微积分试题及答案(5)
微积分考试试卷及答案6套
微积分考试试卷及答案6套微积分试题 (A 卷)⼀. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>?ε,总存在δ>0,使得当时,恒有│?(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β是等价⽆穷⼩量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是。
6. 设函数y =?(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为。
8. ='?))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最⼤时产量Q 是。
⼆. 单项选择题 (每⼩题2分,共18分)1. 若数列{x n }在a 的ε邻域(a -ε,a +ε)内有⽆穷多个点,则()。
(A) 数列{x n }必有极限,但不⼀定等于a (B) 数列{x n }极限存在,且⼀定等于a(C) 数列{x n }的极限不⼀定存在 (D) 数列{x n }的极限⼀定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的()。
(A) 可去间断点 (B) 跳跃间断点 (C) ⽆穷型间断点→13)11(lim x x x()。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ()时,需求量减少的幅度⼩于价格提⾼的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,⼜a 是常数,则下列结论正确的是()。
微积分数学竞赛试题及答案
微积分数学竞赛试题及答案试题一:极限问题题目:求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
解答:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导后再求极限。
对分子和分母分别求导得到:\[ \lim_{x \to 0} \frac{\cos x}{1} = 1 \]因此,原极限的值为1。
试题二:导数问题题目:求函数 \( f(x) = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数。
解答:首先求函数 \( f(x) \) 的导数:\[ f'(x) = 6x - 2 \]然后将 \( x = 1 \) 代入导数表达式中:\[ f'(1) = 6 \times 1 - 2 = 4 \]所以,函数在 \( x = 1 \) 处的导数为4。
试题三:积分问题题目:求定积分 \(\int_{0}^{1} x^2 dx\)。
解答:使用幂函数的积分公式:\[ \int x^n dx = \frac{x^{n+1}}{n+1} + C \]对于 \( n = 2 \),我们有:\[ \int x^2 dx = \frac{x^3}{3} + C \]计算定积分的值:\[ \int_{0}^{1} x^2 dx = \left[ \frac{x^3}{3} \right]_{0}^{1}= \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \]试题四:级数问题题目:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 是否收敛。
解答:这个级数可以通过部分分式分解来简化:\[ \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \]解得 \( A = 1 \) 和 \( B = -1 \),因此:\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \]将这个结果代入级数中,我们得到一个望远镜级数:\[ \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1}\right) \]这个级数的项会相互抵消,只剩下第一项 \( \frac{1}{1} \),所以级数收敛,其和为1。
微积分下试题及答案
微积分下试题及答案一、选择题(每题3分,共30分)1. 函数 \( f(x) = \frac{1}{x} \) 在区间 \( (0, \infty) \) 上是:A. 有界函数B. 无界函数C. 单调递增函数D. 单调递减函数答案:B2. 若函数 \( g(x) = x^3 - 6x^2 + 11x - 6 \) 在 \( x = 3 \) 处取极值,则 \( g(x) \) 在 \( x = 3 \) 处为:A. 极大值B. 极小值C. 不是极值D. 不确定答案:A3. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 在第一象限内的交点个数为:A. 0B. 1C. 2D. 3答案:B4. 已知 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin 2x}{x} \) 等于:A. 1B. 2C. 4D. 无法确定答案:C5. 若函数 \( h(x) = \sin x + \cos x \) 的导数 \( h'(x) \) 在区间 \( [0, \frac{\pi}{2}] \) 上为:A. 非正函数B. 非负函数C. 正值函数D. 负值函数答案:B6. 函数 \( F(x) = \int_0^x e^t dt \) 的值域是:A. \( (-\infty, 1] \)B. \( [1, \infty) \)C. \( (0, \infty) \)D. \( (-\infty, 0] \)答案:C7. 已知 \( \frac{dy}{dx} = 3x^2 - 2x \),且 \( y(2) = 4 \),则 \( y \) 的一个可能表达式是:A. \( y = x^3 - \frac{4}{3}x^3 + 4 \)B. \( y = x^3 - x^2 + C \)C. \( y = x^3 - 2x + C \)D. \( y = x^3 - \frac{10}{3}x^3 + C \)答案:A8. 函数 \( G(x) = e^x \) 的 \( n \) 阶导数 \( G^{(n)}(x) \) 是:A. \( e^x \)B. \( ne^x \)C. \( n!e^x \)D. \( 0 \)答案:A9. 曲线 \( y = \ln x \) 的水平渐近线方程是:A. \( y = 0 \)B. \( y = 1 \)C. \( y = -1 \)D. \( x = 1 \)答案:C10. 若 \( \int_{-1}^{1} x^2 dx = \frac{2}{3} \),则\( \int_{-1}^{1} x^3 dx \) 等于:A. \( -\frac{2}{4} \)B. \( \frac{2}{4} \)C. \( -\frac{1}{4} \)D. \( \frac{1}{4} \)答案:C二、填空题(每题4分,共20分)11. 函数 \( f(x) = \sqrt{x} \) 的最小值是 ________。
微积分试卷及答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim 2=-++∞→n bn an n ,则a = ,b= 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分试题及答案
微积分试题及答案微积分试题及答案第⼀章函数极限与连续⼀、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的阶⽆穷⼩。
4、01sin lim 0=→xx kx 成⽴的k 为。
5、=-∞→x e xx arctan lim 。
6、≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是⾮零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价⽆穷⼩,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
⼆、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有。
(A)α是⽐β⾼阶的⽆穷⼩;(B)α是⽐β低阶的⽆穷⼩;(C )α与β是同阶⽆穷⼩;(D )βα~。
微积分下模拟试卷一至五(含答案)共5套北京语言大学网络教育学院
北京语言大学网络教育学院《微积分(下)》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4. 本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。
一、【单项选择题】(本大题共20小题,每小题4分,共80分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、级数1nn u∞=∑的部分和数列n S 有界是该级数收敛的( )。
[A] 必要条件 [B] 充分条件[C] 充分必要条件 [D] 既不是充分条件也不是必要条件2、级数1nn u∞=∑收敛,则下面级数可能不成立的是( )。
[A]1nn u∞=∑收敛 [B]1nn ku∞=∑收敛()0k ≠[C]()2121n n n uu ∞-=+∑收敛[D] lim 0n n u →∞=3、点()00,x y 使(),0x f x y '=且(),0y f x y '=成立,则( )。
[A] ()00,x y 是(),f x y 的极值点 [B] ()00,x y 是(),f x y 的最小值点 [C] ()00,x y 是(),f x y 的最大值点 [D] ()00,x y 可能是(),f x y 的极值点4、已知函数()22,f x y x y x y +-=-,则()(),,f x y f x y x y∂∂+=∂∂( )。
[A] 22x y +[B] x y +[C] 22x y -[D] x y -5、设函数2sin 2z x y =,则zx∂∂等于( )。
[A] 2sin 2x y [B] 22cos 2x y [C] sin 2x y[D] 2cos 2x y6、级数24n n =+∞∑的和是( )。
微积分考试试题及答案
微积分考试试题及答案第一题:求函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点和拐点。
解析:首先,我们需要找到函数的极值点。
极值点对应于函数的导数为零的点。
对函数 f(x) 求导得到 f'(x) = 3x^2 - 6x + 2。
令导数等于零,我们得到一个二次方程 3x^2 - 6x + 2 = 0。
使用求根公式,可以解得这个二次方程的解为x = 1 ± √(2/3)。
所以函数的极值点为x = 1 + √(2/3) 和 x = 1 - √(2/3)。
接下来,我们需要找到函数的拐点。
拐点对应于函数的二阶导数为零的点。
对函数 f(x) 求二阶导数得到 f''(x) = 6x - 6。
令二阶导数等于零,我们得到 x = 1,这是函数的一个拐点。
综上所述,函数 f(x) = x^3 - 3x^2 + 2x + 1 的极值点为x = 1 + √(2/3)和 x = 1 - √(2/3),拐点为 x = 1。
第二题:已知函数 f(x) = e^x,在点 x = 0 处的切线方程为 y = mx + b,求参数 m 和 b 的值。
解析:切线方程的斜率 m 等于函数在给定点的导数。
对函数 f(x) = e^x 求导得到 f'(x) = e^x。
根据题意,在 x = 0 处求切线,所以我们需要计算函数在 x = 0 处的导数。
将 x = 0 代入函数的导数表达式中,我们得到 f'(0) = e^0 = 1。
所以切线的斜率 m = 1。
切线方程的常数项 b 可以通过将给定点的坐标代入切线方程求解。
由题意知道切线过点 (0, f(0)),即 (0, e^0) = (0, 1)。
将点 (0, 1) 代入切线方程 y = mx + b,我们得到 1 = 0 + b,解得 b = 1。
综上所述,切线方程为 y = x + 1。
第三题:计算函数f(x) = ∫(0 to x) sin(t^2) dt。
微积分基础试题及答案
微积分基础试题及答案1. 计算函数 f(x) = 3x^2 - 2x + 5 的导数。
解答:使用导数的定义,对函数 f(x) = 3x^2 - 2x + 5 进行求导。
f'(x) = lim(h→0) [f(x + h) - f(x)] / h将函数表达式代入求导公式并化简:f'(x) = lim(h→0) [3(x + h)^2 - 2(x + h) + 5 - (3x^2 - 2x + 5)] / h = lim(h→0) [3(x^2 + 2xh + h^2) - 2x - 2h + 5 - 3x^2 + 2x - 5] / h = lim(h→0) [3x^2 + 6xh + 3h^2 - 2x - 2h + 5 - 3x^2 + 2x - 5] / h = lim(h→0) [6hx + 3h^2 - 2h] / h= lim(h→0) [h(6x + 3h - 2)] / h= lim(h→0) 6x + 3h - 2= 6x - 2因此,函数 f(x) = 3x^2 - 2x + 5 的导数为 f'(x) = 6x - 2。
2. 计算函数 g(x) = sqrt(4x^3 + 2x) 的导数。
解答:使用链式法则来求解函数 g(x) = sqrt(4x^3 + 2x) 的导数。
令 u = 4x^3 + 2x,则 g(x) = sqrt(u)。
g'(x) = du/dx * (d(sqrt(u))/du)计算 du/dx:du/dx = d(4x^3)/dx + d(2x)/dx= 12x^2 + 2计算 d(sqrt(u))/du:d(sqrt(u))/du = 1 / (2 * sqrt(u))= 1 / (2 * sqrt(4x^3 + 2x))将 du/dx 和 d(sqrt(u))/du 代入链式法则公式:g'(x) = (12x^2 + 2) * (1 / (2 * sqrt(4x^3 + 2x)))= (12x^2 + 2) / (2 * sqrt(4x^3 + 2x))= (6x^2 + 1) / sqrt(4x^3 + 2x)因此,函数 g(x) = sqrt(4x^3 + 2x) 的导数为 g'(x) = (6x^2 + 1) / sqrt(4x^3 + 2x)。
微积分考试试题及答案
微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。
A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。
A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。
答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。
答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。
答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。
答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。
导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。
2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。
通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。
微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。
四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。
答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。
答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。
大一微积分试题及答案详解
大一微积分试题及答案详解一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-∞, +∞)上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:A解析:函数f(x) = x^2的导数为f'(x) = 2x,当x > 0时,f'(x) > 0,说明函数在x > 0的区间内是增函数;当x < 0时,f'(x) < 0,说明函数在x < 0的区间内是减函数。
由于整个定义域内没有区间使得函数单调递减,所以函数在整个定义域上是增函数。
2. 下列函数中,满足f(-x) = -f(x)的是:A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = sin(x)答案:A解析:选项A中的函数f(x) = x^3是奇函数,因为对于所有x,都有f(-x) = (-x)^3 = -x^3 = -f(x)。
选项B是偶函数,选项C和D不满足奇函数的性质。
3-10. (类似上述格式,继续编写选择题及答案详解)二、填空题(每题4分,共20分)1. 极限lim (x→0) [sin(x)/x] 的值是 _______。
答案:1解析:根据极限的性质,我们知道sin(x)/x在x趋近于0时的极限是1,这是著名的极限lim (x→0) [sin(x)/x] = 1。
2. 函数f(x) = 2x^3 - 6x^2 + 9x + 1在x = 2处的导数是 _______。
答案:23解析:首先求出函数f(x)的导数f'(x) = 6x^2 - 12x + 9,然后将x = 2代入得到f'(2) = 6(2)^2 - 12(2) + 9 = 24 - 24 + 9 = 9。
3-5. (类似上述格式,继续编写填空题及答案详解)三、解答题(共50分)1. (15分)求曲线y = x^3 - 3x + 2在点(1, 0)处的切线方程。
微积分综合练习试题和参考答案与解析
(1)函数 f(X)=•1 In(x - 2) 的定义域是(2)函数 f(x)=1 ln( x 2)的定义域是 ____________ •答案:(—2, —1)^(—1,2](4)若函数f(x T xs 「x 0在X 二0处连续,则k =x _ 0•答案:k = 1(1)设函数y 二-xe,则该函数是().A.奇函数B.偶函数C.非奇非偶函数 D .既奇又偶函数综合练习题1 (函数、极限与连续部分)1 •填空题(3)函数 f (x 2^ x 2 4x 7,贝U f(x)二 _______________________ •答案:f(x^ x 2 3(5) 函数 f(x-1) =x 2 -2x ,则 f(x)二 __________________ .答案:f(x) =x 2 -1x 2 _2x _3(6)函数y _________________________ 的间断点是.答案:x- -1x +1 1(7)lim xsin .答案:1X护 x sin 4x(8)若 lim _______________ 2,则 k = .答案:k = 2―0 sin kx2.单项选择题答案:B(2)下列函数中为奇函数是( ).答案:CA. xsin xln (x . 1 x 2) D . x x 2).D . x 卞 一5 且 x = -4x(3)函数y ln(x • 5)的定义域为(x +4A. x 占-5 B . x -4 C . x 占 一5 且 x = 0答案:D2(4)设 f(X * 1) = X 「1 ,则 f(X)二( )A. x(x 1)C. x=1,x=2, x=3D x 2 -3x 2(1)(2)解: limX —3x 2 -3x 2x 2 -4-9(x-2)(x-1) (x-2)(x 2)lim x =3 x-9(x-3)(x 3)-2x -3xB (x -3)(x 1)= lim 』^X —3 X 14 2答案:A3.计算题-4C. x(x _2)D . (x +2)(x —1)答案: Ce^2,x 式0亠 (5) 当k =()时,函数f f(x) =在x=0处连续..k,x = 0A. 0B. 1C .2D . 3答案:Dx +1,x 式0 (6) 当k =()时,函数f f(x)—w,在X = 0处连续、k,x = 0 A. 0 B. 1C .2D .-1答案:B(7) 函数f (x)x —3— 2 的间断点是()X 2 _3x +2A. x =1,x = 2B.x =3.无间断点解:WORD 格式整理版综合练习题2 (导数与微分部分)(3)解:lim "卫二 lim HX T x 2 -5x 4x —4 & -4)(x -1)二lim x j4x -2x —11 •填空题(1)曲线f(x) __________________________________ ・1在(1,2)点的切斜率是11答案:2(2)_______________________________________________________ 曲线f(x) =e x在(0,1)点的切线方程是 __________________________________________ •答案:y = x • 1(3)已知f (x^ x3 3x,则f (3) =答案: f (x) =3x23x ln3f (3) =27 (1 ln 3)(4)已知f(x) = In x ,贝U f (x) = _____________________ •1 1答案:f (x) , f (x) = 2x x(5)若f (x) _______________________________ ,贝y f (0)二答案:f (x)二「2e» xe」f (0) =「22.单项选择题(1)若f (x) = e^ cosx,贝U f (0)= ( ) •A. 2B. 1C. -1D. -2因f (x) = (e“ cosx) = (e“)cosx e^(cosx)-x X x=-e cosx -e sin x = -e (cosx sinx)所以f (0) - -e-0 (cos0 sin0) - -1答案:C(2)设y = lg2 x,则dy 二(1 1A. dx B dx2x xln 10答案:B(3)设y二f (x)是可微函数,则)•ln 10 1 C •dx D • 一dxx x df(cos2x)二( )•A • 2f (cos2x)dxB f (cos2x)sin 2xd2x(4)若 f(X) . 丄3=si nx a,其中a 是常数,则f (x) =().A2.cosx 3a B. sin x 6ac.-sin xD.cosx答案 :C3.计算题1e ,求八(1 )设 y = x 211 2 1 .1C . 2f (cos2x)sin 2xdxD . - f (cos2x)sin2xd2xx(2 )设 y = sin 4x cos 3 x ,求 y .2解: y = 4cos4x 3cos x(-sinx)2= 4cos4x 「3sinxcos x(3 )设 y = e % 12,求讨.x答案:D21 解: / = 2xe x x 2e x (-p)二 e x (2x-1)A.单调增加 B .单调减少C.先增后减 D •先减后增答案:D(2)满足方程f (x) =0的点一定是函数y二f (x)的( ).A极值点 B.最值点 C .驻点 D.间断点答案:C(3)下列结论中( )不正确.A . f (x)在X=X0处连续,则一定在X0处可微.B . f(X)在X = X0处不连续,则一定在X0处不可导•C •可导函数的极值点一定发生在其驻点上•D.函数的极值点一定发生在不可导点上•答案:B(4)下列函数在指定区间(-::,•::)上单调增加的是( ).A . sinxB . e XC . X10D . 3「x答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m i的长方体开口容器,怎样做法用料最省?解:设底边的边长为xm,高为h m容器的表面积为y m l。
微积分试卷及标准答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
微积分试题集
微积分试题集一季一、计算下列极限:(每题5分,共10分) 4.若0x →时1sin x x 与是等价无穷小,求常数k 的值.5. 设sin 2sin ,0,()3,0,1,0sin x bx x x x x f x x a x x⎧+<⎪⎪⎪==⎨⎪-⎪>⎪⎩在0x =处连续,求,a b 的值.二、导数与微分:(每题5分,共25分) 1. 设sin ,x y x =求 2.x dy π=2.求由方程yx x y e e +=所确定的曲线()y y x =在0x =处的切线方程.3.利用微分近似计算,求.4.设2210,sin ,()ln(1)0x x x f x x x ⎧<⎪⎪=⎨⎪⎪+≥⎩ 求 ().f x '5. 求曲线5235()33f x x x =+的拐点.三、计算下列各题:(每小题8分,共16分) 1. 设某商品的价格P 与需求量Q 的关系为280P Q-=,(1) 求4=P时的需求弹性,并说明其经济意义.(2)求当价格P 为何值时,总收益R 最大?并求出此时的需求价格弹性d E .2. 设()F x 为()f x 的原函数,且()f x =,已知2(1),F e π=()0,F x >求().f x四、证明题:(每小题5分,共10分) 1. 当0x >时, 证明:(1)ln(1)arctan .x x x ++>.2. 设)(x f '连续且()lim8x af x x a→'=-,试证明a x =是)(x f 的极小值点。
二季一、填空题(每小题4分,本题共20分) ⒈函数24)2ln(1)(x x x f -++=的定义域是 .⒉若函数⎪⎩⎪⎨⎧=≠+=0,0,13sin )(x k x xx x f ,在0=x 处连续,则=k .⒊曲线x y =在点)1,1(处的切线方程是.⒋='⎰x x s d )in (.⒌微分方程x y y x y sin 4)(53='''+''的阶数为 .二、单项选择题(每小题4分,本题共20分) ⒈设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x⒉若函数f (x )在点x 0处可导,则( )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 ⒊函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 ⒋=''⎰x x f x d )(( )A. c x f x f x +-')()(B. c x f x +')(C.c x f x +')(212D. c x f x +'+)()1( ⒌下列微分方程中为可分离变量方程的是( )A. y x x y +=d d ;B. y xy x y +=d d ;C. x xy x y sin d d +=;D. )(d d x y x xy +=三、计算题(本题共44分,每小题11分)⒈计算极限4586lim 224+-+-→x x x x x .⒉设x y x 3sin 2+=,求y d .⒊计算不定积分x x x d cos ⎰⒋计算定积分xx x d ln 51e1⎰+四、应用题(本题16分)欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?微积分初步期末试题选(一)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是.(2)函数24)2ln(1)(x x x f -++=的定义域是 .(3)函数74)2(2++=+x x x f ,则=)(x f.(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .(5)函数x x x f 2)1(2-=-,则=)(x f.(6)函数1322+--=x x x y 的间断点是.(7)=∞→xx x 1sinlim.(8)若2sin 4sin lim 0=→kxxx ,则=k.2.单项选择题、(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数(2)下列函数中为奇函数是( ).A .x x sinB .2e e xx +- C .)1ln(2x x ++D .2x x +(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .1- (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点3.计算题(1)423lim 222-+-→x x x x .(2)329lim 223---→x x x x(3)4586lim 224+-+-→x x x x x1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是.(2)曲线x x f e )(=在)1,0(点的切线方程是.(3)已知x x x f 3)(3+=,则)3(f '=.(4)已知x x f ln )(=,则)(x f ''=.(5)若x x x f -=e )(,则='')0(f.2.单项选择题 (1)若x x f x cos e )(-=,则)0(f '=().A. 2B. 1C. -1D. -2(2)设y x =lg2,则d y =().A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx (3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x fd 2sin )2(cos 2' D .x x x f d22sin )2(cos '-(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ). A .23cos a x + B .a x 6sin + C .x sin - D .x cos3.计算题 (1)设xx y 12e=,求y '. (2)设x x y 3cos 4sin +=,求y '.(3)设xy x 2e1+=+,求y '. (4)设x x x y cos ln +=,求y '.1.填空题 (1)函数y x =-312()的单调增加区间是.(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .2.单项选择题 (1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 (2)满足方程0)(='x f 的点一定是函数)(x f y =的( ).A .极值点B .最值点C .驻点D . 间断点 (3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上.(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .x sinB .xe C .2xD .x -33.应用题(1)欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省?(2)用钢板焊接一个容积为43m 的正方形的开口水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?1.填空题 (1)若)(x f 的一个原函数为2ln x ,则=)(x f .(2)若⎰+=c x x x f 2sin d )(,则)(x f . (3)若______________d os ⎰=x x c(4)=⎰-2de x.(5)='⎰x x d )(sin.(6)若⎰+=c x F x x f )(d )(,则⎰=-x x f d )32( .(7)若⎰+=c x F x x f )(d )(,则⎰=-x x xf d )1(2.(8).______d )2cos (sin 112=+-⎰-x x x x x(9)=+⎰e12d )1ln(d d x x x .(10)x x d e 02⎰∞-=.2.单项选择题(1)下列等式成立的是( ). A .)(d )(d x f x x f =⎰ B .)(d )(x f x x f ='⎰C .)(d )(d dx f x x f x=⎰ D .)()(d x f x f =⎰(2)以下等式成立的是( ) A . )1d(d lnxx x = B .)(cos d d sin x x x =C .x xxd d = D .3ln 3d d 3xxx =(3)=''⎰x x f x d )(( )A. c x f x f x +-')()(B. c x f x +')(C.c x f x +')(212D. c x f x +'+)()1( (4)下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x x x d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ(5)设)(x f 是连续的奇函数,则定积分=⎰aax x f -d )(( )A .0B .⎰-d )(ax x f C .⎰ax x f 0d )(D .⎰-d )(2ax x f(6)下列无穷积分收敛的是( ). A .⎰∞+0d in x x s B .⎰∞+1d 1x xC .⎰∞+1d 1x xD .⎰∞+-02d e x x3.计算题(1)x x d )12(10⎰- (2)x x x d 1sin2⎰(3)c x d x xxx x+==⎰⎰e2e 2d e(4)x x x d )e 4(e 22ln 0+⎰(5)xx x d ln 51e1⎰+ (6)x x x d e 10⎰(7)⎰π20d sin x x x微积分初步期末试题选(五)1.填空题 (1)已知曲线)(x f y =在任意点x 处切线的斜率为x1,且曲线过)5,4(,则该曲线的方程是 .(2)由定积分的几何意义知,x x a ad 022⎰-= .(3)微分方程1)0(,=='y y y 的特解为 . (4)微分方程03=+'y y 的通解为 .(5)微分方程x y xy y sin 4)(7)4(3=+''的阶数为 .2.单项选择题(1)在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( ).A .y = x 2+ 3 B .y = x 2+ 4 C .22+=x y D .12+=x y(2)下列微分方程中,( )是线性微分方程. A .y y yx '=+ln 2 B .x xy y y e 2=+'C .y y x y e ='+''D .x y y x y x ln e sin ='-''(3)微分方程0='y 的通解为( ). A .Cx y = B .C x y += C .C y = D .0=y(4)下列微分方程中为可分离变量方程的是( )A. y x x y +=d d ;B. y xy x y+=d d ; C. x xy x y sin d d +=; D. )(d d x y x xy +=三季一、 选择题 (选出每小题的正确选项,每小题2分,共计10分) 1.10lim 2xx -→=_________。
微积分习题集带参考答案(5)
微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
《微积分》各章习题及详细答案
第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sinlim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、____________22lim22=--++∞→x x n 。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
大学微积分试题及答案
大学微积分试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在点x=a处连续B. f(x)在点x=a处一定有极值C. f(x)在点x=a处的导数为0D. f(x)在点x=a处的导数一定大于0答案:A2. 曲线y=x^2在点(1,1)处的切线方程是:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A3. 函数f(x)=x^3-3x+2的导数是:A. 3x^2-3B. 3x^2+3C. x^2-3D. x^3-3答案:A4. 曲线y=x^3-6x^2+9x+1在x=3处的凹凸性是:A. 凹B. 凸C. 不确定D. 既非凹也非凸答案:B二、填空题(每题5分,共20分)1. 函数f(x)=2x^2-4x+3的极小值点是______。
答案:12. 曲线y=x^3-3x在点(2,5)处的切线斜率是______。
答案:33. 函数f(x)=x^2-6x+8的单调递增区间是______。
答案:[3, +∞)4. 曲线y=x^2-4x+3在x=2处的法线方程是______。
答案:y=-x+7三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-2在区间[0,3]上的最大值和最小值。
答案:函数f(x)的导数为f'(x)=3x^2-6x+4。
令f'(x)=0,解得x=1, 2。
在区间[0,1]上,f'(x)>0,函数单调递增;在区间[1,2]上,f'(x)<0,函数单调递减;在区间[2,3]上,f'(x)>0,函数单调递增。
因此,函数在x=1处取得极大值f(1)=1,在x=2处取得极小值f(2)=-2。
在区间端点处,f(0)=-2,f(3)=1。
所以,函数在区间[0,3]上的最大值为1,最小值为-2。
2. 求由曲线y=x^2与直线y=4x-3围成的面积。
微积分试题集精编版
微积分试题集一季一、计算下列极限:(每题5分,共10分) 4.若0x →时1sin x x 与是等价无穷小,求常数k 的值.5. 设sin 2sin ,0,()3,0,1,0sin x bx x x x x f x x a x x⎧+<⎪⎪⎪==⎨⎪-⎪>⎪⎩在0x =处连续,求,a b 的值.二、导数与微分:(每题5分,共25分) 1. 设sin ,x y x =求 2.x dy π=2.求由方程yx x y e e +=所确定的曲线()y y x =在0x =处的切线方程.3.利用微分近似计算,求.4.设2210,sin ,()ln(1)0x x x f x x x ⎧<⎪⎪=⎨⎪⎪+≥⎩ 求 ().f x '5. 求曲线5235()33f x x x =+的拐点.三、计算下列各题:(每小题8分,共16分) 1. 设某商品的价格P 与需求量Q 的关系为280P Q-=,(1) 求4=P时的需求弹性,并说明其经济意义.(2)求当价格P 为何值时,总收益R 最大?并求出此时的需求价格弹性d E .2. 设()F x 为()f x 的原函数,且()f x =,已知2(1),F e π=()0,F x >求().f x四、证明题:(每小题5分,共10分) 1. 当0x >时, 证明:(1)ln(1)arctan .x x x ++>.2. 设)(x f '连续且()lim8x af x x a→'=-,试证明a x =是)(x f 的极小值点。
二季一、填空题(每小题4分,本题共20分) ⒈函数24)2ln(1)(x x x f -++=的定义域是 .⒉若函数⎪⎩⎪⎨⎧=≠+=0,0,13sin )(x k x xx x f ,在0=x 处连续,则=k .⒊曲线x y =在点)1,1(处的切线方程是.⒋='⎰x x s d )in (.⒌微分方程x y y x y sin 4)(53='''+''的阶数为 .二、单项选择题(每小题4分,本题共20分) ⒈设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x ⒉若函数f (x )在点x 0处可导,则( )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 ⒊函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 ⒋=''⎰x x f x d )(( )A. c x f x f x +-')()(B. c x f x +')(C.c x f x +')(212D. c x f x +'+)()1( ⒌下列微分方程中为可分离变量方程的是( ) A. y x x y +=d d ; B. y xy x y +=d d ; C. x xy x y sin d d +=; D. )(d d x y x xy +=三、计算题(本题共44分,每小题11分)⒈计算极限4586lim 224+-+-→x x x x x .⒉设x y x 3sin 2+=,求y d .⒊计算不定积分x x x d cos ⎰⒋计算定积分xx x d ln 51e1⎰+四、应用题(本题16分)欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?微积分初步期末试题选(一)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是.(2)函数24)2ln(1)(x x x f -++=的定义域是 .(3)函数74)2(2++=+x x x f ,则=)(x f.(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .(5)函数x x x f 2)1(2-=-,则=)(x f.(6)函数1322+--=x x x y 的间断点是.(7)=∞→xx x 1sinlim.(8)若2sin 4sin lim 0=→kxxx ,则=k.2.单项选择题、(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数(2)下列函数中为奇函数是( ).A .x x sinB .2e e xx +- C .)1ln(2x x ++D .2x x +(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续. A .0 B .1 C .2 D .1- (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点3.计算题(1)423lim 222-+-→x x x x .(2)329lim 223---→x x x x(3)4586lim 224+-+-→x x x x x1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是.(2)曲线x x f e )(=在)1,0(点的切线方程是.(3)已知x x x f 3)(3+=,则)3(f '=.(4)已知x x f ln )(=,则)(x f ''=.(5)若x x x f -=e )(,则='')0(f.2.单项选择题 (1)若x x f x cos e )(-=,则)0(f '=().A. 2B. 1C. -1D. -2(2)设y x =lg2,则d y =().A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx (3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x fd 2sin )2(cos 2' D .x x x f d22sin )2(cos '-(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ). A .23cos a x + B .a x 6sin + C .x sin - D .x cos3.计算题 (1)设xx y 12e=,求y '. (2)设x x y 3cos 4sin +=,求y '.(3)设xy x 2e1+=+,求y '. (4)设x x x y cos ln +=,求y '.1.填空题 (1)函数y x =-312()的单调增加区间是.(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .2.单项选择题 (1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 (2)满足方程0)(='x f 的点一定是函数)(x f y =的( ).A .极值点B .最值点C .驻点D . 间断点 (3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上.(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .x sinB .xe C .2xD .x -33.应用题(1)欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省?(2)用钢板焊接一个容积为43m 的正方形的开口水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?1.填空题 (1)若)(x f 的一个原函数为2ln x ,则=)(x f .(2)若⎰+=c x x x f 2sin d )(,则)(x f . (3)若______________d os ⎰=x x c(4)=⎰-2de x.(5)='⎰x x d )(sin.(6)若⎰+=c x F x x f )(d )(,则⎰=-x x f d )32( .(7)若⎰+=c x F x x f )(d )(,则⎰=-x x xf d )1(2.(8).______d )2cos (sin 112=+-⎰-x x x x x(9)=+⎰e12d )1ln(d d x x x .(10)x x d e 02⎰∞-=.2.单项选择题(1)下列等式成立的是( ). A .)(d )(d x f x x f =⎰ B .)(d )(x f x x f ='⎰C .)(d )(d dx f x x f x=⎰ D .)()(d x f x f =⎰(2)以下等式成立的是( ) A . )1d(d lnxx x = B .)(cos d d sin x x x =C .x xxd d = D .3ln 3d d 3xxx =(3)=''⎰x x f x d )(( )A. c x f x f x +-')()(B. c x f x +')(C.c x f x +')(212D. c x f x +'+)()1( (4)下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x x x d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ(5)设)(x f 是连续的奇函数,则定积分=⎰aax x f -d )(( )A .0B .⎰-d )(ax x f C .⎰ax x f 0d )(D .⎰-d )(2ax x f(6)下列无穷积分收敛的是( ). A .⎰∞+0d in x x s B .⎰∞+1d 1x xC .⎰∞+1d 1x xD .⎰∞+-02d e x x3.计算题(1)x x d )12(10⎰- (2)x x x d 1sin2⎰(3)c x d x xxx x+==⎰⎰e2e 2d e(4)x x x d )e 4(e 22ln 0+⎰(5)xx x d ln 51e1⎰+ (6)x x x d e 10⎰(7)⎰π20d sin x x x微积分初步期末试题选(五)1.填空题 (1)已知曲线)(x f y =在任意点x 处切线的斜率为x1,且曲线过)5,4(,则该曲线的方程是 .(2)由定积分的几何意义知,x x a ad 022⎰-= .(3)微分方程1)0(,=='y y y 的特解为 . (4)微分方程03=+'y y 的通解为 .(5)微分方程x y xy y sin 4)(7)4(3=+''的阶数为 .2.单项选择题(1)在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( ).A .y = x 2+ 3 B .y = x 2+ 4 C .22+=x y D .12+=x y(2)下列微分方程中,( )是线性微分方程. A .y y yx '=+ln 2 B .x xy y y e 2=+'C .y y x y e ='+''D .x y y x y x ln e sin ='-''(3)微分方程0='y 的通解为( ). A .Cx y = B .C x y += C .C y = D .0=y(4)下列微分方程中为可分离变量方程的是( )A. y x x y +=d d ;B. y xy x y+=d d ; C. x xy x y sin d d +=; D. )(d d x y x xy +=三季一、 选择题 (选出每小题的正确选项,每小题2分,共计10分) 1.10lim 2xx -→=_________。
微积分考试试题及答案
微积分考试试题及答案一、选择题1. 设函数 f(x) = x^3 - 3x^2 + 2x + 1,那么 f'(1) 的值是多少?A. -1B. -4C. -3D. 0答案:C2. 给定曲线 y = 2e^x - x,求当 x = 0 时,曲线的切线方程为?A. y = 1 - xB. y = x - 1C. y = e - xD. y = x - e答案:A3. 对于函数 f(x) = 3x^2 + 2x + 1,在 [0,2] 区间上的定积分为?A. 12B. 10C. 14D. 16答案:C二、填空题1. 设函数 g(x) = 2x^3 - 6x + 5 的不定积分为 F(x),那么 F(2) 的值为________。
答案:272. 设函数 h(x) = x^4 - 2x^3 + 3x^2 + 5x - 2,那么 h'(x) 的导函数为_________。
答案:4x^3 - 6x^2 + 6x + 5三、解答题1. 计算函数f(x) = ∫[0,2] (3x^2 + 2x + 1) dx 的值。
解答步骤:首先对 f(x) 进行积分得到 F(x) = x^3 + x^2 + x + C。
然后将积分上下限代入 F(x),得到 F(2) = 2^3 + 2^2 + 2 + C = 14 + C。
由于题目没有给定积分常数 C,所以无法具体计算 F(2) 的值。
2. 求函数g(x) = ∫[-1,1] (2x^3 - 6x + 5) dx 的值。
解答步骤:首先对 g(x) 进行积分得到 G(x) = x^4 - 3x^2 + 5x + C。
然后将积分上下限代入 G(x),得到 G(1) - G(-1) = (1^4 - 3(1)^2 +5(1)) - ((-1)^4 - 3(-1)^2 + 5(-1))= (1 - 3 + 5) - (1 - 3 - 5) = 3 - (-7) = 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分试题及答案一、填空题(每小题2分,共20分)1. =∞→2arctan limx xx .2. 设函数⎪⎩⎪⎨⎧=<<-=0 , 10 )21()(1x k x ,x x f x 在0=x 处连续,则=k 。
3. 若xx f 2e )(-=,则=')(ln x f 。
4. 设2sin x y =,则=)0()7(y 。
5. 函数2x y =在点0x 处的函数改变量与微分之差=-∆y y d 。
6. 若)(x f 在[]b a ,上连续, 则=⎰xa x x f x d )(d d ; =⎰b x x x f x2d )(d d . 7.设函数)3)(2)(1()(---=x x x x f ,则方程0)(='x f 有 个实根。
8. 曲线xx y -=e 的拐点是 。
9. 曲线)1ln(+=x y 的铅垂渐近线是 。
10. 若C x x x f x ++=⎰2d )(,则=)(x f 。
二、单项选择(每小题2分,共10分)1. 设x x f ln )(=,2)(+=x x g 则)]([x g f 的定义域是( )(A )()+∞-,2 (B )[)+∞-,2 (C )()2,-∞- (D )(]2,-∞- 2. 当0→x 时,下列变量中与x 相比为高阶无穷小的是( )(A )x sin (B )2x x + (C )3x (D )x cos 1-3. 函数)(x f 在],[b a 上连续是)(x f 在],[b a 上取得最大值和最小值的( )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件4. 设函数)(x f 在]0[a ,上二次可微,且0)()(>'-''x f x f x ,则xx f )('在区间)0(a ,内是( )(A )不增的 (B )不减的 (C )单调增加的 (D )单调减少的 5. 若C x x x f +=⎰2d )(,则=-⎰x x xf d )1(2 。
(A )C x +-22)1(2 (B )C x +--22)1(2(C )C x +-22)1(21(D )C x +--22)1(21三、计算题(每小题6分,共48分)1. 求极限 22)sin (1cos lim x x x x x +-+∞→.2. 求极限 20)(arctan cos ln lim x xx →.3. 设)1ln()(+=x x f ,))((x f f y =,求x y d d .4. 已知方程yx x y =确定了函数)(x y y =,求xy d d .5. 求函数1234+-=x x y 的对应曲线的凹凸区间及拐点.6. 求不定积分⎰++)52(d x x x x.7. 求不定积分⎰+x x x xd ln )1(.8. 求定积分⎰++102d 1arctan x xxx四、(9分) 求曲线⎩⎨⎧>-≤≤=2,620,2x x x x y 与直线0=y ,3=y 所围图形的面积,并求此图形绕y 轴旋转所成旋转体的体积y V 。
五、(9分) 某商品的需求函数为40003=+p Q ,其中Q 为需求量(件),p 为单价(元),求:(1)8=p 时的边际需求;(2) 8=p 时的需求弹性;(3)p 为多少时,总收益最大?六、(4分) 设函数)(x f 在]10[,上有连续的导数。
对于]10[,上每一点,均有1)(0<<x f 且1)(≠'x f 。
试证在()1,0内有且仅有一点ξ,使ξξ=)(f .《微积分(上)》试卷1解答一、填空题1. 02.210e )21(lim -→=-=xx x k 3. x x f 2e 2)(--=',22)(ln --='x x f4. 707)7(21)272sin(21)0(-=⋅+==x x y π 5. 2d x y y ∆=-∆6. )(x f ,)2(2x f -7. 28. 拐点)2,2(2-e9. 1-=x 10. 12ln 2)(+=x x f二、单项选择A DBC D三、计算题1. 原式1)sin 1(1cos 1lim22=+-+=∞→x x x x x . 2. 原式21cos 2sin lim cos ln lim 020-=-==→→x x x x x x x . 3. []1)1ln(ln )]([++==x x f f y ,111)1ln(1d d +⋅++=x x x y . 4. 两边取对数,x y y x ln ln =,两边关于x 求导,x y xyy y x y ln ln '+='+,∴ x xy x yxy y y ln ln 22--='5. 2364x x y -=',)1(1212122-=-=''x x x x y ,令0=''y ,得0=x ,1=x ,6. 原式⎰++=52d 2x x x ⎰+++=4)1()1(d 22x x C x ++=21arctan.7. 原式⎰⎰+=)(d ln 21)(ln d ln 2x x x x ⎰⋅-+=x x x x x x d 121ln 21)(ln 21222C x x x x +-+=22241ln 21)(ln 218. 原式102102)(arctan 21)1ln(21x x ++=322ln 212π+=四、325.133232918d )6(2330-=⋅--=--=⎰y y y S⎰--=32d ])6[(y y y V y π.5.58d )1336(32ππ=+-=⎰y y y五、 (1) 34000p Q -=,23p Q -=',192)8(-='Q(2) 3340003pp Q Q p --='=η,44.010948)8(-≈-=η (3) 44000)(p p pQ p R -==,344000)(p p R -=',令0='R ,得10=p ,而0122<-=''p R , ∴ 当10=p 时,总收益最大。
六、证:(1) 存在性:设x x f x F -=)()(,则)(x F 在]10[,上连续,1)(0<<x f ,∴ []01)1()0()1()0(<-=f f F F , 由介值定理,)1,0(∈∃ξ,使0)(=ξF ,即ξξ=)(f ;(2)唯一性。
若还有)1,0(∈η,使0)(=ηF ,由罗尔定理,)1,0(∈∃γ,使0)(='γF ,即1)(='γf ,与1)(≠'x f 矛盾,故)(x F 的零点唯一。
微积分试题及答案第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sinlim0=→xx k x 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin)(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xx x +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
3、函数⎪⎩⎪⎨⎧=-≥≠-+-+=0)1(0,1111)(3x k x x x x x f 在0=x 处连续,则=k 。
(A)23; (B)32; (C )1; (D )0。
4、数列极限=--∞→]ln )1[ln(lim n n n n 。
(A)1; (B)1-; (C )∞; (D )不存在但非∞。
5、⎪⎪⎩⎪⎪⎨⎧>=<+=01cos 000sin )(x x x x x x x x x f ,则0=x是)(x f 的 。
(A)连续点;(B)可去间断点;(C )跳跃间断点;(D )振荡间断点。
6、以下各项中)(x f 和)(x g 相同的是( ) (A)2lg )(x x f =,x x g lg 2)(=; (B)x x f =)(,2)(x x g =;(C )334)(x x x f -=,31)(-=x x x g ;(D )1)(=x f ,x x x g 22tan sec )(-=。
7、 ||sin lim 0x xx →= ( )(A) 1; (B) -1; (C ) 0; (D ) 不存在。
8、 =-→xx x 10)1(lim ( )(A) 1; (B) -1; (C) e ; (D) 1-e 。
9、)(x f 在0x 的某一去心邻域内有界是)(lim 0x f x x →存在的( )(A)充分必要条件;(B) 充分条件;(C )必要条件;(D )既不充分也不必要条件.10、 =-+∞→)1(lim 2x x x x ( )(A) 1; (B) 2; (C )21; (D ) 0。
11、设}{},{},{n n n c b a 均为非负数列,且∞===∞→∞→∞→n n n n n n c b a lim ,1lim ,0lim ,则必有( )(A )n n b a <对任意n 成立; (B )n n c b <对任意n 成立; (C )极限n n n c a ∞→lim 不存在 ; (D )极限n n n c b ∞→lim 不存在。