转速电流双闭环的数字式可逆直流调速系统的仿真与设计(课程设计完整版)
双闭环直流调速系统设计及仿真
双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。
因此很自然地想到要采用电流负反馈控制过程。
这里实际提到了两个控制阶段。
起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。
如图2所示。
图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。
如图3所示。
图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。
因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。
滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。
所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。
由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。
二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。
双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。
由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。
双闭环(电流环、转速环)调速系统
摘要此设计利用晶闸管、二极管等器件设计了一个转速、电流双闭环直流晶闸管调速系统。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。
该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。
并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。
关键词:双闭环,晶闸管,转速调节器,电流调节器,Simulink目录1设计意义 (3)2主电路设计 (4)2.1设计任务 (4)2.2电路设计及分析 (4)2.2.1电流调节器 (5)2.2.2转速调节器 (6)2.3电路设计及分析 (7)2.4电流调节器设计 (7)2.4.1电流环简化 (8)2.4.2电流调节器设计 (8)2.4.3电流调节器参数计算 (9)2.4.4电流调节器的实现 (10)2.5转速调节器设计 (11)2.5.1电流环等效传递函数 (11)2.5.2转速调节器结构选择 (12)2.5.3转速调节器参数计算 (13)2.5.4转速调节器的实现 (14)3系统参数计算和电气图 (15)3.1电流调节器参数计算 (15)3.2转速调节器参数计算 (15)3.3电气原理图 (16)4系统仿真 (18)5小结体会 (20)参考文献 (21)1设计意义双闭环(电流环、转速环)调速系统是一种当前应用广泛,经济,适用的电力传动系统。
它具有动态响应快、抗干扰能力强等优点。
我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
采用转速负反馈和PI调节器的单闭环的调速系统可以再保证系统稳定的条件下实现转速无静差。
转速、电流反馈控制直流调速系统的仿真-(终极版)
本科课程设计题目:转速、电流反馈控制直流调速系统的仿真姓名王金良学院专业电气工程及其自动化年级学号指导教师2013 年1月11日转速、电流反馈控制直流调速系统仿真摘要转速、电流反馈控制的直流调速系统是静、动态性能优良、应用最广泛的直流调速系统,对于需要快速正、反转运行的调速系统,缩短起动、制动过程的时间成为提高生产效率的关键。
为了使转速和电流两种负反馈分别起作用,可在系统里设置两个调节器,组成串级控制。
本文介绍了双闭环调速系统的基本原理,而且用Simulink 对系统进行仿真。
关键词:双闭环调速、转速、电流、Simulink一、 设计的题目及任务〔一〕概述本次仿真设计需要用到的是Simulink 仿真方法,Simulink 是Matlab 最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
〔二〕仿真题目某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机参数为:额定电压220V U =,额定电流136I A =; 额定转速n 1460rpm =,0.132min/e V r C =⋅, 允许过载倍数 1.5λ=; 晶闸管装置放大系数40s K =; 电枢回路总电阻0.5R =Ω; 时间常数0.03,0.18l m s s T T ==; 电流反馈系数0.05/V A β=; 转速反馈系数α=0.00666Vmin/r 。
〔三〕要完成的任务1〕用MATLAB建立电流环仿真模型;2〕分析电流环不同参数下的仿真曲线;3〕用MATLAB建立转速环仿真模型;4〕分析转速环空载起动、满载起动、抗扰波形图仿真曲线。
电流转速双闭环系统的课程设计
一、目录摘要 (2)一、概述 (2)二、设计任务与要求 (3)2.1 设计任务 (3)2.2 设计要求 (4)三、理论设计 (4)3.1 方案论证 (4)3.2 系统设计 (4)3.2.1 电流调节器设计 (4)3.2.2 速度调节器设计 (8)四、系统建模及仿真实验 (13)4.1 MATLAB 仿真软件介绍 (13)4.2 仿真建模 (13)4.3 仿真波形分析 (16)五、总结与体会 (18)参考文献 (19)摘要从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
采用PI调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求高,例如要求快速启制动,突加负载动态速降等等,单闭环系统就难以满足需要。
这是因为单闭环系统不能随心所欲的控制电流和转矩的动态过程。
双闭环直流调速系统是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电的流双闭环调速控制电路、以及缺相和过流保护电路等.给定信号为0~10V直流信号,可对主电路输出电压进行平滑调节。
采用双PI调节器,可获得良好的动静态效果。
电流环校正成典型I型系统。
为使系统在阶跃扰动时无稳态误差,并具有较好的抗扰性能,速度环设计成典型Ⅱ型系统。
根据转速、电流双闭环调速系统的设计方法,用Simulink做了带电流变化率内环的三环直流调速系统进行仿真综合调试,分析系统的动态性能,并进行校正,得出正确的仿真波形图。
另外本文还介绍了实物制作的一些情况。
关键词:MATLAB 直流调速双闭环转速调节器电流调节器干扰一、概述本章主要介绍典型系统的数学模型、参数和性能指标关系,系统结构的近似处理和非典型系统的典型化,速度、电流双闭环直流调速系统工程设计方法。
在双闭环调速系统中,电动机、晶闸管整流装置、触发的装置都可按负载的工艺要求来选择和设计。
根据生产机械和工艺的要求提出系统的稳态和动态性能指标,而系统的固有部分往往不能满足性能指标要求,所以需要设计合适的校正环节来达到。
实验二转速电流双闭环直流调速系统
实验二 转速、电流双闭环直流调速系统一、实验目的1.了解转速、电流双闭环直流调速系统的组成。
2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。
3.测定双闭环直流调速系统的静态和动态性能及其指标。
4.了解调节器参数对系统动态性能的影响。
二、实验系统组成及工作原理双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。
实际系统的组成如实验图2-1所示。
实验图2-1 转速、电流双闭环直流调速系统主电路采用三相桥式全控整流电路供电。
系统工作时,首先给电动机加上额定励磁,改变转速给定电压*n U 可方便地调节电动机的转速。
速度调节器ASR 、电流调节器ACR 均设有限幅电路,ASR 的输出*i U 作为ACR 的给定,利用ASR 的输出限幅*im U 起限制起动电流的作用;ACR 的输出c U 作为触发器TG 的移相控制电压,利用ACR 的输出限幅cm U 起限制αmin 的作用。
当突加给定电压*n U 时,ASR 立即达到饱和输出*im U ,使电动机以限定的最大电流I dm 加速起动,直到电动机转速达到给定转速(即*n n U U )并出现超调,使ASR 退出饱和,最后稳定运行在给定转速(或略低于给定转速)上。
三、实验设备及仪器1.主控制屏NMCL-322.直流电动机-负载直流发电机-测速发电机组3. NMCL -18挂箱、NMCL-333挂箱及电阻箱4.双踪示波器5.万用表四、实验内容1.调整触发单元并确定其起始移相控制角,检查和调整ASR 、ACR ,整定其输出正负限幅值。
2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。
3.研究电流环和转速环的动态特性,将系统调整到可能的最佳状态,画出)(t f I d =和)(t f n =的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能)。
转速电流双闭环可逆直流PWM调速系统设计
题目:转速、电流双闭环可逆直流PWM调速系统设计学生姓名:学号:班级:专业:指导教师:起始时间: 2016年6月6日--6月17日摘要直流脉宽变换器,或称为直流PWM变换器,是在全控型电力电子器件问世以后出现的能取代相控整流器的直流电源。
根据PWM变换器主电路的形式可分为可逆和不可逆两大类。
电流截至负反馈环节只能限制电动机的动态电流不超过某一数值,而不能控制电流保持为某一所需值。
根据反馈控制原理,以某物理量作为负反馈控制,就能实现对该物理量的无差控制。
用一个调节器难以兼顾对转速的控制和对电流的控制。
如果在系统中另设一个电流调节器,就可以构成电流闭环。
电流调节器串联在转速调节器之后,形成以电流反馈作为内环、转速作为外环的双闭环调速系统。
利用单片机实现对直流电动机的双闭环调速,此系统使直流电机具有优良的调速特性,调速方便,调速范围广,过载能力大,能承受频繁的冲击负载,制动和反转,能满足生产过程自动化系统的各种特殊运行要求。
关键词:双闭环,PWM,直流电动机,单片机目录摘要 0一、设计的目的及意义 (2)二、设计要求 (2)三、双闭环直流调速系统 (3)3.1、双闭环直流调速系统的原理 (3)3.2、双闭环直流调速系统的静特性分析 (5)3.3双闭环直流调速系统的数学模型 (7)四、转速环、电流环的设计 (9)4.1、转速调节器、电流调节器在直流双闭环系统中的作用 (9)4.2、调节器的具体设计 (9)4.3、电流环的设计 (10)4.4、速度环的设计 (11)五、PWM可逆直流调速系统 (13)5.1、PWM变换器 (13)5.2、整流电路 (14)5.3、泵升电路 (15)六、控制电路的设计 (15)6.1、单片机 (15)6.2、测速电路 (16)6.3、键盘电路 (16)七、双闭环可逆直流PWM调速系统的仿真 (17)八、结论 (19)附录 (20)附录A (20)附录B (21)参考文献 (23)一、设计的目的及意义1、训练学生正确的应用运动控制系统,培养解决工业控制、工业检测等领域具体问题的能力。
转速电流双闭环直流调压调速系统综述
3 1 3
1
40.82
TmTl
0.18 0.03
(3)校验电流环小时间常数近似处理条件
1 1 1
1
180.8
3 TsToi 3 0.0017 0.002
ci
2.2.5 调节器电阻和电容的计算
2 系统参数------------------------------------------------------------------ 6 2.1 参数要求------------------------------------------------------------ 6 2.2 电流调节器的参数计算------------------------------------------------ 6 2.2.1 确定时间常数-------------------------------------------------- 6 2.2.2 电流调节器的结构选择 -----------------------------------------6 2.2.3 电流调节器的参数计算------------------------------------------ 7 2.2.4 校验近似条件 -------------------------------------------------7 2.2.5 调节器电阻和电容的计算---------------------------------------- 7 2.3 转速调节器的参数计算------------------------------------------------ 8 2.3.1 确定时间常数-------------------------------------------------- 8 2.3.2 转速调节器的结构---------------------------------------------- 8 2.3.3 转速调节器的参数计算------------------------------------------ 8 2.3.4 检验近似条件-------------------------------------------------- 9 2.3.5 调节器电阻和电容的计算---------------------------------------- 9 2.3.6 校核转速超调量------------------------------------------------ 9
交直流调速系统课程设计
目录交直流调速课程设计任务书 (2)前言 (4)关键词 (4)交直流调速课程设计说明书 (5)一、总体方案确实定 (5)1.1 现行方案的讨论与比拟 (5)1.2 选择PWM控制系统的优越性 (6)1.3采用转速电流双闭环的理由 (6)1.4起动过程电流和转速波形 (9)1.5 H桥双极式逆变器的工作原理 (9)1.6 PWM调速系统静特性 (11)二、双闭环直流调速系统的硬件结构 (12)2.1主电路 (13)2.2 电流调节器 (14)2.3转速调节器 (14)2.4控制电路设计 (15)2.5、控制环节电源设计 (16)2.6、限幅电路 (16)2.7转速检测电路 (17)2.8、电流检测电路 (17)2.9、泵升电压限制 (18)三、电机参数及设计要求 (19)3.1电路根本信息如下: (19)3.2计算反响关键参数 (19)四、课程设计心得体会 (23)五、系统主要硬件结构图 (24)参考文献: (25)交直流调速课程设计任务书一、题目:双闭环可逆直流PWM调速系统设计二、设计目的1、对先修课程〔电力电子学、自动控制原理等〕的进一步理解与运用2、运用?电力拖动控制系统?的理论知识设计出可行的直流调速系统,通过建模、仿真验证理论分析的正确性。
也可以制作硬件电路。
3、同时能够加强同学们对一些常用单元电路的设计、常用集成芯片的使用以及对电阻、电容等元件的选择等的工程训练。
到达综合提高学生工程设计与动手能力的目的。
三、系统方案确实定自动控制系统的设计一般要经历从“机械负载的调速性能〔动、静〕→电机参数→主电路→控制方案〞〔系统方案确实定〕→“系统设计→仿真研究→参数整定→直至理论实现要求→硬件设计→制板、焊接、调试〞等过程,其中系统方案确实定至关重要。
为了发挥同学们的主观能动作用,且防止方案及结果雷同,在选定系统方案时,规定外的其他参数由同学自已选定。
1、主电路采用二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器;2、速度调节器和电流调节器采用PI调节器;U*nm=U*i m =U cm=10V3、机械负载为对抗性恒转矩负载,系统飞轮矩〔含电机及传动机构〕GD2 =1.5Nm2;4、主电源:可以选择三相交流380V供电,变压器二次相电压为52V;5、他励直流电动机的参数:见习题集【4-19】〔p96〕n N=1000r/min,电枢回路总电阻R=2Ω,电流过载倍数λ=2;6、PWM装置的放大系数K s=11;PWM装置的延迟时间T s=0.4ms。
直流电机的PWM电流速度双闭环调速系统课程设计
电力拖动课程设计题目:直流电机的PWM电流速度双闭环调速系统姓名:学号:班级:指导老师:课程评分:日期目录一、设计目标与技术参数二、设计基本原理(一)调速系统的总体设计(二)桥式可逆PWM变换器的工作原理(三)双闭环调速系统的静特性分析(四)双闭环调速系统的稳态框图(五)双闭环调速系统的硬件电路(六)泵升电压限制(七)主电路参数计算和元件选择(八)调节器参数计算三、仿真(一)仿真原理(含建模及参数)(二)重要仿真结果(目的为验证设计参数的正确性)四、结论参考文献附录1:调速系统总图附录2:调速系统仿真图一、设计目标与技术参数直流电机的PWM电流速度双闭环调速系统的设计目标如下:额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min;电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s;电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01V*min/r;允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;电流超调量:σi≤5%;转速超调量:σi≤10%;运算放大器:R0=4KΩ;晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。
PWM变换器的放大系数:K S=20。
二、设计基本原理(一)调速系统的总体设计在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。
这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。
如图2-1所示。
图2-1 直流调速系统启动过程的电流和转速波形用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。
双闭环直流调速系统的设计与仿真实验报告
双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。
速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。
电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。
二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。
根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。
同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。
三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。
电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。
四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。
首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。
然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。
五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。
当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。
同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。
此外,通过调整控制参数,可以改善系统的响应速度和稳定性。
六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。
本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。
仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。
转速电流双闭环可逆直流调速系统的仿真与设计
《运动控制系统》课程设计转速电流双闭环可逆直流调速系统的仿真与设计专业:****年级:****学号:***姓名:***指导老师:***转速电流双闭环可逆直流调速系统的仿真与设计一、设计目的1、应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
2、应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
3、在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。
二、系统设计参数直流电动机控制系统设计参数:(直流电动机(3) )输出功率为:5.5Kw电枢额定电压220V 电枢额定电流30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆电枢回路电感100mH电机机电时间常数1S电枢允许过载系数 =1.5 额定转速970rpm直流电动机控制系统设计参数环境条件:电网额定电压:380/220V; 电网电压波动:10%; 环境温度:-40~+40摄氏度; 环境湿度:10~90%.控制系统性能指标: 电流超调量小于等于5%; 空载起动到额定转速时的转速超调量小于等于30%;调速范围D =20; 静差率小于等于0.03.1、设计内容和数据资料某直流电动机拖动的机械装置系统。
主电动机技术数据为:V U N 220=,A I N 30=,m in 970r n N =,电枢回路总电阻Ω=2.0R ,机电时间常数s T m 1=,电动势转速比r V C e m in 221.0•=,Ks=40,ms T l 5.0=,Ts=0.0017ms ,电流反馈系数A V 85.0=β,转速反馈系数r V m in 5.1•=α,试对该系统进行初步设计。
2、 技术指标要求电动机能够实现可逆运行。
转速电流双闭环直流调速系统设计
转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。
在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。
转速环用于控制电机转速,电流环用于控制电机电流。
本文将对转速、电流双闭环直流调速系统进行详细设计。
二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。
转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。
通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。
2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。
电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。
通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。
2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。
具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。
2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。
双闭环直流调速系统(课程设计)
4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告
转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告转速电流双闭环PWM-M可逆直流脉宽调速系统实验报告一、引言直流调速系统是现代工业中常用的电机调速方式之一,在实际应用中具有广泛的使用。
其中,转速电流双闭环PWM-M可逆直流脉宽调速系统是其中一种典型的调速控制方式。
本实验旨在通过搭建转速电流双闭环PWM-M可逆直流脉宽调速系统,研究其调速性能以及运行特点。
二、实验目的1. 理解转速电流双闭环PWM-M可逆直流脉宽调速系统的原理和结构;2. 掌握控制脉宽调制技术在直流电机调速系统中的应用;3. 通过实验验证该调速系统的性能和运行特点。
三、实验原理转速电流双闭环PWM-M可逆直流脉宽调速系统是将转速和电流两个回路分别采用闭环控制的直流调速系统。
其中,转速回路通过传感器对电机转速进行采集,与期望转速进行比较后,经过PID控制器得到转速控制信号,再经过比较器进行与PWM脉宽控制信号进行比较产生控制脉宽;电流回路通过采集直流电机的电流信号,经过PID控制器得到电流控制信号,再与PWM控制脉宽信号进行比较生成最终的输出脉宽。
四、实验步骤1. 搭建转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置;2. 设置期望转速和电流参考值;3. 分别采集电机转速和电流信号;4. 利用PID控制器对转速和电流进行闭环控制;5. 通过比较器生成脉宽控制信号,控制电机转矩;6. 记录实验数据并进行分析。
五、实验结果与分析通过实验,我们可以得到实验数据并进行分析。
其中,我们可以通过比较实际转速与期望转速的差距,来评价转速闭环控制的性能。
同时,通过比较实际电流值与期望电流值之间的差距,来评价电流闭环控制的性能。
根据实验数据,我们可以得到转速与电流控制的准确性、稳定性以及响应速度等指标,评估整个调速系统的性能。
六、结论通过实验,我们成功搭建了转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置,并完成了相关实验。
根据实验结果分析,我们可以评估该调速系统的性能和运行特点。
双闭环直流电动机调速系统设计及MATLAB仿真
双闭环直流电动机调速系统设计及M A T L A B仿真(共21页)-本页仅作为预览文档封面,使用时请删除本页-目录1、引言..................................................错误!未定义书签。
二、初始条件:...........................................错误!未定义书签。
三、设计要求:...........................................错误!未定义书签。
四、设计基本思路.........................................错误!未定义书签。
五、系统原理框图.........................................错误!未定义书签。
六、双闭环调速系统的动态结构图...........................错误!未定义书签。
七、参数计算.............................................错误!未定义书签。
1. 有关参数的计算 ...................................错误!未定义书签。
2. 电流环的设计 .....................................错误!未定义书签。
3. 转速环的设计 .....................................错误!未定义书签。
七、双闭环直流不可逆调速系统线路图.......................错误!未定义书签。
1.系统主电路图 ......................................错误!未定义书签。
2.触发电路 ..........................................错误!未定义书签。
3.控制电路 ..........................................错误!未定义书签。
双闭环直流调速系统的课程设计报告
电力传动课程设计课题:双闭环直流调速糸统班级:电气工程及其自动化1004学号:3100501091姓名:贾斌彬指导老师:康梅、乔薇日期:2014年1月9日目录第 1 章系统方案设计1.1 任务摘要 (3)1.2 任务分析. (3)1.3 设计目的、意义 (3)1.4 方案设计. (4)第 2 章晶闸管直流调速系统参数和环节特性的测定2.1 电枢回路电阻R 的测定. (5)2.2 主电路电磁时间常数的测定 (6)2.3系统机电时间常数TM的测定 (7)2.4测速电机特性UTG=f(n)的测定 (7)2.5 晶闸管触发及整流装置特性Ug=f (Ug)的测定 (7)第 3 章双闭环调速系统调节器的设计3.1 电流调节器的设计 (7)3.2 转速调节器的设计 (9)第 4 章系统特性测试4.1 系统突加给定 (11)4.2 系统突撤给定...................... 错误! 未定义书签。
4.2.2 突加负载时 (12)4.2.3 突降负载时 (12)第 5 章设计体会第 1 章系统方案设计1.1 设计一个双闭环晶闸管不可逆调速系统设计要求:电流超调(T i < 5%转速超调(T n < 10%静态特性无静差给定参数:电机额定功率185W 额定转速1600r/min 额定励磁电流<0.16A 额定电流1.1A 额定电压220V 额定励磁电压220V转速反馈系数a =0.004 V • min/r电流反馈系数B =6V/A1.2 任务分析采用转速、电流双闭环晶闸管不可逆直流调速系统为对像来设计直流电动机调速控制电路,为了实现转速和电流两种负反馈分别起作用,可在系统中设计两个调节器,电流调节器和速度调节器,为了实现电流和转速分别起作用,二者之间实行串级连接,即把转速调节器的输出当做电流调节器的输入,在把电流调节器的输出去控制晶闸管整流器的触发装置。
该双闭环调速系统的两个调节器ASR 和ACF都采用PI调节器,以便能保证系统获得良好的静态和动态性能转速调节器在双闭环直流调速系统中的作用是减小转速误差,采用PI 调节器可实现无静差;对负载变化起抗扰作用;其输出限幅决定电动机允许的最大电流; 电流调节器在双闭环直流调速系统中的作用是使电流紧紧跟随其给定电压的变化;对电网的波动起及时抗干扰作用;加快动态过程;堵转或过载时起快速自动保护作用。
转速、电流双闭环控制直流调速系统带仿真结果
摘要转速、电流双闭环控制直流调速系统是性能很好,应用最广的直流调速系统,是目前直流调速系统中的主流设备。
具有调速范围宽、平稳性好、稳速精度高等优点。
在理论和实践方面都是比较成熟的系统,在电力拖动领域中发挥着及其重要的作用。
本人此次设计的步骤主要是:查阅相关的资料、书籍,确定整个设计的方案和框图。
然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。
接着驱动电路的设计包括触发电路和脉冲变压器的设计。
转速和电流调节器的计算和设计给予详细介绍。
每一步设计都会给出相应的原理图,并进行分析。
最后用学过的MATLAB/SIMULINK进行仿真,给出模块搭建及仿真图形的结果。
目录第1章系统总体设计 (1)1.1设计任务 (1)1.2设计要求 (1)1.3设计的基本思路 (1)第2章整体电路分析 (4)2.1电流调节器的设计 (4)2.2转速调节器的设计 (7)第3章硬件电路图及保护电路的设计 (10)3.1系统主电路图绘制 (10)3.2晶闸管的保护与选择 (10)3.3 整流变压器的选择 (13)3.4触发电路的设计 (14)3.5.电动机的励磁回路 (15)第4章MATLAB仿真 (16)结论 (19)参考资料 (20)第1章 系统总体设计1.1 设计任务设计一个V-M 转速、电流双闭环直流调速系统,相关数据:电动机参数:N P =40kw 、N U =300v 、N I =148A 、N n =910rpm 、f U =220v 、dm I =296A 、 2GD =1.00kg ⋅2m 、a R =0.08Ω、a L =2.05mH ;其它参数:整流侧内阻n R =0.092Ω、整流变压器漏感T L =7.5mH ,电抗器直流电阻H R =0.15Ω、电抗器电感H L =4.0mH 、负载2GD 折算值=9 kg ⋅2m ;电流、转速滤波时间常数参考教材例题数据。
实验四转速、电流反馈控制直流调速系统仿真(word文档)
实验四转速、电流反响控制直流调速系统的仿真一、实验目的熟练使用 MATLAB 下的 SIMULINK软件进行系统仿真。
学会用 MATLAB 下的 SIMULINK 软件建立转速、电流反响控制的直流调速系统的仿真模型和进行仿真实验的方法。
二、实验器材PC 机一台, MATLAB 软件三、实验参数采用转速、电流反响控制的直流调速系统,依照要求分别进行仿真实验,输出直流电动机的电枢电流I d和转速n 的响应数据,绘制出它们的响应曲线,并对实验数据进行解析,给出相应的结论。
转速、电流反响控制的直流调速系统中各环节的参数以下:直流电动机:额定电压 U N = 220 V,额定电流 I dN =136 A,额定转速 n N = 1460r/min,电动机电势系数C e= 0.132 V· min/r ,赞同过载倍数λ=1.5 。
晶闸管整流装置的放大系数K s = 40。
电枢回路总电阻 R =0.5Ω,电枢回路电磁时间常数T l = 0.03s,电力拖动系统机电时间常数 T m = 0.18 s,整流装置滞后时间常数Ts=0.0017s,电流滤波时间常数T oi=0.002s。
电流反响系数β=0.05V/A (≈10V/1.5I N)。
四、实验内容1、电流环的仿真。
参照教材P90 中相关内容建立采用比率积分控制的带限幅的电流环仿真模型,设置好各环节的参数。
140 2 0.5-K-0.002s+1 0.0017s+1 0.03s+1 0.18sStep Transfer Fcn Gain Saturation Transfer Fcn1 Transfer Fcn2 Transfer Fcn31-K-sGain1 Integrator0.050.002s+1Transfer Fcn4 Scope图 1 电流环的仿真模型2、依照表 1 中的数据分别改变电流环中比率积分控制器的比率系数K p和积分系数K i,观察电流环输出电枢电流I d的响应曲线,记录电枢电流I d的超调量、响应时间、稳态值等参数,可否存在静差?解析原因。
转速电流双闭环直流调速系统仿真与设计
《运动控制系统》课程设计题目 :转速电流双闭环直流调速系统仿真与设计转速电流双闭环直流调速系统仿真与设计1.设计题目转速电流双闭环直流调速系统仿真与设计2.设计任务已知某晶闸管供电的双闭环直流调速系统,整流装置采纳三相桥式电路,基本数据以下:1)直流电动机: 160V、 120A、1000r/min、 C e=r,同意过载倍数λ=K s=302)晶闸管装置放大系数:3)电枢回路总电阻: R=Ω4)时间常数:T l =,T m=,转速滤波环节时间常数T on取5)电压调理器和电流调理器的给定电压均为10VSimulink成立系统试按工程设计方法设计双闭环系统的电流调理器和转速调理器,并用模型,给出仿真结果。
系统要求:1)稳态指标:无静差2)动向指标:电流超调量σi≤ 5%;空载起动到额定转速时超调量σn≤ 10%3.设计要求依据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤以下:1)设计电流调理器的构造和参数,将电流环校订成典型I 型系统;2)在简化电流环的条件下,设计速度调理器的构造和参数,将速度环校订成典型II 型系统;3)进行 Simulink 仿真,考证设计的有效性。
4.设计内容1)设计思路:带转速负反应的单闭环系统,因为它能够跟着负载的变化而相应的改变电枢电压,以赔偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降。
当反应控制闭环调速系统使用带比率放大器时,它依赖被调量的偏差进行控制的,所以是有静差率的调速系统,而比率积分控制器可使系统在无静差的状况下保持恒速,实现无静差调速。
对电机启动的冲击电流以及电机堵转时的堵转电流,能够用附带电流截止负反应作限流保护,但这其实不可以控制电流的动向波形。
按反应的控制规律,采纳某个物理量的负反应就能够保持该基本量基本不变,采纳电流负反应就应当能够获得近似的恒流过程。
此外,在单闭环调速系统中,用一个调理器综合多种信号,各参数间互相影响,难于进行调理器的参数调速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南科技大学信息与电气工程学院《课程设计报告》题目:转速电流双闭环的数字式可逆直流调速系统的仿真与设计专业:电气工程及其自动化班级:姓名:学号:指导教师:任务书一、设计目的应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
1、应用计算机仿真技术,通过在MATLAB 软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
2、在原理设计与仿真研究的基础上,应用PROTEL 进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。
二、系统设计参数1、直流电动机控制系统设计参数:( 直流电动机(1) )输出功率为:7.5Kw 电枢额定电压220V电枢额定电流 36A 额定励磁电流2A额定励磁电压110V 功率因数0.85电枢电阻0.2欧姆 电枢回路电感100mH电机机电时间常数2S 电枢允许过载系数1.5额定转速 1430rpm2、环境条件:电网额定电压:380/220V ,电网电压波动:10%环境温度:-40~+40摄氏度,环境湿度:10~90%3、控制系统性能指标:电流超调量小于等于5%空载起动到额定转速时的转速超调量小于等于30%调速范围D =20,静差率小于等于0.03.4、设计内容和数据资料某直流电动机拖动的机械装置系统。
主电动机技术数据为:V U N 220=,A I N 30=,m in 970r n N =,电枢回路总电阻Ω=2.0R ,机电时间常数s T m 1=,电动势转速比r V C e m in 221.0•=,Ks=40,ms T l 5.0=,Ts=0.0017ms ,电流反馈系数A V 85.0=β,转速反馈系数r V m in 5.1•=α,试对该系统进行初步设计。
5、 技术指标要求电动机能够实现可逆运行。
要求静态无静差。
动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%30%≤n σ。
三、主电路方案和控制系统确定主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。
主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT 构成H 型双极式控制可逆PWM 变换器。
其中属于脉宽调速系统特有的部分主要是UPM 、逻辑延时环节DLD 、全控型绝缘栅双极性晶体管驱动器GD 和PWM 变换器。
系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差。
从而使系统达到调节电流和转速的目的。
该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。
1、PWM变换器的选用PWM变换器有可逆和不可逆两类。
可逆变换器又有双极式、单极式和受限单极式等多种。
由于题目要求须事先电动机可逆运行,故本设计选用带续流的绝缘栅双极晶体管IGBT 构成H型双极性控制PWM变换器。
其中,电源电压Us选用不可控电力二极管25JPF40整流提供,并采用大电容C进行滤波。
功率管开关管应承受2Us的电压,为此选用FGA25N120AN绝缘栅双极晶体管IGBT并接在功率开关管两端二级管用在IGBT关断时为电枢回路提供释放电感储能的续流。
FGA25N的参数:Vce=200V,Ic=15A。
选用10CTF30型电力二极管,If=10A,Urm=300V。
采用单相交流220V供电,变压器二次电压为67V,桥式整流二极管最大反向电压大于电源的幅值的2倍,最大整流电流按2倍额定电流考虑。
选25JPF40,If=25A,Urm=400V。
整流桥输出端所并接的电容作用滤除整流后的电压纹波,并在负载变化时保持电压平稳。
另外,当脉宽调速系统的电动机减速或停车时,贮存在电动机和负载转动部分的动能将由电容器吸收,所以所用的电容较大,这里选用4000uf,电压按大于2倍电压选择。
2、传感器以及测速发电机的选用由于题目要求需要对电流进行采样,故此这里我们选用霍尔电流传感器HNC-025A,HNC-025A传感器所能测量的额定电流为5A、6A、8A、12A、25A,当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS* NS= IP*NP。
在外环中,我们需要有速度的反馈,这里我们选用永磁式ZYS231/110型作为测速机。
3、驱动电路选用驱动电路的作用是将控制电路输出的PWM 信号放大至足以保证IGBT 可靠导通或关断的程度。
同时具有实现主电路与控制电路相隔离、故障后自动保护及延时等功能。
这里我们选用上海马克电气公司的AST96X 系列的MAST5-2C-U12型IGBT 驱动板 ,AST96X 为单路光电耦合隔离带短路、欠压和过压保护功能的 IGBT 驱动模块; MAST 系列为 1 - 7 路、带隔离电源的 IGBT 驱动板,易于使用,对供电电源要求低,适用 600V - 1700V 的各种不同类型 IGBT 驱动;两者均提供 电流源或电压源-电阻两种驱动方式,具有单电源供电、输入电压范围宽、内置正负电压发生器以及电压滤波器、内置短路保护电路、内置驱动欠压和过压保护电路、内置 VCE 检测的快恢复高压二极管、内置光电耦合器以传输驱动保护/故障信号、内置栅极过压箝位元件等特点。
MAST5-2C-U12是为控制和驱动电机设计的两通道推挽式功率放大专用集成电路器件,将分立电路集成在单片IC 之中,使外围器 件成本降低,整机可靠性提高。
该产品为大规模集成基极驱动电路,可对IGBT 实现较理想的基极电流优化驱动和自身保护。
4、调节器的选择根据题目要求我们尝试用P 调节器进行动态校正,但是存在静差,PI 调节器可以进一步提高稳态性能,达到消除稳态速差的地步。
在单闭环调速系统中,电网电压扰动的作用点离被调量较远,调节作用受到多个环节的延滞,因此单闭环调速系统抵抗电压扰动的性能要差一些。
双闭环系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗扰性能大有改善。
为了获得良好的静、动态性能,转速和电流两个调节器,并且这里我们采用PI 调节器。
5、 脉宽调制器选用脉宽调制器用于产生控制PWM 变换器的功率器件通断的PWM 信号。
常用种类有:模拟式、数字式和专用集成电路。
这里选用美国德克萨斯仪器公司TL494专用集成电路作为双端输出型脉宽调制器,其载波为锯齿波信号,振荡频率()T T C R f 1.1=,其中T R 和T C 取值范围:Ω=k R T 100~5,F C T μ1.0~001.0=。
四、主电路的原理该系统是属于双闭环调速系统,其中具有转速环,称为外环,还有就是电流环,这里称为内环,外环由测速机采集信号经过反馈系数得到电压信号反馈给ASR ,内环我们这里采用直流PWM 控制系统相结合,其中脉宽调速系统由调制波发生器GM 、脉宽调制器UPM 、逻辑延时环节DLD 以及绝缘栅双极性晶体管的GD 和脉宽调制变换器组成。
直流PWM 控制系统是直流脉宽调制式调速系统控制系统,与晶闸管直流调速系统的区别在于用直流PWM 变换器取代了晶闸管交流装置,作为系统的功率驱动器。
脉宽调制器是有一个运算放大器和几个输入信号构成电压比较器。
运算放大器工作在开环状态,在电流调节器输出的控制信号的控制下,产生一个等幅、宽度受Uc 控制的方波脉冲序列,为PWM 提供所需要的脉冲信号。
逻辑延时环节DLD 保证在一个管子发出关断脉冲时,经延时后再发出对另一个管子的开通脉冲,在延时环节中引入瞬时动作限流保护FA 信号,一旦桥臂电流超过允许最大电流值时,使工作管子同时封锁,以保护电力晶体管。
在正常运行时,电流调节器是不会达到饱和状态的。
因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况 双闭环直流调速系统的静特性如上图所示,0n *n n n U U αα===,d i *i I U U β==式中α,β —— 转速和电流反馈系数。
由第一个关系式可得0*n n U n ==α,从而得到上图静特性的CA 段。
与此同时,由于ASR 不饱和,U*i < U*im ,从上述第二个关系式可知: I d < I dm 。
这就是说, CA 段静特性从理想空载状态的 I d = 0 一直延续到 I d = I dm ,而 I dm 一般都是大于额定电流 I dN 的。
这就是静特性的运行段,它是水平的特性。
这时,ASR 输出达到限幅值U*im ,转速外环呈开环状态,转速的变化对系统不再产生影响。
双闭环系统变成一个电流无静差的单电流闭环调节系统。
稳态时dm *imd I U I ==β式中,最大电流I dm 是由设计者选定的,取决于电机的容许过载能力和拖动系统允许的最大加速度。
式中所描述的静特性是上图中的AB 段,它是垂直的特性。
这样的下垂特性只适合于 n < n 0 的情况,因为如果 n > n 0 ,则U n > U*n ,ASR 将退出饱和状态。
双闭环调速系统的静特性在负载电流小于I dm 时表现为转速无静差,这时,转速负反馈起主要调节作用。
当负载电流达到 I dm 后,转速调节器饱和,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。
系统稳态结构图以及动态结构图四、设计过程1 电流调节器的设计1) 确定时间常数(1)整流装置滞后时间常数错误!未找到引用源。
,PWM电源滞后时间常数错误!未找到引用源。
=0.0017s 。
(2) 机电时间常数错误!未找到引用源。
,电磁时间常数错误!未找到引用源。
(3)电流滤波时间常数错误!未找到引用源。
=0.01s(4)电流环小时间常数之和错误!未找到引用源。
按小时间常数近似处理,取错误!未找到引用源。
=错误!未找到引用源。
+错误!未找到引用源。
图2:双闭环调速系统的静态结构=0.002s。
电流超前时间常数错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
=0.67S 2)选择电流调节器结构根据设计要求电流超调量错误!未找到引用源。
,并保证稳态电流无差,可按典型I型系统设计电流调节器。
电流环控制对象是双惯性型的,因此可以用PI型电流调节器,其传递函数为错误!未找到引用源。