径,EF BC ⊥于点F ,5BFFC=.已知点A 在CE 的延长线上,AB 与半圆交于D ,且82AB AE ==,,则AD 的长为_____________.O F EDCBAPABCDEFO(如图7) (如图8) (如图9)AB PCO ·PCBA D EO lOAD CB10.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点,(Ⅰ)求∠AOD的度数;(Ⅱ)若AO=8 cm,DO=6 cm,求OE的长.11.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.12.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于E ,连结AC 、OC 、BC .(1)求证:∠ACO =∠BCD ;(2)若BE =2,CD =8,求AB 和AC 的长.提高题1、如图1:PA 切O 于点A ,4PA =,PBC 过圆心O ,且与圆相交于B 、C 两点,:1:2AB AC =,则O 的半径为 .2、如图2,在圆内接四边形ABCD 中, 对角线, AC BD 相交于点E .已知23BC CD ==,2AE EC =,30CBD ∠=,则CAB ∠= ,AC 的长是 .3、如图3,过⊙O 外一点A 作一条直线与⊙O 交于C ,D 两点,AB 切⊙O 于B ,弦MN 过CD 的中点P .已知AC =4,AB =6,则MP ·NP = .(如图1) (如图2) (如图3)C D M NOBAP BCOAP4、如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=15,求EM的长.5.如图所示,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(1)求证:AD∥EC;(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.挑战极限1.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,⊙B的半径为R,则⋂DE的长度是()(题目进行过改编)A.()9090Rx-πB.()9090Ry-πC.()180180Rx-πD.()180180Ry-π2.(2012武汉中考题)在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.考点:切线的性质;坐标与图形性质;勾股定理;锐角三角函数的定义。

圆幂的定理

圆幂的定理

圆幂的定理
圆幂定理是几何学中的一条定理,它描述了一个点与一个圆之间的关系。

具体来说,圆幂定理说明了如果有一条直线通过一个点P,与一个圆相交于点M和点N,那么这个点P到圆的两个切线段PM和PN的长度的乘积等于点P到圆心O的距离的平方减去圆的半径的平方,即可以表示为PM * PN = PO^2 - r^2。

圆幂定理可以推广到两个圆相交的情况下,即如果有两个圆分别为圆A和圆B,并且它们相交于点M和点N,那么点M和点N到这两个圆心的线段的乘积等于这两个圆心到点M和点N的距离的乘积,即可以表示为MA * MB = NA * NB。

这个式子即为圆A关于圆B的圆幂定理。

圆幂定理有许多应用,其中一个重要的应用是求解圆的切线长度。

通过圆幂定理,可以求解出切线与切点之间的关系,进而解决与圆切线相关的几何问题。

圆幂定理

圆幂定理

中小学1对1课外辅导专家武汉龙文教育学科辅导讲义 圆幂定理圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将下述定理统称为圆幂定理。

定理 图形 已知 结论 证法 相交弦定理⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD 连结AC 、BD ,证:△APC∽△DPB .相交弦定理的推论⊙O 中,AB 为直径,CD⊥AB 于P.PC 2=PA·PB . 用相交弦定理.切割线定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT 2=PA·PB 连结TA 、TB ,证:△PTB∽△PAT割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆中的相似(1)一、圆中相似三角形的判定1.如图,直线PM 切⊙O 于点M ,直线PO 交⊙O 于A ,B 点,弦AC ∥PM ,连接OM 、BC.求证:(1)△ABC ∽△POM ;(2)2OA 2=OP •BC .CA MB PO中小学1对1课外辅导专家2.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D .求证:(1)D 是BC 的中点; (2)△BE C ∽△ADC ; (3)BC 2=2AB ·CE二、利用圆中相似三角形证明圆中的比例线段3.如图,在圆内接四边形ABCD 中,CD 为∠BCA 的外角的平分线,F 为错误!未找到引用源。

上一点,BC=AF ,延长DF 与BA 的延长线交于E . (1)求证:△ABD 为等腰三角形. (2)求证:AC•AF=DF•FE .4如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E ,AE =2,ED =4, (1)求证:△ABE ∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接F A ,试判断直线F A 与⊙O 的位置关系,并说明理由.FD OC EB AA C BD EO · 圆中的相似(2)三、利用圆中相似进行计算1.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于 点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线; (2)求证: AB =2BC ;(3)点M 是弧AB 的中点,CM 交AB 于点N , 若AB=4,求MN ·MC 的值.2.如图,已知R t △ABC ,∠ABC =90°,以直角边AB 为直径作O ,交斜边AC 于点D ,连结BD . (1)若AD =3,BD =4,求边BC 的长; (2)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切.四、圆的有关线段与相似三角形的综合运用3.如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2=AB ·AE ,求证:DE 是⊙O 的切线.4.如图,AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D . 求证:(1)∠AOC =2∠ACD ;(2)AC 2=AB ·AD .圆中的相似(3)1、如图, Rt ABC △中,90ABC ∠=°,以AB 为直径的O ⊙交AC 于点D ,过点D 的切线交BC 于E .(1)求证:12DE BC =;(2)若,求AD 的长.2.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为 CF的中点,连接BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H 。

圆幂定理逆定理

圆幂定理逆定理

圆幂定理逆定理
圆幂定理是一个经典的几何定理,它描述了一个点和圆之间的关系。

具体而言,如果一个点P在圆的外部,则它到圆的两个切点的距离的乘积等于它到圆心的距离的平方减去圆的半径的平方。

如果一个点P在圆的内部,则圆的半径的平方减去它到圆心的距离的平方等于它到圆的两个切点的距离的乘积。

圆幂定理的逆定理是指,如果给定一个点P和两条相交的直线AB和CD,使得AP·BP=CP·DP,则这个点P在由ABCD组成的圆上。

这个定理的证明可以通过构造圆心角相等来完成。

圆幂定理和它的逆定理在几何证明中经常被使用,它们可以帮助我们解决很多和圆相关的问题。

在学习几何知识的过程中,深入理解这些定理的含义和证明方法是非常重要的。

- 1 -。

圆幂定理

圆幂定理

一知识再现1. 圆幂定理一般地,把相交弦定理、切割线定理、割线定理等统称为圆幂定理。

它的基本内容是,在平面上经过;点P的直线与⊙O相交于A、B两点,有向线段PA、PB的乘积PA·PB是一个定值。

如下列图形,经过一定点P作圆的弦或割线或切线,设⊙O半径为R在图(1)中,PA·PB=PC·PD=PE·PF=(R-OP)(R-OP)=R2-OP2在图(2)中,PA·PB=PT2=OP2-OT2==OP2-R2在图(3)中,PA·PB=PC·PD= PT2==OP2-R2可得PA·PB均等于,为一常数,所以叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理.2.角平分线定理角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。

【注】三角形的角平分线不是角的平分线,是线段。

角的平分线是射线。

■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

■定理1:在角平分线上的任意一点到这个角的两边距离相等。

■逆定理:在一个角的内部(包括顶角),且到这个角的两边距离相等的点在这个角的角平分线上。

■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,如:在△ABC 中,BD 平分∠ABC ,则AD :DC=AB :BC 3.平行线分线段定理定理 三条平行线截两条直线,所得的对应线段成比例.二 例题讲解例1如图4AB 是⊙O 的弦,P 是AB 上一点,AB = 10cm ,P A : PB = 2 : 3,OP = 5cm ,则⊙O 的半径等于 .解析:设⊙O 的半径为R .∵AB = 10cm ,P A : PB = 2 : 3,∴PA = 4 cm ,PB = 6 cm . 由相交弦定理,得P A ·PB = PC ·PD = R 2-OP 2,即4×6 = R 2-52. 所以,R = 7. 故⊙O 的半径等于7 cm . 例2.如图5,已知P AC 为⊙O 的割线,连接PO 交⊙O 于B ,PB = 2,OP = 7,P A= AC ,则P A 的长为( )A .7B .23C .14D .32解析:延长PO 交⊙O 于D .∵PB = 2,OP = 7,∴OB = 5,即PC = 12. 由切割线定理的推论,得 P A ·AC = PB ·PC . ∵P A = AC ,∴2 P A 2 = 2×12. 所以,P A = 23.故应选B .一、“四心”分类讨论1、外心三解形三条垂直平分线的交点叫做三角形的外心,即外接圆圆心。

圆幂定理

圆幂定理

圆幂定理是平面几何中的一个定理。

所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳。

根据两条与圆有相交关系的线的位置不同,有以下定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。

经过总结和归纳,便得出了圆幂定理。

基本定义定义:一点P对半径R的圆O的幂定义如下:圆幂a=OP²-R²符号:圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

定理内容过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合,即切线),则有PA×PB=PC×PD 。

考虑经过P点与圆心O的直线,设PO交⊙O于M、N,R 为圆的半径,则有PA×PB=PC×PD=PM×PN=(OP+R)│OP-R│=│OP²-R²│定理证明图Ⅰ:相交弦定理。

如图,AB、CD为圆O的两条任意弦。

相交于点P,连接AD、BC,由于∠B与∠D同为弧AC 所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以△PAD∽△PCB。

所以有:PA/PC=PD/PB,即:PA×PB=PC×PD 。

图Ⅱ:割线定理。

如图,连接AD、BC。

可知∠B=∠D,又因为∠P为公共角,所以有△PAD∽△PCB,同上证得PA×PB=PC×PD。

图Ⅲ:切割线定理。

如图,连接AC、AD。

∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有△PAC∽△PDA ,易证PA²=PC×PD。

圆幂定理及其证明

圆幂定理及其证明

圆幂的定义假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P 点到圆O的幂;若P点在圆内,则圆幂为R^2-OP^2;综上所述,圆幂为|OP^2-R^2|。

圆幂恒大于或等于零。

圆幂的由来过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。

则PA·PB=PC·PD。

若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。

这个值称为点P到圆O的幂。

(事实上所有的过P点与圆相交的直线都满足这个值)若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。

圆幂定理定理内容过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有。

[1]圆幂定理的所有情况考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有圆幂定理的证明图Ⅰ:相交弦定理。

如图,AB、CD为圆O的两条任意弦。

相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以。

所以有:,即:图Ⅱ:割线定理。

如图,连接AD、BC。

可知∠B=∠D,又因为∠P为公共角,所以有,同上证得图Ⅲ:切割线定理。

如图,连接AC、AD。

∠PAC为切线PA 与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有易证图Ⅳ:PA、PC均为切线,则∠PAO=∠PCO=直角,在直角三角形中:OC=OA=R,PO为公共边,因此所以PA=PC,所以综上可知,是普遍成立的。

证明完毕。

圆幂定理证明

圆幂定理证明

圆幂定理证明
引言:
圆幂定理又称华罗庚公式,它表明在多项式中,二次项、四次项等次项的系数可以从非二次项的系数中求出来,它最早由科学家英国自然哲学家华罗庚在16世纪完成。

圆幂定理的性质:当z的n次幂展开时(z的n次幂为z的n个相同的因子),各项系数满足公式:a(n)=( -1)^( n-1 ) / ( n - 1 )! * 求和(k= 0到 n-1) [n^k 开始 * a (k)],其中 n 称作次数,k 称作幂数。

证明:
首先,假设z的n次幂有如下公式:z^n = a0 +a1z+...+an-1zn-1 + anzn
我们分类讨论,首先当n为偶数时,如:
z^2 =a0+a1z+a2z^2
因为每一项的系数都是可以由未知系数a0,a1,a2求出来,即:
a0 = ( -1 )^ 1 / 1! * 求和(k= 0到 1) [2^k * a(k)]
当n为奇数时,如:
通过上述两种情况的分析,当n为任意正整数时,它们满足的条件都是一样的,即:a(n)=( -1)^( n-1 ) / ( n - 1 )! * 求和(k= 0到 n-1) [n^k * a(k)],其中n 称作次数,k 称作幂数。

圆幂定理 证明 知乎

圆幂定理 证明 知乎

圆幂定理证明知乎
圆幂定理是指在一个平面内,对于一个点P和两个相交的
圆C1和C2,如果从P到C1的两个切线分别与C2相交于A
和B,那么PA*PB等于P到两个切点的线段长度的乘积。

证明圆幂定理可以分为以下几个步骤:
步骤1:证明PA*PB的值与P到两个切点的线段长度的乘积
有关。

假设P到C1的两个切点分别为X和Y,那么根据相似三角
形的性质,可以得到△PAX∽△PYB。

因此,可以得到
PA/PY=PX/PB,即PA*PB=PX*PY。

步骤2:证明PX*PY等于P到C1和C2的切线之间的距离的
平方。

设P到C1和C2的切线之间的距离为d,那么可以得到
△PAX∽△PYB,因此可以得到PX/PY=AX/YB。

又因为AX=PY,YB=PX,所以可以得到PX*PY=AX*YB=d^2。

综上所述,可以得到PA*PB=d^2,即圆幂定理成立。

这是圆幂定理的证明过程的一个简单描述,具体的证明过
程可能会涉及到更多的几何推理和性质的运用。

五大圆幂定理

五大圆幂定理

五大圆幂定理
欧拉-莱布尼兹大五角定理,又称为欧拉-莱布尼兹大五圆定理,是一个
被认为是数学史上最重要的定理之一。

它最初是由十七世纪的意大利
数学家拉斐尔·欧拉(L.Euler)提出的。

欧拉-莱布尼兹大五角定理犹如一颗闪耀着数学之光的明珠,它说明了
五角形内每个角度凑成三等分之和为1800度,这也被称为五角形角和
定理。

欧拉-莱布尼兹大五角定理的证明报告书可以归纳为以下五个主要结论:
1.几何定义:五角形是一个形状有五个角的多边形,每个角的面积都是一样的。

2.加和定理:五角形的五个角的面积加起来等于1800度。

3.三平分定理:五角形中每个角都可以分成三等份,每份等于600度。

4.对称定理:五角形的五个角都是对称的,形状也是对称的。

5.圆周定理:五角形的每个角必须满足360度的圆周定理,即每个角都
必须和圆周长度一样。

欧拉-莱布尼兹大五角定理由这五点概括,实际上它涵盖了五角形形状、加法、三平分、对称以及圆周的概念,因此它也被称为圆幂定理。


拉-莱布尼兹的大五角定理,让我们看到了数学在自然界中的应用,也
成为数学家们进行数学研究的基础。

圆幂定理

圆幂定理
圆幂定理
问题一
什么是圆幂定理呢??? 什么是圆幂定理呢???
圆幂定理是对相交弦定理、切割线定理及 圆幂定理是对相交弦定理、切割线定理及 相交弦定理 割线定理(切割线定理推论) 割线定理(切割线定理推论)以及它们推 论统一归纳的结果。 论统一归纳的结果。
1、相交弦定理 在圆内有两条弦相交,则交 点把弦分成两部分的积相等 已知:AB、CD是⊙O 的两条相交弦,交于点P 求证: AP·BP=CP·DP 证明:连接AC、BD
从圆外一点向圆引两条割 线,在每一条割线上,圆 外一点到圆的距离积相等
B
M
O
A
P C D
分析:1、 已知:如图,PAB与PCD分别是 要证积相等, ⊙O的割线。求证:PA·PB=PC·PD 应证明三角 证明:作⊙O的切线PM,M为切点 形相似 2 2、是不是 与切割线定 理有关?
则:PM = PA ⋅ PB PM = PC ⋅ PD
A D O P C B
∠A = ∠D ⇒ ∆ACP ∽ ∆DBP ∠C = ∠B AP BP ⇒ = ⇒ AP ⋅ BP = CP ⋅ DP DP CP
问题二
是否会有一些特殊情况呢??
A
C A O D
C A
C B
D
B
P
(1)如图1,⊙O的两条弦AB,CD相交于点P, 则PA·PB=PC·PD.这便是我们学过的相交弦定理.对 于这个定理有两个特例:
A
O B C
P
求证:
PA = PB ⋅ PC
2
已知:P为⊙O外 一点,PA为⊙O的 切线,PBC为P
求证: 2 = PB ⋅ PC PA
证明:连接AB、AC 则∠ACB=∠PAB ∴∆PAB∽∆PCA ∴

圆中的重要模型-圆幂定理模型(解析版)

圆中的重要模型-圆幂定理模型(解析版)

圆中的重要模型--圆幂定理模型圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理、割线定理、弦切角定理、托勒密定理以及它们推论的统一与归纳。

可能是在19世纪由德国数学家施泰纳(Steiner )或者法国数学家普朗克雷(Poncelet )提出的。

圆幂定理的用法:可以利用圆幂定理求解与圆有关的线段比例、角度、面积等问题。

模型1.相交弦模型条件:在圆O 中,弦AB 与弦CD 交于点E ,点E 在圆O 内。

结论:△CAE ∼△BDE ⇒EC EB =EA ED⇒EC ⋅ED =EB ⋅EA 。

1(2023·广东广州·九年级校考期中)如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,两圆组成的圆环的面积是.【答案】36π【分析】连接AC ,BD ,OP ,OA ,先根据切线的性质定理和垂径定理证出PA =PB ,再证明△APC ∽△DPB ,得到AP DP =CP BP,代入数据求得AP =BP =6,最后根据圆环的面积公式进行计算即可求解.【详解】解:如图,连接AC ,BD ,OP ,OA ,∵大圆的弦AB 与小圆相切于点P ,∴OP ⊥AB ,∴PA =PB ,OA 2-OP 2=AP 2,∵CD =13,PD =4,∴PC =13-4=9,∵∠BAC =∠BDC ,∠C =∠B ,∴△APC ∽△DPB ,∴AP DP =CP BP ,即AP 4=9BP,解得:AP =BP =6(负值舍去),∴圆环的面积为:π⋅OA 2-π⋅OP 2=π⋅AP 2=36π,故答案为:36π.【点睛】此题综合运用了切线的性质定理、垂径定理、勾股定理、圆周角定理、圆环的面积公式,分别求出大圆和小圆的半径是解题的关键.2(2023·江西景德镇·九年级校考期末)如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.【答案】20.【分析】连接AC,BT,AT,易证∆CAD~∆BTD,得到TD=6,易证:∆BTP~∆TAP,得:TP2=AP⋅BP,设PB=x,则AP=x+7,TP2=(x+7)⋅x,PD=x+4,根据勾股定理,即可求解.【详解】连接AC,BT,AT,∵∠CAD=∠BTD,∠ADC=∠TDB,∴∆CAD~∆BTD,∴CD BD =ADTD,即:24=3TD∴TD=6,∵PT是⊙O的切线,T为切点,∴∠BTP+∠BTD=90°,∵CT是直径,∴∠CAD+∠TAP=90°∵∠CAD=∠BTD,∴∠BTP=∠TAP,∵∠P=∠P,∴∆BTP~∆TAP,∴TPAP =BPTP,即:TP2=AP⋅BP,设PB=x,则AP=x+7,TP2=(x+7)⋅x,PD=x+4,∵在Rt∆DPT中,DT2+PT2=PD2,∴62+(x+7)x=(x+4)2,解得:x=20,故答案是:20.【点睛】本题主要考查相似三角形的判定和性质定理与圆的性质的综合,根据题意,添加辅助线,构造相似三角形,是解题的关键.3(2023·江苏·九年级专题练习)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(1)为了说明相交弦定理正确性,需要对其进行证明,如下给出了不完整的“已知”“求证”,请补充完整,并写出证明过程.已知:如图①,弦AB,CD交于点P,求证:.(2)如图②,已知AB是⊙O的直径,AB与弦CD交于点P,且AB⊥CD于点P,过D作⊙O的切线,交BA的延长线于E,D为切点,若AP=2,⊙O的半径为5,求AE的长.【答案】(1)PA ⋅PB =PC ⋅PD ,证明见解析(2)103【分析】(1)先证明△ACP ∽△DBP ,再利用相似的性质即可;(2)利用(1)可知PA ⋅PB =PC ⋅PD ,求出PD ,再证明△OPD ∼△DPE ,利用相似的性质求出PE ,求差即可得到AE 的长.【详解】(1)求证:PA ⋅PB =PC ⋅PD .证明:连接AC 、BD .如图①.∵∠A =∠D ,∠C =∠B .∴△ACP ∽△DBP .∴AP PD =PC BP.∴PA ⋅PB =PC ⋅PD .(2)解:∵AP =2,OA =5,PB =10-2=8.由(1)可知PA ⋅PB =PC ⋅PD .∴PC ⋅PD =16.∵AB ⊥CD ,AB 是⊙O 的直径,PC =PD ,PD =4.连接OD .如图②.∵DE 为切线.∴∠EDO =90°.∵∠1+∠2=90°.∠E +∠2=90°.∴∠1=∠E .∴△OPD ∼△DPE .∵OP PD =PD PE,∴OP ⋅PE =PD ⋅PD .∴16=3PE ,PE =163.又∵AP =2.∴AE =163-2=103.【点睛】本题考查了圆的相关性质,三角形相似的判定与性质,严格的逻辑思维和严密的书写过程是解题的关键.模型2.双割线模型条件:如图,割线CH 与弦CF 交圆O 于点E 和点G 。

圆幂定理

圆幂定理

圆幂定理圆幂定理就是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。

ﻩﻩﻩﻩ圆幂=PO^2-R^2(该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线与割线,切线长就是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。

线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。

问题1相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。

证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。

∴△PAC∽△PDB∴PA/PD=PC/PB∴PA·PB=PC·PD问题2割线定理:从圆外一点P引两条割线与圆分别交于A、B.C、D 则有PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线时得到切线定理PA^2=PC·PD证明:(令A在P、B之间,C在P、D之间)∵ABCD为圆内接四边形∴∠CAB+∠CDB=180°又∠CAB+∠PAC=180°∴∠PAC=∠CDB∵∠APC公共∴△APC∽△DPB∴PA/PD=PC/PB∴PA·PB=PC·PD切割线定理:从圆外一点引圆的切线与割线,切线长就是这点到割线与圆交点的两条线段长的比例中项几何语言:∵PT切⊙O于点T,PBA就是⊙O的割线∴PT^2=PA·PB(切割线定理)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PBA、PDC就是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)问题3过点P任作直线交定圆于两点A、B,证明PA·PB为定值(圆幂定理)。

园幂定理

园幂定理

圆幂定理相交弦定理、切割线定理、割线定理统称为圆幂定理.圆幂定理实质上是反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段有关.相交弦定理: 在图(1)中⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD切割线定理: 在图(2)中 PAB为⊙O的割线;PT为⊙O的切线,则PA·PB=PT2割线定理:在图(3)中,PAB、PCD为⊙O的两条割线,则PA·PB=PC·PD 相交弦定理、切割线定理、割线定理有着密切的联系,主要体现在:1.用运动的观点看,切割线定理、割线定理是相交弦定理另一种情形,即移动圆内两条相交弦使其交点在圆外的情况;2.从定理的证明方法看,都是由一对相似三角形得到的等积式.熟悉以下基本图形、基本结论:以上定理形式虽然不同,但实质相同,它们是相互统一的.【例题求解】练习1 已知P 为⊙O 外一点,OP 与⊙O 交于点A ,割线PBC 与⊙O 交于点B ,C ,且PB =BC.如果OA =7,PA =2,求PC 的长.练习2 如图7-175,⊙O 和⊙O ′都经过点A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q ,M ,交AB 的延长线于N.求证:PN 2=NM ·NQ.【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= . (成都市中考题)思路点拨 综合运用圆幂定理、勾股定理求PB 长.注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段: (1)平行线分线段对应成比例; (2)相似三角形对应边成比例;(3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来.【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) (全国初中数学联赛题)A .3B .4C .415D .516思路点拨 连AC ,CE ,由条件可得许多等线段,为切割线定理的运用创设条件. 注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.【例3】 如图,△ABC 内接于⊙O ,AB 是∠O 的直径,PA 是过A 点的直线,∠PAC=∠B .(1)求证:PA 是⊙O 的切线;(2)如果弦CD 交AB 于E ,CD 的延长线交PA 于F ,AC=8,CE :ED=6:5, AE :BE=2:3,求AB 的长和∠ECB 的正切值. (北京市海淀区中考题)思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x与k的关系,建立x或k的方程.【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE(四川省竞赛题) 思路点拨由切割线定理得EG2=EF·EP,要证明EG=DE,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.【例5】如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.求:(1)cos∠F的值;(2)BE的长. (成都市中考题)思路点拨解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BE F∽△EAF,Rt△AEB入手.拓展练习:1.如图,PT是⊙O的切线,T为切点,PB是⊙O的割线,交⊙O于A、B两点,交弦CD于点M,已知CM=10,MD=2,PA=MB=4,则PT的长为.2.如图,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,则AC:BD= .3.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点F,若AB=CD=2,则CE= .4.如图,在△ABC 中,∠C=90°,AB=10,AC=6,以AC 为直径作圆与斜边交于点P ,则BP 的长为( )A .6.4B .3.2C .3.6D .85.如图,⊙O 的弦AB 平分半径OC ,交OC 于P 点,已知PA 、PB 的长分别为方程024122=+-x x 的两根,则此圆的直径为( )A .28B .26C .24D .226.如图,⊙O 的直径Ab 垂直于弦CD ,垂足为H ,点P 是AC 上一点(点P 不与A 、C 两点重合),连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F ,给出下列四个结论:①CH 2=AH ·BH ;②AD =AC :③AD 2=DF ·DP ;④∠EPC=∠APD ,其中正确的个数是( )A .1B .2C .3D .4 7.如下图,BC 是半圆的直径,O 为圆心,P 是BC 延长线上一点,PA 切半圆于点A ,AD ⊥BC 于点D .(1)若∠B=30°,问AB 与AP 是否相等?请说明理由; (2)求证:PD ·PO=PC ·PB ;(3)若BD :DC=4:l ,且BC =10,求PC 的长.8.如上图,已知PA 切⊙O 于点A ,割线PBC 交⊙O 于点B 、C ,PD ⊥AB 于点D ,PD 、AO 的延长线相交于点E ,连CE 并延长交⊙O 于点F ,连AF . (1)求证:△PBD ∽△PEC ;(2)若AB=12,tan ∠EAF=32,求⊙O 的半径的长.⌒⌒⌒9.如上图,已知AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,PF 分别交AB 、BC 于E 、D ,交⊙O 于F 、G ,且BE 、BD 恰哈好是关于x 的方程0)134(622=+++-m m x x (其中m 为实数)的两根.(1)求证:BE=BD ;(2)若GE ·EF=36,求∠A 的度数.10.如图,△ABC 中,∠C=90°,O 为AB 上一点,以O 为圆心,OB 为半径的圆 与AB 相交于点E ,与AC 相切于点D ,已知AD=2,AE=1,那么BC= .11.如图,已知A 、B 、C 、D 在同一个圆上,BC=CD ,AC 与BD 交于E ,若AC=8,CD=4,且线段BE 、ED 为正整数,则BD= .12.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH=( )A .a2B .a 1C .2aD .3a13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB , 若AB=2,则DE 的长为( )A .21 B .215- C .23D .114.如图,已知AB为⊙O的直径,C为⊙O上一点,延长BC至D,使CD=BC,CE⊥AD于E,BE交⊙O于F,AF交CE于P,求证:PE=PC. (太原市竞赛题)15.已知:如图,ABCD为正方形,以D点为圆心,AD为半径的圆弧与以BC为直径的⊙O相交于P、C两点,连结AC、AP、CP,并延长CP、AP分别交AB、BC、⊙O 于E、H、F三点,连结OF.(1)求证:△AEP∽△CEA;(2)判断线段AB与OF的位置关系,并证明你的结论;(3)求BH:HC (四川省中考题)16.如图,PA、PB是⊙O的两条切线,PEC是一条割线,D是AB与PC的交点,若PE=2,CD=1,求DE的长.(国家理科实验班招生试题)。

圆幂定理‘-概述说明以及解释

圆幂定理‘-概述说明以及解释

圆幂定理‘-概述说明以及解释1.引言1.1 概述部分:圆幂定理作为几何学中重要的定理之一,其内容涉及到圆和直线之间的关系。

通过圆幂定理,我们可以推导出在圆内或圆外的点与圆的关系,从而解决相关的几何问题。

该定理的基本概念和证明方法将在后续章节进行详细介绍。

圆幂定理在数学研究和实际问题解决中具有重要的应用价值,我们将在文章的后续部分探讨其具体应用案例。

通过本文的学习,读者将对圆幂定理有更深入的理解,从而提升数学知识和解题能力。

1.2 文章结构:本文主要分为引言、正文和结论三个部分。

在引言部分,首先概述了圆幂定理的基本概念和意义,接着介绍了文章的结构和目的,为读者提供了全文的概览。

在正文部分,将详细阐述圆幂定理的基本概念,包括定义、原理和相关定理等内容;然后介绍圆幂定理的证明方法,探讨其推导过程和逻辑;最后探讨圆幂定理在几何学和其他领域中的应用,展示其在实际问题中的作用和意义。

在结论部分,将对全文进行总结,回顾圆幂定理的重要性和实际应用,同时展望未来对该定理的进一步研究和应用方向。

整个结构清晰,逻辑严谨,希望能为读者提供全面深入的了解和思考。

1.3 目的圆幂定理是几何学中的重要定理之一,它可以帮助我们理解圆的性质和与其他几何图形之间的关系。

本文的目的在于深入探讨圆幂定理的基本概念、证明方法以及应用,以便读者能够更全面地了解这一定理的内容和意义。

通过学习圆幂定理,我们可以更好地解决与圆相关的几何问题,拓展我们的数学思维,提高我们的解题能力。

同时,深入理解圆幂定理还可以为我们之后学习更高级的几何知识打下良好的基础。

除此之外,通过探讨圆幂定理的重要性和应用,我们也可以更好地体会到数学在现实生活中的应用,激发我们对数学的兴趣和热情。

希望本文能够为读者带来启发,并引起他们对数学的思考和探索欲望。

2.正文2.1 圆幂定理的基本概念圆幂定理是几何学中的一项重要定理,它描述了圆与直线之间的关系。

在介绍圆幂定理之前,我们需要了解一些基本概念。

圆幂定理逆定理

圆幂定理逆定理

圆幂定理逆定理一、什么是圆幂定理逆定理圆幂定理是解决圆与直线之间的关系问题的重要定理,它描述了一个点与一个圆之间的幂的关系。

而圆幂定理逆定理则是对圆幂定理的逆向描述,即给定一个点与一个圆的幂,可以确定该点在圆上的位置。

二、圆幂定理逆定理的表述圆幂定理逆定理可以表述为:给定一个点P和一个圆O,若点P到圆O的距离等于该点P到圆心O的距离,那么点P一定在圆O上。

三、圆幂定理逆定理的证明1. 证明思路要证明圆幂定理逆定理,我们可以采用反证法。

假设点P在圆O外,即P到圆心O 的距离大于P到圆O的距离。

然后我们可以通过构造辅助线段,利用圆幂定理进行推导,最终得出矛盾,证明假设错误。

2. 证明过程步骤一:假设点P在圆O外假设点P在圆O外,即P到圆心O的距离大于P到圆O的距离。

步骤二:构造辅助线段构造线段PA和线段PB,使得线段PA与线段PB相交于点P,并且线段PA与圆O相切。

步骤三:利用圆幂定理推导根据圆幂定理,可以得到以下关系:•PA * PB = PO^2 - r^2其中,PA表示线段PA的长度,PB表示线段PB的长度,PO表示点P到圆心O的距离,r表示圆O的半径。

步骤四:计算距离根据题设条件,P到O的距离等于PO的距离,即PA = PO。

步骤五:代入计算将步骤四的结果代入步骤三的等式中,得到:•PA * PB = PO^2 - r^2•PO * PB = PO^2 - r^2•PB = PO - r^2 / PO步骤六:化简计算由于PO的长度大于r,所以PO - r^2 / PO的值大于0。

而PB表示线段PB的长度,根据几何性质,PB的长度必须大于0。

但根据步骤五的计算结果,PB的长度等于PO - r^2 / PO,这与PB的长度必须大于0相矛盾。

步骤七:得出矛盾由于步骤六得出了矛盾,假设点P在圆O外的假设被推翻。

因此,点P一定在圆O 上。

3. 证明结论根据上述证明过程,可以得出结论:给定一个点P和一个圆O,若点P到圆O的距离等于该点P到圆心O的距离,那么点P一定在圆O上。

高中数学-圆幂定理(教师版)

高中数学-圆幂定理(教师版)

补充内容:圆幂定理一、圆幂定理及其逆定理:(1)割线定理:设过圆O 外一点P 的两直线分别与圆O 交于点B A ,和D C ,,则PD PC PB P A ⋅=⋅,反之PD PC PB P A ⋅=⋅,则D C B A ,,,四点共圆(2)相交弦定理:圆O 的两条弦CD AB ,相交于点P ,则PD PC PB P A ⋅=⋅,反之过点P 的两直线上四点D C B A ,,,满足PD PC PB P A ⋅=⋅,则D C B A ,,,四点共圆(3)切割线定理:设直线P A 与圆切于点T ,过点P 的直线交圆于C B ,两点,则PBP A PT ⋅=2证明:(1)连接BC AD ,,由圆的性质D B ∠=∠,所以P AD ∆∽PCB ∆所以⇒=PBPDPC P A PD PC PB P A ⋅=⋅(2)连接BC AD ,,则C A ∠=∠,B D ∠=∠,所以P AD ∆∽PCB ∆所以⇒=PBPDPC P A PD PC PB P A ⋅=⋅(3)连接TB TA ,,则PBT PTA ∠=∠,所以PTA ∆∽PBT ∆所以⇒=PTP APB PT PB P A PT ⋅=2二、圆幂定理的应用例1.“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等,如图,已知圆O 的半径为2,点P 是圆O 内的定点,且2=OP ,弦BD AC ,均过点P ,则下列说法正确的是A.0)(=⋅+DB OB ODB.PC P A ⋅为定值C.OC OA ⋅的取值范围为]0,2[-D.当BD AC ⊥时,CD AB ⋅为定值解析:连接OP OD OC OB OA ,,,,,直线OP 交圆O 于F E ,,设BD 的中点S ,则BD OS ⊥02)(=⋅=⋅+DB OS DB OB OD ,A 正确;由相交弦定理得PF PE PC P A PC P A ⋅-=⋅-=⋅242)()(22-=-=-=+⋅--=R OP OP R OP R ,B 正确;取AC 的中点M ,则OCOA ⋅42)4(4122222-=--=-=OM OM OM AC OM ,又OPOM ≤≤0即]2,0[∈OM ,所以OC OA ⋅]0,4[-∈,所以C 错误;当BD AC ⊥时,)()(PC PD P A PB CD AB -⋅-=⋅4)4(222-=--=⋅-=⋅-⋅-=⋅+⋅=OP PF PE PC P A PD PB PC P A PD PB ,D 正确例2.在平面直角坐标系xOy 中,设直线2+-=x y 与圆)0(222>=+r r y x 交于B A ,两点,O 为坐标原点,若圆上一点C 满足OB OA OC 4345+=,则=r ()A.22 B.5C.3D.10r ===,设θ2=∠AOB ,则将OB OA OC 4345+=平方得θ2cos 3092516163016916252222222r r r r OB OA OB OA OC ++=⇒⋅++=432cos -=⇒θ55cos 531cos 22=⇒-=-⇒θθ,所以圆心到直线2+-=x y 的距离为θcos 22r =10552==⇒=⇒r r ,故选D例3.在平面直角坐标系xOy 中,圆O :322=+y x ,),2(m T ,若圆O 上存在以M 为中点的弦AB ,且MT AB 2=,则实数m 的取值范围是()A.]0,2[- B.]2,0( C.]2,2[- D.)2,2(-解法1:设),(y x M ,连OM ,由垂径定理知AB OM ⊥⇒32222=+=+MT OM MB OM 42)2()1(3)()2(2222222m m y x m y x y x -=-++⇒=-+-++⇒,所以点M 在以)2,1(m D -为圆心,222m -为半径的圆上,又点M 为圆O 的弦AB 的中点,所以点M 在圆O 内,所以两圆内含,所以223)2()1(222m m --<+-0)1(22>+⇔m ,只需022>-m 解得22<<-m ,即实数m 的取值范围是]2,2[-,故选C解法2:因为M 为弦AB 的中点,且MT AB 2=,所以090=∠ATB ,过点T 作圆的切线TF TE ,,F E ,为切点,则只需090≥∠ETF 即可,所以045≥∠OTE ,所以OTE∠sin 6223≤⇒≥=OT OT ,所以642≤+m ,解得22≤≤-m ,故选C例4.在平面直角坐标系xOy 中,直线kx y =与圆C :5)36()27(22=-+-y x 交于B A ,,则=⋅OB OA 解析:过点O 作圆C 的切线OT ,T 为切点,则由切割线定理得20205362722222=-+=-==⋅R OC OT OB OA 例5.在平面直角坐标系xOy 中,已知点)1,0(P 在圆C :01422222=+-+-++m m y mx y x 内,若存在过点P 的直线交圆C 于B A ,两点,且PBC ∆的面积是P AC ∆的面积的2倍,则实数m 的取值范围为解析:圆C :m y m x 4)1()(22=-++,圆心)1,(m -,半径为m r 2=,所以0>m 点P 在圆C 内40014212<<⇒<+-+-⇒m m m设AB 的中点为D ,t AP 2=,则t PD =,圆心到直线AB 的距离为d ,由PBC ∆的面积是P AC ∆的面积的2倍可知P A PB 2=,所以⎪⎩⎪⎨⎧=+=+⇐⎪⎩⎪⎨⎧=+=+mt d mt d r P A CD CP PD CD 492222222222222849d m m =-⇒,因为220m d <≤,所以494849022<≤⇒<-≤m m m m 当94=m 时,C B A P ,,,四点共线,不能构成三角形,所以m 的取值范围为)4,94(例6.在平面直角坐标系xOy 中,圆C :3)()2(22=-++m y x ,若圆C 存在以G 为中点的弦AB ,且GO AB 2=,则实数m 的取值范围是解析:类例3,]2,2[-例7.已知椭圆E 的中心为坐标原点O ,焦点在x 轴上,离心率为23,21,F F 分别为椭圆E 的左右焦点,点P 在椭圆E 上,以线段21F F 为直径的圆经过点P ,线段P F 1与y 轴交于点B ,且611=⋅B F P F (1)求椭圆E 的方程(2)设动直线l 与椭圆E 交于N M ,两点,且0=⋅ON OM ,求证:动直线l 与圆5422=+y x 相切解析:(1)设椭圆E :)0(12222>>=+b a b y a x ,c F F 221=,因为211F PF O BF ∠=∠,2211π=∠=∠PF F BOF ,所以BO F 1∆∽P F F 21∆,所以P F O F F F B F 11211=21111F F O F B F P F ⋅=⋅⇒3622=⇒==c c ,所以1,2233==⇒==b a a e ,所以椭圆E :1422=+y x (2)设OM 的倾斜角为θ,则)sin ,cos (θθOM OM M ,))90sin(),90cos((00±±θθON ON M ,又点N M ,在椭圆上,所以⎪⎪⎩⎪⎪⎨⎧=+=+⇒⎪⎩⎪⎨⎧=±+±=+22222202202222224cos 4sin 4sin 4cos 1)90(sin 4)90(cos 4sin 4cos ON OM ON ON OM OM θθθθθθθθ两式相加得4511541442222=+⇒=+=+ONOMONOM,设原点到直线MN 的距为d 由5421212222222=+=⇒=+=∆ONOM ON OM d ON OM d ON OM S OMN所以动直线l 与圆5422=+y x 相切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆幂定理相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。

定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)几何语言:若弦AB、CD交于点P则PA·PB=PC·PD(相交弦定理)概述相交弦定理为圆幂定理之一,其他两条定理为:切割线定理割线定理2证明证明:连结AC,BD由圆周角定理的推论,得∠A=∠D,∠C=∠B。

(圆周角推论2: 同(等)弧所对圆周角相等.)∴△PAC∽△PDB∴PA∶PD=PC∶PB,PA·PB=PC·PD注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。

其逆定理也可用于证明四点共圆。

P 不是圆心3比较相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。

一般用于求线段长度。

4相交弦定理推论定理如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。

说明几何语言:若AB是直径,CD垂直AB于点P,则=PA·PB(相交弦定理推论)切割线定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

是圆幂定理的一种。

切割线定理示意图几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT²=PA·PB(切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,PBA,PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)(割线定理)由上可知:PT²=PA·PB=PC·PD2证明切割线定理证明:设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB证明:连接AT, BT∵∠PTB=∠PAT(弦切角定理 )切割线定理的证明∠APT=∠APT(公共角)∴△PBT∽△PTA(两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT²=PB·PA3比较相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。

一般用于求直线段长度。

割线定理:指的是从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等,1定义文字表达:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

数学语言:从圆外一点L引两条割线与圆分别交于A.B.C.D 则有LA·LB=LC·LD=LT^2。

如下图所示。

(LT为切线)割线定理2证明一已知:如图直线ABP和CDP是自点P引的⊙O的两条割线求证:PA·PB=PC·PD证明:连接AD、BC∵∠A和∠C都对弧BD∴由圆周角定理,得∠A=∠C又∵∠P=∠P∴△ADP∽△CBP (A,A)∴A P:CP=DP:BP即AP·BP=CP·DP3证明二既然圆内接四边形定理可以从割线定理而得,那么或许割线定理就可以从圆内接四边形定理而得。

如图所示。

已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D求证:AP·BP=CP·DP证明连接AC、BD由圆内接四边形定理得∠ABD+∠DCA=∠CAB+∠BDC=180°又∵∠ACP+∠DCA=∠DCP=180°,∠CAP+∠CAB=∠BAP=180°(平角的定义)∴∠ABD=∠ACP,∠BDC=∠CAP(同角的补角相等)∴△ACP∽△DBP(两角对应相等的三角形相似)∴AP/DP=CP/BP(相似三角形对应边成比例)∴AP·BP=CP·DP(比例基本性质)[1]4证明三根据切割线定理求证。

已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D求证:AP·BP=CP·DP过点P作圆O的切线,记切点为T由切割线定理可知:AP·BP=PT^2,CP·DP=PT^2所以AP·BP=CP·DP5比较相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。

一般用于求线段长度。

垂径定理垂径定理内容:垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

数学表达为:如右图,DC 为圆O的直径,直径DC垂直于弦AB,则AE=EB,劣弧AC等于劣弧BC定义垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧2证明如图,在⊙O中,DC为直径, AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD垂径定理证明图证明:连OA、OB分别交于点A、点B.∵OA、OB是⊙O的半径∴OA=OB∴△OAB是等腰三角形∵AB⊥DC∴AE=BE,∠AOE=∠BOE(等腰三角形的三线合一性质)∴弧AD=弧BD,∠AOC=∠BOC∴弧AC=弧BC3推论推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦 (不是直径)4.垂直于弦5.经过圆心4有关性质知识点圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质大纲要求1.正确理解和应用圆的点集定义,掌握点和圆的位置关系;2.熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。

一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;3.熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;4.掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;5.掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题;6.注意:(1)垂径定理及其推论是指:一条弦在①过圆心②垂直于另一条弦③平分这另一条弦④平分这另一条弦所对的劣弧⑤平分这另一条弦所对的优弧的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;证明等积式、等比式及混合等式等。

此种结论的证明重点考查了相似三角形,切割线定理及其推论,相交弦定理及圆的一些知识。

常见题型以中档解答题为主,也有一些出现在选择题或填空题中。

梅涅劳斯定理梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。

它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。

或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。

1定理的证明首先给出完整的定理内容:当直线交三边所在直线于点时,以及逆定理:在三边所在直线上有三点,且,那么三点共线注意:以上定理严格来说应该用有向线段形式,且乘积为-1;另外,三点中有偶数个点在线段上时,才有梅氏定理,否则为塞瓦定理.证明一过点A作AG∥DF交BC的延长线于点G.则梅涅劳斯定理的证明证毕证明二过点C作CP∥DF交AB于P,则BD:DC=FB:PF,CE:EA=PF:AF两式相乘得(AF:FB)×(BD:DC)×(CE:EA)=(AF:FB)×(FB:PF)×(PF:AF)=1证明三连结CF、AD,根据“两个三角形等高时面积之比等于底边之比”的性质有。

AF:FB =S△ADF:S△BDF…………(1),BD:DC=S△BDF:S△CDF…………(2),CE:EA=S△CDE:S△ADE=S△FEC:S△FEA=(S△CDE+S△FEC):(S△ADE+S△FEA)=S△CDF:S△ADF (3)(1)×(2)×(3)得(AF:FB)×( BD:DC)×(CE:EA)=(S△ADF:S△BDF)×(S△BDF:S△CDF)×(S△CDF:S△ADF)=1证明四过三顶点作直线DEF的垂线AA‘,BB',CC',如图:充分性证明:△ABC中,BC,CA,AB上的分点分别为D,E,F。

连接DF交CA于E',则由充分性可得,(AF/FB)×(BD/DC)×(CE'/E'A)=1又∵(AF/FB)×(BD/DC)×(CE/EA)=1∴有CE/EA=CE'/E'A,两点重合。

所以DEF共线推论在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。

于是AL、BM、CN三线交于一点的充要条件是λμν=-1。

(注意与塞瓦定理相区分,那里是λμν=1)此外,用[1]该定理可使其容易理解和记忆:第一角元形式的梅涅劳斯定理如图:若E,F,D三点共线,则(sin∠ACF/sin∠FCB)(sin∠BAD/sin∠DAC)(sin∠CBE/sin∠ABE)=1即图中的蓝角正弦值之积等于红角正弦值之积该形式的梅涅劳斯定理也很实用证明:可用面积法推出:第一角元形式的梅氏定理与顶分顶形式的梅氏定理等价。

相关文档
最新文档